用户名: 密码: 验证码:
蒙古马运动相关候选基因的分子鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国是世界上养马历史最悠久的国家之一,但由于机械化的普及和其它马产业的严重滞后,马匹数量和质量发生了严重的下降。近年来,赛马和休闲骑乘在当今世界范围内已然成为一种新兴的产业,国家对于马业重新重视,出台了相关扶持的政策,多地开始新建赛马场和城市乘马俱乐部,并从国外引进多匹良种马。国外的速度赛马多为纯血马,购买和饲养十分昂贵。因此,发展我国的现代马业,必须挖掘我国本土具有优秀运动性能的马品种,通过对其运动性能的充分了解,并自主培育我国赛马,以发展我国赛马种业。
     蒙古马是世界上最古老的马品种之一,具有耐力性能卓越、抗严寒、耐粗食和抗病力强等优良特性。并早在13世纪已用于赛马。伴随着分子生物学手段的进步,国外对于纯血马在运动研究的持续开展,对我国特有的地方品种蒙古马进行运动方面的深入详细研究,已迫在眉睫。
     本研究以蒙古马为研究对象,研究了与肌肉发育和能量代谢有关基因MSTN、PDK4、CKM、COX411、COX412、PPARGC1A、CAV-1、FABPpm及LDHA在臀中肌表达情况;采用PCR-SSCP及测序的技术对表达量显著差异基因,进行多态性扫描;采用双向电泳和质谱技术鉴定了对不同运动时期的蒙古马肌肉组织差异表达蛋白质。得到的研究结果如下:
     1.研究与肌肉发育和能量代谢有关基因MSTN、PDK4、CKM、COX411、COX412、PPARGC1A、CAV-1、FABPpm及LDHA等在蒙古马臀中肌表达模式。
     (1)研究蒙古马静止期T0、运动刚刚结束T1和运动后的恢复期T2臀中肌中候选基因表达情况。对上述候选基因的相对表达量进行了测定。结果显示:PDK4和PPARGC1A基因,它们在耐力运动后mRNA的表达量都发生了上调,在运动后的恢复期mRNA的表达量水平甚至还发生了显著的上调(P<0.05),且二者具有显著的相关性;蒙古马CAV-1基因的mRNA的表达量在运动后的恢复期发生了显著的上调(P<0.05),但运动刚刚结束相对运动前的静止期略有减少。
     (2)对训练骑乘过的蒙古马与未曾训练的蒙古马静止状态下臀中肌中候选基因mRNA的表达量检测后发现,训练对蒙古马所选候选基因的mRNA的表达量均有影响,其中PDK4、MSTN及COX412三个基因mRNA的表达量发生了显著的增加,特别是COX412基因发生了极显著的增加(P<0.01)。
     (3)采用Western blotting的方法对PDK4、PGC-1和CAV-1蛋白在蒙古马不同运动时期表达量进行测定,结果显示:PDK4、CAV-1和PGC-1三个蛋白在耐力运动后较运动前的静止期均有增加,且PDK4在运动后恢复期蛋白表达量较运动前有了显著的增加(P<0.05),而另外两个蛋白增加并未到达显著水平。
     2.利用差异候选基因法,确定对在蒙古马在耐力运动前后候选基因mRNA的表达量显著差异的CAV-1,PDK4和PPARGC1A三个基因为蒙古马耐力运动的候选基因,采用SSCP-PCR和直接测序的方法进行基因外显子区多态研究,结果表明三个基因在蒙古马中高度保守,仅在PPARGC1A第五外显子区发现单核苷酸多态。从群体遗传学的角度分析统计了4个品种马PPARGC1A基因第五外显子PCR-SSCP位点的基因型频率和等位基因频率,发现等位基因A比B占优势,AA基因型频率比AB和BB占优势。
     3.利用双向电泳的方法对蒙古马不同运动时期骨骼肌中的蛋白质组学进行研究,结果发现不同运动时期共有蛋白差异点44个,其中运动刚刚结束与运动前静止期有31个差异蛋白质点,运动后恢复期与运动前静止期比较有30个差异蛋白点。经MALDI一TOF/MS质谱分析,成功鉴定44个不同运动时期差异表达蛋白点,分值高于78阈值(P<0.05)的不同蛋白质有28个。对这些蛋白进行GO注释及WEGO分析,结果显示:若按生物过程分,包含有16类,其中代谢过程占35.7%,包括ACADVL、HSPB1、HSP70、LARS、TNNT3和Rab-40c等10个蛋白。
China is one of the oldest countries to have horse raising, but the quantity andquality of horse have declined seriously because of the popularity of mechanization andserious lagging of other horse industries. In recent years, horse racing and leisure horseriding have became emerging industries around the world, so horse industry have beenaroused attention again by a great of states, and some relevant supporting policies havebeen introduced. Many places started to build racing courses and city saddle horse clubsand imported many thoroughbred horses from abroad. Most of the foreign racing horsesare thoroughbred horses which are too expensive to buy and breed. It’s necessary to dignational horse breeds which have good motion performance by fully understanding theirlocomotion, and to breed our national racing horse and develop Chinese racing horseindustry.
     Mongolian horse is one of the oldest horse breeds in the world, and has powerfulendurance, strong resistance to chilliness, rough feeding and disease. And it has beenused for racing from the13th century to nowadays. Along with the progress of molecularbiology methods and continuous studying of thoroughbred horses on their locomotion byforeign countries, it’s extremely urgent to study the area of sports of Mongolian horsewhich is unique local breed in our country.
     In this study, we studied the expression of muscle development and energymetabolism related genes including MSTN, PDK4, CKM, COX411, COX412,PPARGC1A, CAV-1, FABPpm and LDHA gene in gluteus medius of Mongolian horse;PCR-SSCP and sequencing technology were used to carry out polymorphism scanningfor genes which showed significantly different expression; Two-dimensionalelectrophoresis and mass spectrometry were used to identify differential expressiveproteins in muscular tissues of Mongolian horses from different periods of movement.We got the following results:
     1. Studying the expressive pattern of muscle development related genes includingMSTN, PDK4, CKM, COX411, COX412, PPARGC1A, CAV-1, FABPpm and LDHA genein gluteus medius of Mongolian horses.
     (1) Studying the expression of candidate genes in gluteus medius at stationary phaseT0, movement immediately postexercise phase T1and recovery phase T2from movementand measuring the relative expression of these candidate genes. The results showed that: the mRNA expressions of PDK4and PPARGC1A gene were up regulate at phase T1andsignificantly up regulate (P<0.05) at phase T2, the both have significant relativity; themRNA expression of CAV-1gene was significantly up regulate (P<0.05) at phase T2,while expression at phase T1was lower than phase T0.
     (2) After measuring the mRNA expressions of the candidate genes in gluteus mediusof trained Mongolian horses and untrained Mongolian horses at stationary condition, wefound training had effects on mRNA expressions of all candidate genes, within raletivegenes the mRNA expressions of PDK4, MSTN and COX412gene increased significantly(P<0.05) and COX412gene was significant higher (P<0.01).
     (3) Western blotting was used to measure the protein expressions of PDK4, PGC-1and CAV-1gene of Mongolian horses at different periods of movement, the resultsshowed protein expressions of PDK4, CAV-1and PGC-1gene were higher at phase T1and T2than phase T0, and protein expression of PDK4gene was significant higher(P<0.05) at phase T2than phase T0, while the other two genes didn’t reach significantlevel.
     2. Choosing CAV-1, PDK4and PPARGC1A gene as candidate genes for enduranceexercise of Mongolian horses because the mRNA expressions of these genes weresignificantly different before and after endurance exercise. SSCP-PCR was used to studythe polymorphisms in exons of the genes, the results showed the three genes were highlyconserved in Mongolian horses and just found single nucleotide polymorphisms in thefifth exon of PPARGC1A gene. And then we detected PCR-SSCP of PPARGC1A gene infour horse populations, and found allele A was the dominant allele.
     3. Two-dimensional electrophoresis was used to study proteomics of skeletal muscleof Mongolian horses at different periods of movement, we found44different proteinpoints at different movement phases, within there were31different protein pointsbetween phase T1and phase T0,30different protein points between phase T2and phaseT0. We successfully identified44different protein points in different movement stagesand got28different proteins by MALDI-TOF/MS mass spectrometry. These proteins areGO noted and WEGO analysied. The results showed that there are16classes accodingbiology processes, consist metabolic processes (35.7%), mainly include10proteins, suchas ACADVL、HSPB1、HSP70、LARS、TNNT3、Rab-40c, and so forth.
引文
1赵天佐主编.马匹生产学[M].北京:中国农业出版社,1997
    2刘少伯主编.现代马业选集[M].北京:中国农业科学技术出版社,2007,1:30
    3McNeill, A R. Why mammals gallop [J]. American Zoologist1988,28:237-245
    4Kayar S, Hoppeler H, Lindstedt S, Claassen H, Jones J, Essen-Gustavsson B, TaylorC. Total muscle mitochondrial volume in relation to aerobic capacity of horses andsteers [J]. European Journal of Physiology,1989,413:343-347
    5Hodgson D R, Davis R E, McConaghy F F. Thermoregulation in the horse in responseto exercise [J]. The British Veterinary Journal,1994,150:219-235
    6Rivero J L, Henckel P. Muscle biopsy index for discriminating between endurancehorses with different performance records[J]. Research in Veterinary Science,1996,61:49-54
    7Minetti A E, Ardigo L P, Reinach E, Saibene F. The relationship between mechanicalwork and energy expenditure of locomotion in horses [J]. Journal of ExperimentalBiology,1999,202:2329-2338
    8Lacombe V A, Hinchcliff K W, Geor R J, Baskin C R. Muscle glycogen depletion andsubsequent replenishment affect anaerobic capacity of horses [J]. Journal ofApplied Physiology,2001,91:1782-1790
    9Cunninghanm E P, Dooley J J, Splan R K, Bradley D G. Microsatelite diversity,pedigree relatedness and the contributions of founder lineages to thoroughbredhourses [J]. Animal Genetics,2001,32:360-364
    10吴克亮,吴常信.马科学研究动态和马业发展[J].畜牧兽医学报,2005,36(4):412-416.
    11Jones J H, Longworth K E, Lindholm A, Conley K E, Karas R H, Kayar S R, Taylor CR. Oxygen transport during exercise in large mammals. I. Adaptive variation inoxygen demand[J]. J Applied Physiology,1989,67:862-870
    12Katz L M, Bayly W M, Hines M T, Sides R H. Ventilatory responses of ponies and horsesto exercise[J]. Equine Comp Physiol,2005,2:229-240
    13Hickman J. Horse Management[M]. Academic Press,1984, pp. xiv+339pp
    14Young L E, Rogers K. and Wood J L. Left ventricular size and systolic function inThoroughbred racehorses and their relationships to race performance[J]. J applPhysiol,2005,99:1278-1285
    15Fang J, Dagenais S L, Erickson R P, Arlt M F, Glynn M W, Gorski J L, Seaver L H,Glover T W. Mutations in FOXC2(MFH-1), a forkhead family transcription factor,are responsible for the hereditary lymphedema-distichiasis syndrome[J]. Am J HumGenet,2000,67:1382-1388
    16Evans D L, Harris R C, Snow D H. Correlation of racing performance with blood lactateand heart rate after exercise in thoroughbred horses[J]. Equine vet J,1993,25:441-445
    17Revington M. Haematology of the racing Thoroughbred in Australia2: haematologicalvalues compared to performance[J]. Equine vet J,1983,15:145-148
    18Harkins J D, Beadle R E, Kamerling S G. The correlation of running ability andphysiological variables in thoroughbred racehorses[J]. Equine vet J,1993,25:53-60
    19Gramkow H L, Evans D L Correlation of race earnings with velocity at maximal heartrate during a field exercise test in thoroughbred race horses[J]. Equine vet J,2006,36:118-122
    20Bouchard C, Malina R M, Perusse L. Genetics of fitness and physical performance.Human Kinetics[J]. Champaign,1997, Ill
    21Bouchard C, Leon A S, Rao D C, Skinner J S, Wilmore J H, Gagnon J. The HERITAGEfamily study. Aims, design, and measurement protocol[J]. Med Sci Sports Exerc,1995,27:721-729
    22Daniel G, MacArthur, Kathryn N. North Genes and human elite athleticperformance[J]. Hum Genet,2005,116:331-339
    23Montgomery H E, Marshall R, Hemingway H, et al. Human gene for physical per-formance[J]. Nature,1998,21(5):393-221
    24刘利.人和马的ACE基因的多态性与耐力的探索与研究[D].内蒙古农业大学硕士毕业论文,2007
    25Bray M S, Hagberg J M, Pérusse L, Rankinen T, Roth S M, Wolfarth B, Bouchard C.The human gene map for performance and health-related fitness phenotypes: the2006-2007update[J]. Medicine and Science in Sports and Exercise,2009,41:35-73
    26Wade C M, et al. Genome sequence, comparative analysis, and population geneticsof the domestic horse[J]. Science,2009,326:865-867.
    27Bright L, Burgess S, Chowdhary B, Swiderski C, McCarthy F. Structural andfunctional-annotation of an equine whole genome oligoarray[J]. BMC Bioinformatics,2009,10(11):S8
    28Schr der W, Klostermann A, Distlet O. Candidate genes for physical performance inthe horse[J]. The Veterinary Journal,2010, doi:10.1016/j.tvjl.2010.09.029
    29Gu J, Orr N, Park S D, Katz L M, Sulimova G, MacHugh D E, Hill E W. A genome scanfor positive selection in thoroughbred horses[J]. PLoS One,2009,4: e5767
    30McGivney B, Eivers S, MacHugh D, MacLeod J, O’Gorman G, Park S, Katz L, Hill E.Transcriptional adaptations following exercise in Thoroughbred horse skeletalmuscle highlights molecular mechanisms that lead to muscle hypertrophy[J]. BMCGenomics,2009,10:638
    31McGivney B, McGettigan P, Browne J, Evans A, Fonseca R, Loftus B, Lohan A, MacHughD, Murphy B, Katz L, Hill E. Characterization of the equine skeletal muscletranscriptome identifies novel functional responses to exercise training[J]. BMCGenomics,2010,11:398
    32Hill E, Gu J, Eivers S, Fonseca R, McGivney B, Govindarajan P, Orr N, Katz L, MacHughD. A sequence polymorphism in MSTN predicts sprinting ability and racing staminain thoroughbred horses[J]. PloS One,2010,5:e8645
    33Hill E, Gu J, McGivney B and MacHugh D. Targets of selection in the Thoroughbredgenome contain exercise-relevant gene SNPs associated with elite racecourseperformance[J]. Animal Genetics,2010,41(2):56-63
    34Gu J, MacHugh D, McGivney B, Park L, Hill E. Association of sequence variants inCKM (creatine kinase muscle) and COX4I2(cytochrome c oxidase, subunit4, isoform2) genes with racing performance in Thoroughbred horses[J]. Equine vet J,2010,42(38):569-575
    35孟克.部分马品种血液蛋白(酶)多态性研究[D]内蒙古农业大学硕士学位论文,2006
    36芒来.蒙古马的历史与展望[J].马业杂志,2002,4:14-17
    37芒来.草原天俊[M].内蒙古人民出版社,2012
    38王全喜.蒙古马MSTN基因克隆及序列分析和部分品种多态性研究[D].内蒙古农业大学博士学位论文,2005
    39范彩云.马多巴胺D4受体基因克隆、序列分析和多态性研究[D].内蒙古农业大学博士学位论文,2007
    40杨虹.蒙古马主要性格性状及其候选基因的行为遗传学研究[D].内蒙古农业大学博士学位论文,2009
    41姚全福.六个品种马CKM基因遗传多样性研究[D]内蒙古农业大学硕士学位论文,2010.
    42李登光,史银斌.中长跑运动的能量供应规律及特点的研究[J].辽宁体育科技,2005,27(2):36-36
    43冯炜权,冯美云.乳酸与运动能力[J].中国运动医学杂志,1987,6(3):157-160
    44Brooks G A.The lactate shuttle during exercise and recovery[J]. Med Sci Sports Exerc,1986,18:360-368
    45Pellerin L, Magisertt I. Glutamate uptake into astrocytes stimulates aerobic glyc-oglysis: a mechanism coupling neuronal activity to glucose utilization[J]. ProcNat l Acas Sci USA,1994,91:10625-10629
    46Brooks, George. A lactate: Link between glycolytic and oxidative metabolism[J].Sports Medicine,2007,4(5):341-343
    47Kearns C F, McKeever K H, Abe T. Overview of horse body composition and musclearchitecture: implications for performance[J]. The Veterinary Journal,2002,164:224-234
    48Kayar S, Hoppeler H, Lindstedt S, Claassen H, Jones J, Essen-Gustavsson B, TaylorC. Total muscle mitochondrial volume in relation to aerobic capacity of horses andsteers[J]. European Journal of Physiology,1989,413:343-347
    49Mcpherron A, Lawler A, Lee S. Regulation of skeletal muscle mass in mice by a newTGF-βsuperfamily member[J]. Nature,1997,387:83-90
    50Lee S J, McPherron A C. Regulation of myostatin activity and muscle growth[J]. PNAS,2001,98:9306-9311
    51Ji S, Losinski R L, Cornelius S G,et al. Myostatin expression in porcine tissues:tissue specifity and developmental and postnatal regulation. Am J Physiol,1998,275:265-273
    52Grobet L, Poncelet D, Royo L, Brouwers B, Pirottin D, Michaux C, Menissier F,Zanotti M, Dunner S, Georges M. Molecular definition of an allelic series ofmutations disrupting the myostatin function and causing double-muscling in cattle[J]. Mammalian Genome,1998,9:210-213
    53Singh R, Artaza J N, Taylor W E, Gonzalwz-Cadavid N F, Bhasin S. Androgens stimulatemyogenic differentiation and inhibit adipogenesis in C3H10T1/2pluripotent cellsthrough an androgen receptor-mediated pathway[J]. Endocrinology,2003,144(11):5081-5088
    54Manickam R,Ramona N, Pena C, et al. Mammary gland differentiation inverselycorrelates with GDF-8expression[J]. Molecular Reproduction and Development,2008,75:1783-1788
    55Schuelke M, Wagner K R, Stolz L E, Hubner C, Riebel T, et al. Myostatin mutationassociated with gross muscle hypertrophy in a child[J]. N Engl J Med,2004,350:2682-2688
    56Sasha bogdanovich. Functional improvement of dystrophic muscle by myostatinblockade[J]. Nature,2002,420:418-421
    57Mosher D S, Quignon P, Bustamante C D, Sutter N B, Mellersh C S, Parker H G, OstranderE A. A mutation in the myostatin gene increases muscle mass and enhances racingperformance in heterozygote dogs[J]. PLoS Genetic,2007,3(e79):0779-0786
    58Huygens, W, Thomis M A I, Peeters M W, Aerssens J, Vlietinck R, Beunen G P.Quantitative trait loci for human muscle strength: linkage analysis of myostatinpathway genes[J]. Physiological Genomics,2005,22:390-397
    59Harris R A, Huang B, Wu P. Control of pyruvate dehydrogenase kinase geneexpression[J]. Advances in Enzyme Regulation,2001,41:269-288
    60Patel M S, Korotchkina L G. Regulation of mammalian pyruvate dehydrogenase complexby phosphorylation: complexity of multiple phosphorylation sites and kinases[J].Experimental and Molecular Medicine,2001,33:191-197
    61Roche T E, Baker J C, Yan X, Hiromasa Y, Gong X, Peng T, Dong J, Turkan A&KastenSA. Distinct regulatory properties of pyruvate dehydrogenase kinase and phosphataseisoforms[J]. Progress in Nucleic Acid Research,2001,70:33-75
    62Pilegaard H&Neufer P D. Transcriptional regulation of pyruvate dehydrogenasekinase4in skeletal muscle during and after exercise[J]. Proceedings of theNutrition Society,2004,63:221-226
    63Bowker-Kinley M M, Davis W I, Wu P, Harris R A, Popov K M. Evidence for existenceof tissue-specific regulation of the mammalian pyruvate dehydrogenase complex[J].Biochemical Journal,1998,329:191-196
    64Wu P, Inskeep K, Bowker-Kinley M M, Popov K M, Harris R A. Mechanism responsiblefor inactivation of skeletal muscle pyruvate dehydrogenase complex in starvationand diabetes[J]. Diabetes,1999,48:1593-1599
    65Sparks L M, Xie H, Koza R A, et al.The STA5A-mediated induction of pyruvatedehydrogenase kinase4expression by prolactin or growth hormone in adipocytes[J].Diabetes,2006,55(11):1457-1463
    66Nordsborg N, Bangsbo J, Pilegaard H. Effect of high-intensity training onexercise-induced gene expression specific to ion homeostasis and metabolism[J].Journal of Applied Physiology,2003,95:1201-1206
    67Pilegaard H, Ordway G A, Saltin B, Neufer P D.Transcriptional regulation of geneexpression in human skeletal muscle during recovery from exercise[J].AmericanJournal of Physiology,2000,279:806-814
    68Puigserver P, Wu Z, Park C W, Graves R, Wright M, Spiegelman B M. A cold-induciblecoactivator of nuclear receptors linked to adaptive thermogenesis[J]. Cell,1998,92:829-839
    69Scarpulla R C. Nuclear activators and coactivators in mammalian mitochondrialbiogenesis[J]. Biochim Biophys Acta,2002,1576(122):1-14
    70Lin J, Wu H, Tarr P T, Zhang C Y, Wu Z, Boss O, Michael L F, Puigserver P, IsotanniE, Olso E N,Lowell B B, Bassel-Duby R, Spiegelman B M. Transcriptional co-activatorPGC-1α drives the formation of slow-twitch muscle fibers[J]. Nature,2002,418:797-801
    71Baar K, Wende A R, Jones T E, Marison M, Nolte L A, Chen M, Kelly D P, HolloszyJ O. Adaptations of skeletal muscle to exercise: rapid increase in thetranscriptional coactivator PGC-1α[J]. FASEB J,2002,16:1879-1886
    72Handschin C, Rhee J, Lin J, Paul T, Bruce M. Spiegelman An autoregulatory loopcontrols peroxisome proliferator-activated receptor γcoactivator1αexpressionin muscle[J]. PNAS,2003,100(12):7111-7116
    73Gleyzer N, Vercauteren K, Scarpulla R. Control of Mitochondrial TranscriptionSpecificity Factors (TFB1M and TFB2M) by Nuclear Respiratory Factors (NRF-1andNRF-2) and PGC-1Family Coactivators[J]. Molecular and cellular biology,2005,25(4):1354-1366
    74Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S,Lowell B, Scarpulla R C, Spiegelman B M. Mechanisms controlling mitochondrialbiogenesis and respiration through the thermogenic coactivator PGC-1[J]. Cell,1999,98:115-124
    75Finck B N, Lehman J J, Leone T C, Welch M J, Bennett M J, Kovacs A, Han X, GrossR W, Kozak R, Lopaschuk G D, Kelly D P. The cardiac phenotype induced by PPARαoverexpression mimics that caused by diabetes mellitus[J]. J Clin Investig,2002,109:121-130
    76Lin J, Wu P H, Tarr P T, Lindenberg K S, Pierre J S, Zhang C Y, et al. Defects inadaptive energy metabolism with CNS-linked hyperactivity in PGC-1α null mice[J].Cell,2004,119:121-135
    77Hara K, Tobe K, Okada T, Kadowaki H, Akanuma Y, Ito C, Kimura S, Kadowaki T. A geneticvariation in the PGC-1gene could confer insulin resistance and susceptibility totype II diabetes[J]. Diabetologia,2002,45:740-743
    78Lucia A, Gomez-Gallego F, Barroso I, Rabadan M, Bandres F, San Juan A F, ChicharroJ L, Ekelund U, Brage S, Earnest C P,Wareham N J, Franks P W. PPARGC1A genotype(Gly482Ser) predicts exceptional endurance capacity in European men[J]. J ApplPhysiol,2005,99:344-348
    79Norbert Stefan, Claus Thamer, Harald Staiger, Fausto Machicao, Ju¨ rgen Machann,Fritz Schick, Christian Venter, Andreas Niess, Markku Laakso, Andreas Fritsche,Hans-Ulrich Ha¨ ring. Genetic Variations in PPARD and PPARGC1A determinemitochondrial function and change in aerobic physical fitness and insulinsensitivity during Lifestyle intervention[J]. The Journal of ClinicalEndocrinology&Metabolism,2007,92(5):1827-1833
    80Lucia A, Gomez-Gallego F, Barroso I, Rabadan M, Bandres F, San Juan A F, ChicharroJ L, Ekelund U, Brage S, Earnest C P,Wareham N J, Franks P W. PPARGC1A genotype(Gly482Ser) predicts exceptional endurance capacity in European men[J]. ApplPhysiol,2005,99:344-348
    81Shin Terada, Masahide Goto, Miyuki Kato, Kentaro Kawanaka, Teruhiko Shimokawa andIzumi Tabata. Effects of low-intensity prolonged exercise on PGC-1mRNA expressionin rat epitrochlearis muscle[J]. Biochemical and Biophysical ResearchCommunications,2002,296(2):350-354
    82Wende A R, Huss J M, Schaeffer P J, Giguere V, Kelly D P. PGC-1alpha coactivatesPDK4gene expression via the orphan nuclear receptor ERRalpha: a mechanism fortranscriptional control of muscle glucose metabolism[J]. Molecular and CellularBiology,2005,25:10684-10694
    83Eynon N, Sagiv M, Meckel Y, Duarte J A, Alves A J, Yamin C, Sagiv M, GoldhammerE, Oliveira J. NRF2intron3A/G polymorphism is associated with endurance athletes’status[J]. Journal of Applied Physiology,2009,11:1147-1152
    84Handschin C, Chin S, Li P, Liu F F, Maratos-Flier E, LeBrasseur N K, Yan Z, SpiegelmanB. Skeletal muscle fiber-type switching, exercise intolerance, and myopathy inPGC-1α muscle-specific knock-out animals[J]. The Journal of biological chemistry,2007,282(41):30014-30021
    85徐堤,肌酸激酶研究进展[J].生物化学与生物物理进展,1991,18:20-24
    86McLeish M J, Kenyon G L. Relating structure to mechanism in creatine kinase[J].Critical Reviews in Biochemistry and Molecular Biology,2005,40:1-20
    87Hornemann T, Kempa S, Himmel M, Hayess K, Furst D O, Wallimann T. Muscle type creatinekinase interacts with central domains of the M-proteins myomein and M-protein[J].J Mol Biol,2003,332:877‐887
    88Bouchard C, Chagnon M, Thibault M C, Boulay M R, Marcotte M, Cote C, Simoneau JA. Muscle genetic variants and relationship with performance and trainability[J].Med Sci Sports Exerc,1989,21:71-77
    89Rivera M, Dionne F T, Simoneau J A, et al. Muscle-specific creatine kinase genepolymorphism and VO2max in the Heritage family study[J]. Med Sci Sports Exerc,1997,29(10):1311-1317
    90Echegaray M, Rivera M A. Role of creatine kinase isoenzymes on muscular andcardiorespiratory endurance–genetic and molecular evidence[J]. Sports Med,2001,31(13):919-934
    91Zhou D Q, Hu Y, Liu G, Gong L, Xi Y, Wen L. Muscle-special creatine kinase genepolymorphism and running economy responses to an18-week5000-m trainingprogramme[J]. British Journal of Sports Medicine,2006,40:988-991
    92Yamashita K, Yoshioka T. Profiles of creatine kinase isoenzyme compositions insingle muscle fibers of different types[J]. J Muscle Res Cell Motil,1991,12:37-44.
    93Van Deursen J, Heerschap A, Oerlemans F, Ruitenbeek W, Jap P, Laak H, WieringaB. Skeletal muscles of mice deficient in muscle creatine kinase lack burstactivity[J]. Cell,1993,74:621-631
    94Apple P S, Billardello J J. Expression of creatine kinase M and B mRNAs in treadmilltrained rat skeletal muscle[J]. Life Sci,1994,55(8):585-592
    95Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinizawa-Itoh K,Nakashima R, Yaono R, Yoshikawa S. The whole structure of the13-subunit oxidizedCOX at2[J]. Science,1995,272:1136-1144
    96Fukuda R, Zhang H F, Kim J W, Shimoda L, Dang CV, Semenza1G L. HIF-1regulatescytochrome oxidase subunits to optimize efficiency of respiration inhypoxiccells[J].2007, Cell,129(6):111-122
    97Boutin A T, Johnson R S. Waiting to inhale: HIf-1modulates aerobic respiration[J].Cell,2007,129(6):29-30
    98Kim J W, Tchernyshyov I, Semenza G L, Dang C V. HIF-1-mediated expression of pyruvatedehydrogenase kinase: ametabolic switch required for cellular adaptation tohypoxia[J]. Cell,2006,3:177-185
    99Burgomaster K A, Cermak N M, Phillips S M, Benton C R, Bonen A, Gibala M J. Divergentresponse of metabolite transport proteins in human skeletal muscle after sprintinterval training and detraining[J]. Am J Physiol Regul Integr Comp Physiol,2007,292:1970-1976
    100Hyunsuk S, Cheristine D, Brian C. Lewi S, Wu C S, Gerard D, Richard A. Jungmanin,Riccardo D F, Dang C V. C-Myc transactivation of LDH-A: Implications for tumormetabolism and growth[J]. Proc Natl Acad Sci USA,1997,94:6658-6663
    101Draoui N, Feron O. Lactate shuttles at a glance: from physiologica paradigms toanti-cancer treatments[J]. Disease Models&Mechanisms,2011,4:727-732
    102梁锡华.运动与血乳酸[J].湖北体育科技,2002,21(4):416-418
    103陈元武,俞旗.不同状态下人体血乳酸的变化[J].贵州体育科技,1990,3:51-53
    104Sebastián Cerdán, Tiago B. Rodrigues, Alejandra Sierra, Marina Benito, Luis L.Fonseca, Carla P. Fonseca, María L. García-Martín. The redox switch/redoxcoupling hypothesis[J]. Neuro chemistry International,2006,48:523-530
    105Philp A, Macdonald A L, Watt P W. Lactate-a signal coordinating cell and systemicfunction[J]. The Journal of Experimental Biology,2005,208:4561-4575
    106Lewis B C, Shim H, Li Q, et al. Identification of putative c-Myc-responsive genes:characterization of rcl, a novel growth-related gene[J]. Mol Cell Biol,1997,17:967-978
    107Le A, Cooper C R, Gouwb A M, Dinavahi R, Maitrab A, Deckd L M, Royer R E, et al.Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumorprogression[J]. PNAS,2010,107(5):2037-2042
    108Glenn C J, George N S. Evolutionary convergence in adaptation of proteins totemperature: A4-lactate dehydrogenases of pacific damselfishes (Chromis spp.)[J].Mol Biol Evol,2004,21(2):314-320
    109史福胜,车发梅,孙旭红,等.不同海拔地区牦牛血浆和组织中乳酸脱氢酶的比较[J].中国兽医杂志,2007,43(2):24-25
    110张冬杰,刘娣,汪亮,王文涛,杨国伟.民猪PGD和LDHA基因的表达与冷诱导研究[J].东北农业大学学报,2009,42(9):17-21
    111Lindner A E, Mosen H, Kissenbeck S, Fuhrmann H, Sallmann H P. Effect of bloodlactate-guided conditioning of horses with exercises of differing durations andintensities on heart rate and biochemical blood variables[J]. Journal of AnimalScience,2009,87:3211-3217
    112Turcotte L P, Srivastava A K, Chiasson J L. Fasting increases plasma membrane fattyacid-binding protein IFABP(PM)) in red skeletal muscle[J]. Mol Cell Biochem,1997,166(1-2):153-158
    113Coe N R, Smith AJ, Frohnert B I, et al. The fatty acid transport protein (FATP1)is a very long chain acyl-CoA synthetase[J].J Biol Chem,1999,274(51):36300-36304.
    114Abumrad N, C oburn C, Ibrahimi A. Membrane proteins implicated in long2chain fattyacid uptake by mammalian cells: CD36, FATP and FABPpm[J]. Biochim Biophys Acta,1999,1441(1):4-13
    115Zhou S L, Stump D, Sorrentino D, et al. Adipocyte differentiation of3T32L1cellsinvolves augmented expression of a432kDa plasma membrane fatty acid-bindingprotein[J]. J Biol Chem,1992,267(20):14456-14461
    116Turcotte L P, Swenberger J R, Tucker M Z, et al. Muscle palmitate uptake and bindingare saturable and inhibited by antibodies to FABP(PM)[J]. Mol Cell Biochem,2000,210(1-2):53-63
    117Glatz J F, van der Vusse G J. Cellular fatty acid-binding proteins: their functionand physiological significance[J]. Prog Lipid Res,1996,35(3):243-282
    118Memon R A, Fuller J, Moser A H, et al. Regulation of putative fatty acid transportersand acyl-CoA synthetase in liver and adipose tissue in ob/ob mice[J]. Diabetes,1999,48(1):121-127
    119Talanian J L, Galloway S D, Heigenhauser G J, et al. Two weeks of high-intensityaerobic interval training increuses the capacity for fat oxidation during exercisein women[J]. J Appl Physiol,2007,102(4):1439-1447
    120Kiens B, Roepstorff C. Glaiz J F C, et al. Lipid-binding proteins and lipopuneinlipase activity in human skeletal muscle: influence of physical activity andgender[J]. J Appl Physiol,2004,97(4):1209-1218
    121Jeppesen J, Albers P, Luiken J J, Glatz J F, Kiens B. Contractions but not AICARincrease FABPpm content in rat muscle sarcolemma[J]. Postepy Hig Med Dosw (Online),2008,25(62):433-441
    122Bonen A, Luiken J J, Liu S, Dyck D J, Kiens B, Kristiansen S, Turcotte L P,van derVusse G J, Glatz J F C. Palmitate transport and fatty acid transporters in red andwhite muscles[J]. Am J Physiol,1998,78:1839-1845
    123Baillie A G, Coburn C T, Abumrad N A. Reversible binding of long-chain fatty acidsto purified FAT, the adipose CD36homolog[J]. J Membr Biol,1996,153(1):75-81
    124Fan J Y, Carpentier J L, van Obberghen E, Grunfeld C, Gorden P, Orci L. Morphologicalchanges of the3T3-L1fibroblast plasma membrane upon differentiation to theadipocyte form[J]. J Cell Sci,1983,61:219-230
    125Trigatti B L, Mangroo D, G erber G E. Photo affinity labeling and fatty acidpermeation in3T3-L1adipocytes[J]. J Biol Chem,1991,266(33):22621-22625
    126Frohnert B I, BernlohrD A. Regulation of fatty acid transporters in mammaliancells[J]. Prog Lipid Res,2000,39(1):83-107
    127Li S, Song K S, Koh S S, Kikuchi A, Lisanti M P. Baculovirus based expression ofmammalian caveolin in Sf21insect cells. A model system for the biochemical andmorphological study of caveolar biogenesis[J]. J Biol Chem,1996,271:28647-28654
    128Williams T M, Lisanti M P, et al. The caveolin proteins[J]. Genome Biol,2004,5(3):214-222
    129Monier S, Parton R G, Vogel F, Behlke J, Henske A, Kurzchalia T. VIP21-caveolin,a membrane protein constituent of the caveolar coat, oligomerizes in vivo and invitro[J]. Mol Biol Cell,1995,6:911-927
    130周丽华,束刚,朱晓彤,高萍,王松波,张永亮,习欠云,王修启,江青艳.肌肉脂肪酸转运膜蛋白及其相互关系[J].中国生物化学与分子生物学报,2008,24(11):992-1000
    131Razani B, Combs T P, Wang X B, Frank P G, Park D S, Russell R G, Li M, Tang B, JelicksL A, Scherer P E, Lisanti M P. Caveolin-1-deficient mice are lean, resistant todiet-induced obesity, and show hypertriglyceridemia with adipocyteabnormalities[J].J Biol Chem,2002,277:8635-8647
    132Pohl J, Ring A, Ehehalt R, et al. New concepts of cellular fatty acid uptake: roleof fatty acid transport proteins and of caveolae[J]. Proc Nutr Soc,2004,639(2):259-262
    133Engelman J A, Wycoff C C, Yasuhara S, Song K S, Okamoto T, Lisanti M P. Recombinantexpression of caveolin-1in oncogenically transformed cells abrogatesanchorage-independent growth[J]. J Biol Chem,1997,272:16374-16381
    134Fruhbeck G, Lopez M, Dieguez C. Role of caveolins in body weight and insulinresistance regulation[J]. Trends Endocrinol Metab,2007,18(5):177-182
    135Cohen A W, Razani B, Schubert W, Williams T M, Wang X B, Iyengar P, Brasaemle DL, Scherer P E, Lisanti M P. Role of caveolin-1in the modulation of lipolysis andlipid droplet formation[J]. Diabetes,2004,53:1261-1270
    136MacArthur D G, North K N. A gene for speed? The evolution and function ofalpha-actinin-3[J]. Bioessays,2004,26:786-795
    137Hatta Yu Kitaoka, Hiroyuki Masuda, Kazutaka Mukai, Atsushi Hiraga, Tohru Takemasa,Hideo. Effect of training and detraining on monocarboxylate transporter (MCT)1and MCT4in Thoroughbred horses[J]. Exp Physiol,2011,96(3):348-355
    138Bryant N J, Govers R, David E. James Regulated transported transport of the glucosetransporter GLUT4[J]. Molecular Cell Biology,2002,3:267-277
    139Eynon N, Alves A J, Meckel Y, Yamin C, Ayalon M, Sagiv M, Sagiv M. Is the interactionbetween HIF1A P582S and ACTN3R577X determinant for power/sprint performance[J].Metabolism,2010,59:861-865
    140Katia Cappelli, Michela Felicetti, Stefano Capomaccio, Camillo Pieramati, MaurizioSilvestrelli, Andrea Verini-Supplizi. Exercise-induced up-regulation of MMP-1andIL-8genes in endurance horses[J]. BMC Physiology,2009,9:12http://www.biomedcentral.com/1472-6793/9/12
    141Wilkins M R, Sanchez J C, Gooley A A, APPel R D, HumPhery-Smith I, HoehstrasserD F, Williams K L. Progress with Proteome Projects: why all Proteins expressed byagenome should be identified and how to do it[J]. Biotecllnol Genet Eng Rev,1996,13:19-50
    142Wasinger V C, Cordwell S J, Cerpa-Poljak A, Yan J X, Gooley A A, Wilkins M R, DuncanM W, Harris R, Williams K L, Humphery-Smith I. Progress with gene-product mappingof the Mollicutes: Mycoplasma genitalium[J]. Electrophoresis,1995,16(7):1090-1094
    143Petricoin E F, Ardekani A M, Hitt B A, Levine P J, Fusaro V A, Steinberg S M, MillsG B, Simone C, Fishman D A, Kohn E C, Liotta L A. Use of proteomic patterns in serumto identify ovarian cancer[J]. Lancet,2002,359:572-577
    144Alexander H, S tegner A L, Wagner M C, Du Bois G C, Alexander S, Sauter E R.Proteomic analys is to identity breast cancer biomarkers in nipple as pirate fluid[J]. Clin Cancer Res,2004,10:7500-7510
    145何大澄,肖雪媛.差异蛋白质组学及其应用[J].北京师范大学学报(自然科学版),2002,38:559-561
    146RaPPsilber J, Mann M. What does it mean to identify a Protein in proteomic[J]. TrendsBiochem Sci,2002,27:74-78
    147http://wenku.baidu.com/view/28524f659b6648d7c1c74686.html
    148Chen S T, Pan T L, Tsia Y G, et al. Proteomics reveals protein profile changes indoxorub icin treated MCF27human breast cancer cells[J]. Cancer Lett,2002,181(1):95-107
    149O' Farrell. High resolution two-dimensional electrophoresis of proteins[J]. TheJournal of Biological Chemistry,1975,250:4007-4021
    150Gorg A, Weiss W,Dunn M J. Current two-dimensional electrophoresis technology forProteomics[J]. Proteomics,2004,4:3665-3685
    151李建科,冯毛,郑爱娟.蜜蜂蛋白质组研究进展[J].中国农业科学,2011,44(17):3649-3657
    152Goodman N. Biological data becomes computer literate: new advances inbioinformatics[J]. Current Opinion in Biotechnoogyl,2002,13(1):68-71
    153Paweletz C P, Trock B, Pennanen M, Tsangaris T, Magnant C, Liotta L A, PetricoiE F. Proteomic Pattems of nipple aspirate fluids obtained by SELDI一TOF: Potentialfor new biomarkers to aid in the diagnosis of breast cancer[J]. DisMarkers,2001,17:301-307
    154Poon T C, Johnson P J. Proteome analysis and its impact on the discovery ofserological tumor marker[J]. Clin Chim Acta,2001,313:231-239
    155Rabilloud T, Strub J M, Carte N, Luche S, Van Dorsselaer A, Lunardi J, Giege R,Florentz C. Comparative proteomics as a new tool for exploring human mitochondrialtRNA disorders[J]. Biochemistry,2002,41:144-150
    156学鹏,励建荣,于平,朱军莉,王彦波,傅玲琳.蛋白组学及其在食品科学研究中的应用[J].中国粮油学报,2010,25(2):141-149
    157Petricoin E F, Ardekani A M, Hitt B A, Levine P J, et al. Use of proteomic patternsin serum to identify ovarian cancer[J]. Lancet,2002,359:572-577
    158Alexander H S, Tegner A L, Wagner M C, et al. Proteo micanalys is to identity breastcancer biomarkers in nippleas pirate fluid[J]. Clin Cancer Res,2004,10:7500-7510
    159Chen S T, Pan T L, Tsia Y G, et al. Proteomics reveals protein profile changesin doxorubicin treated MCF27human breast cancer cells[J]. Cancer Lett,2002,181(1):95-107
    160Knigge T, Monsinjon T, Andersen O K. Surface-enhanced laser desorption/ionization-time of flight-mass spectrometry approach to biomarker discovery inblue mussels (Mytilus edulis) exposed to polyaromatic hydrocarbons and heavy metalsunder field conditions[J]. Proteomics,2004,4(9):2722-2727
    161何中虎,晏月明,庄巧生,等.中国小麦品种品质评价体系建立与分子改良技术研究中国农业科学,2006,39(6):1091-1101
    162徐永杰.猪肌肉组织差异蛋白质组学研究[D].华中农业大学博士论文,2010
    163Bouley J, Meunier B, Chambon C, et al. Proteomic analysis of bovine skeletal musclehypertrophy[J]. Proteomics,2005,5(2):490-500
    164Hill E W, McGivney B A, Gu J, Whiston R, MacHugh D E. A genome-wide SNP-associationstudy confirms a sequence variant (g.66493737C>T) in the equine myostatin (MSTN)gene as the most powerful predictor of optimum racing distance for Thoroughbredracehorses[J]. BMC Genomics,2010,11:552
    165Tozaki T, Miyake T, Kakoi H, Gawahara H, Sugita S, Hasegawa T, Ishida N, HirotaK, Nakano Y. A genome-wide association study for racing performances inThoroughbreds clarifies a candidate region near the MSTN gene[J]. Animal Genetics,2010,41(2):28-35
    166Eivers S S, McGivney B A, Fonseca R G, MacHugh D E, Menson K, Park S D E, RiveroJ L L, Taylor C T, Katz L M, Hill E W. Alterations in oxidative gene expressionin equine skeletal muscle following exercise and training[J]. PhysiologicalGenomics,2010,40:90-93
    167Hill E W, McGivney B A, Fonseca R G, Gu J, Smith N A, Browne J A, MacHugh D E, KatzL M. Moderate and high intensity sprint exercise induce differential responses inCOX4I2and PDK4gene expression in Thoroughbred horse skeletal muscle[J]. Equinevet J,2010,42(38):576-581
    168Eivers S S, McGivney B A, Gu J, MacHugh D E, Katz L M, Hill E W. PGC-1a encodedby the PPARGC1A gene regulates oxidative energy metabolism in equine skeletal muscleduring exercise[J]. Animal Genetics,2011,43:153-162
    169Van Loon L J, Greenhaff P L. Constantin-Teodosiu D, et al. The effects of increasingexercise intensity on muscle fuelutilisation in humans[J]. J Physiot,2001,536(PtI):295-304
    170Van der Vusse G J, van Bilsen M, Glatz JF, et al. Critical steps in cellular fattyacid uptake and utilization[J]. Mol Cell Bioehem,2002,239(1-2):9-15
    171Bonen A, Chabowski A, Luiken J J, el al. Is membrane transport of FFA mediated bylipid, protein, or both? Mechanisms and regulation of protein-mediated cellularfatty aeid uptake: molecular, biochemical and physiological evidence[J].Physiology,2007,22:15-29
    172Pownall H J, Hamilton J A. Energy translocalion across cell membranes and membranemodels[J]. Acta Physio Scand,2003,178(4):357-365
    173Bonen A. Luiken J J, Liu S, et al. Palmitate transpon and fatty acid transportersin red and white muscles[J]. Am J Physiol,1998,275:47I-478
    174Galbiati F, Razani B, Lisanti M P. Emerging themes in lipid rafts and caveolae[J].Cell,2001,106:403-411
    175Anderson L, Seihamer J. A comparison of selected mRNA and protein abundances inhuman liver[J]. Eledtrophoresis,1997,18:533-537
    176Talanian J L, Holloway G P, Snook L A, Heigenhauser G J F, Bonen A, Spriet L L.Exercise training increases sarcolemmal and mitochondrial fatty acid transportproteins in human skeletal muscle[J]. Am J Physiol Endocrinol Metab,2010,299(2):180-188
    177Bonen A, Gibala M J, Burgomaster K A, Cermak N M, Phillips S M, Benton C R. Divergentresponse of metabolite transport proteins in human skeletal muscle after sprintinterval training and detraining[J]. Am J Physiol Regul Integr Comp Physiol,2007,292:1970-1976
    178朱玉贤,李毅.现代分子生物学(第二版)[M].北京:高等教育出版社,2002:281-283
    179Barouch W, Prasad K,Greene L,et al. Auxilin-induced Interaction of the MolecularChaperone Hsc70with Clathr in Baskets[J]. Biochem,1997,36(14):4303-4308
    180Kimura Y, Yahara I, Lindquist S. Role of the Protein Chaperone YDJ1in Es2tablishingHsp902Mediated Signal Transduction Pathways[J]. Science,1995,268(5215):1362-1365
    181Boston R S, Viitanen P V, Vierling E. Molecular Chaper one sand Protein Foldingin Plant[J]. Plant Mol Biol,1996,32(12):191-222
    182Gabai V L, Meriin A B, Mosser D D, et al. HSP70Prevents Activation of Stress Kinase:A Novel Pathway of Cellular the Motolerance[J].J Bio lChem,1997,272(29):180-183.
    183Noble E G, Milne K J, Melling C W. Heat shock proteins and exercise: a primer[J].Appl Physiol Nutr Metab,2008,33:1050-1065
    184Fehrenvbach E, Niess A M, Schlotz E, Passek F, Dickhuth H H, Northoff H.Transcriptional and translational regulation of heat shock proteins in leukocytesof endurance runners[J]. J Appl Physiol,2000,89:704-710
    185Morton J P, Kayani A C, McArdle A, Drust B. The exercise-induced stress responseof skeletal muscle, with specific emphasis on humans[J]. Sports Med,2009,39(8):643-662
    186Orii K O, Aoyama T, Souri M, Orii K E, Kondo N, Orii T, Hashimoto T. Genomic DNAorganization of human mitochondrial very-long-chain acyl-CoA dehydrogenase andmutation analysis[J]. Biochem Biophys Res Commun,1995,217(3):987-992
    187Schuler M, Philip A. Wood Mouse Models for Disorders of Mitochondrial Fatty Acidβ-Oxidation ILAR Journal V43(2)[J]. Mouse Models of Human Disease online,2002.
    188肌钙蛋白A+医学百科,2012, http://baike.a-hospi
    189栗克敏,心脏肌钙蛋I定量检测在为重患者中的应用价值[D].山西医科大学硕士学位论文,2007
    190Takahashi K, Hiwada K, Kokubu T. Vascular smooth muscle calponin. A novel troponinT-like protein[J]. Hypertension,1988,11:620-626
    191Metra M, Bettari L, Pagani F, et al. Troponin T levels in patients with acute heartfailure: clinical and prognostic significance of their detection and release duringhospitalisation[J]. Clin Res Cardiol,2012,88:392-441
    192Angel M, Vemrat T, Culouscou J-M. Identifieation of three novel members of thecalcium dependent chloride chnnael (CaCC) family Predominnatly expressed in thedigestive tract and trachea FEBS Letters,1999,455:295-301
    193Criss Hartzell, Ilva Putzier, Jorge Arreola. Calcium-activated chloride channels[J]. Annu Rev Physiol,2005,67:719-758
    194Trojanowska M, LeRoy E C, Eckes B. Thomas Krieg Pathogenesis of fibrosis: type1collagen and the skin[J]. J Mol Med,1998,76:266一274
    195Showaher A M, Gao M G. Biology and molecular biolgy of plant hydroxyproline-richglycoproteins[J]. Academic Pres,1991,15:424—456
    196Wen C C, Chen C J, Lee T S, Chen Z J, Ke P H, Chiang A N. Oxidative stress enhancesAP‐1and NF‐κB‐mediated regulation of β2‐Glycoprotein I gene expression inhepatoma cells[J]. J Cell Biochem,2010,111:988-998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700