用户名: 密码: 验证码:
氧化物负载纳米金用于绿色催化选择还原与氧化反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长期以来,金(Au)被认为是一种不具催化应用价值的“惰性”贵金属。上世纪八十年代末,日本化学家Haruta意外地发现通过共沉淀法(CP)或沉积-沉淀法(DP)可制得对CO低温氧化反应具有极高催化活性的过渡金属氧化物负载纳米金(<5nm)催化剂,从而彻底颠覆了催化界的传统认知。除对CO低温氧化,氮氧化物消除及低温水煤气变换(WGS)等气相反应表现出色外,在过去的十年中人们发现多相纳米金催化剂对于面向精细有机合成的液相选择氧化和选择还原等反应同样显示出异乎寻常的催化能力。与传统Pt族贵金属(如Pd、Pt等)相比,纳米金催化剂最突出的优点是反应条件温和、对目标产物选择性高。这些独特的催化能力使纳米金催化剂在液相醇氧化、胺氧化、C-H键氧化及羰基加氢、硝基加氢、烯烃加氢等多个领域获得了广泛应用。
     为揭示负载型纳米金催化剂独特催化性能的本质,人们围绕金的粒径效应、载体的种类、催化剂制备方法和纳米金活性位的化学状态等方面已开展了大量研究,并取得了重要进展。大量研究表明,负载型金催化剂的活性主要取决于金颗粒的尺寸,载体的种类以及合适的制备方法。对于多数液相选择氧化及还原反应,兼具氧化还原性能和表面酸碱性的过渡金属氧化物成为催化剂载体的首选。在制备方面,NaOH沉积-沉淀法由于其操作简便、条件可控、所得催化剂的金颗粒尺寸一般较小,且与载体相互作用较强,在催化剂制备中应用广泛。
     随着可持续发展呼声日益增高,催化研究者们面临着全新的挑战,以资源节约、环境友好、条件温和及原子经济为目标的有机化学品绿色合成为研究工作提出更高的要求。而纳米金催化剂在液相选择氧化还原等过程中的多样性与丰富性及以此为基础的多功能催化剂的设计与开发恰好为绿色有机合成提供了新机遇。在本论文中,我们首先以金属氧化物负载的纳米金为催化剂,研究了包括环氧化物脱氧、醇液相氧化、氢转条件下的选择还原及氧化等系列反应,探究了金颗粒尺寸及载体性质等条件对催化作用的影响。接着以氢转移还原体系为出发点,探索并研究了多功能纳米金催化体系用于以“分子氧的还原活化”为策略的包括烯烃环氧化及酮氧化肟化在内的液相有机氧化反应,并通过对催化剂组成的优化和功能性载体的选择与调控,设计了基于纳米金的新型多活性位集成催化体系,使催化效果得到进一步提高。得到的主要结果如下:
     一.以H202为绿色氧源的纳米金催化醇选择氧化研究
     以H202为氧化剂,比较了多种负载型纳米金催化剂(Au/TiO2,Au/Fe2O3, Au/C, Au/CeO2, Au/Al2O3)在水相苯乙醇氧化至苯乙酮中的催化性能。在相同反应条件下,以Ti02为载体的金催化剂活性最高,而两种载体同为P25的商业Au/TiO2催化剂却表现出截然不同的反应性能。TEM分析揭示催化剂中Au颗粒尺寸的不同是导致活性差别的主要原因。通过控制焙烧温度得到一系列尺寸不同的Au催化剂并应用于醇催化氧化,发现分散度高的Au催化剂具更高的醇氧化活性,据此认为Au尺寸及其与载体间的协同作用是实现高催化活性的关键。
     在将纳米金催化醇氧化活性与其催化分解H202能力进行关联时发现两者随Au尺寸变化的趋势基本一致,推测认为H202经过了纳米金的活化,其形成的活性中间体对于醇氧化中α-H与β-H的消除起到了重要促进作用。
     将此H2O2-Au体系应用于各种醇的水相氧化均得到了较理想结果,当反应物为仲醇时主产物为酮,而反应物为伯醇时主产物为醛和羧酸。对于普遍认为活性较低的脂肪醇,意外地发现该体系同样可表现出优异的催化氧化能力。以此为基础,成功实现了百克量级的正己醇氧化反应(分离收率高达93%)。
     二.以CO/H2O为氢源的纳米金催化环氧化物选择脱氧研究
     以CO/H2O为供氢体,比较了多类负载型纳米金催化剂(Au/TiO2, Au/Fe2O3, Au/C, Au/CeO2)及浸渍法制备的商业二氧化钛(P25)负载的多类贵金属催化剂(Pt, Pd, Ru, Ag, Ir)在环氧苯乙烷选择脱氧制苯乙烯反应中的催化性能。发现在同等反应条件下,只有纳米金表现出显著的催化氢转移脱氧能力,而各种纳米金催化剂中,以P25为载体的Au/TiO2催化剂的活性(转化率53%)远高于其他载体负载的纳米金催化剂。为进一步优化催化活性,通过催化剂制备条件的调变得到了尺寸更小的纳米Au催化剂,从而大幅度改善了催化活性。该催化剂在室温低压(2atm CO)条件下即可实现环氧苯乙烷的完全脱氧。
     将优化所得的小尺寸Au/TiO2-VS催化剂用于多种不同底物结构的环氧化物脱氧制烯烃反应中,发现在温和条件下该体系的催化稳定性及底物适应性良好,即使底物分子中含卤素等其他活泼官能团,也不影响目标产物选择性。与芳取代环氧化物相比,脂肪类环氧化物的催化脱氧通常需更高的反应温度和更长的反应时间。对该反应的气相产物分析表明,反应尾气中不含氢气(H2);从而很大程度上排除了该反应是经由WGS中间步骤进行的。进一步结合以H2为氢源时反应活性很低以及当体系中不含水时反应无法进行等事实,可认为CO及H2O与负载纳米Au作用直接形成高活性的Au-H是反应的关键活性物种。
     三.通过纳米金催化分子氧“还原活化”实现的液相选择氧化研究
     基于甲酸盐存在下纳米金可催化还原O2生成H2O2的发现,探索了通过第二组分钛硅分子筛催化材料的引入以实现有机底物液相选择氧化的可行性。
     首先,以甲酸盐为氢源,甲醇/水为溶剂,研究了多种负载型金催化剂直接合成H2O2的催化性能,发现甲酸钾-Au/CeO2体系具有最佳的催化H2O2合成效率。与此同时,选择苯乙烯为探针分子,以商业H2O2为氧源,考察了多种钛硅材料在催化烯烃环氧化反应中的催化性能,发现MFI构型钛硅分子筛(TS-1)应用H2O2的催化环氧化效率最高。以此为基础,在Au/CeO2与TS-1简单机械混合的两元复合催化体系中实现了以O2为氧源的苯乙烯环氧化(转化率34%,选择性93%)。对该简单复合催化体系的匹配及相关反应动力学研究表明,H2O2原位合成是该环氧化过程的决速步骤,而二元体系的简单机械混合成为H2O2有效利用的瓶颈。为解决该问题,利用载体材料间等电点的差别,对催化剂制备过程进行精细调控制备得到了Au/CeO2/TS-1三元协同集成催化剂,其中CeO2处于TS-1表面,而纳米Au则仅负载在CeO2表面。该协同集成催化剂显著提高了环氧化效率(转化率98%,选择性87%)及催化稳定性。进一步研究表明,该催化体系同样适用于以02为氧源的多种不同构型烯烃的直接催化环氧化。
     以上述研究为基础,将该利用原位H2O2实现的绿色有机氧化过程拓展至环己酮氧化肟化反应。采用类似的研究思路,发现以水作溶剂时,Au/Al2O3与甲酸铵匹配具有最佳的催化H2O2合成效率。特别制得一提的是,甲酸铵中的铵根同时可作为合成肟的铵源,其原子利用率比需要外加铵源的甲酸钾和甲酸钠更高。接着,在对各种钛硅分子筛催化环己酮氧化肟化反应活性的考察中发现,MWW构型钛硅分子筛(Ti-MWW)的催化性能最高。而对二元催化剂进行匹配及反应动力学的研究也表明,与上述烯烃环氧化过程相似,H202原位合成为反应决速步。于是,采用与环氧化研究中类似方法,设计合成了Au/Al2O3/Ti-MWW二元集成催化体系。结果表明,该催化活性相协同集成设计思路在肟化反应中同样适用,环己酮肟收率从使用简单二元复合体系时的31%提升至98%。
The catalytic potential of Au has long been ignored due to its high chemical inertness. However, in the1980's, there was a renewed interest in studying supported gold catalysts when Haruta et al. accidently discovered that these catalysts have ultrahigh catalytic activity in the low temperature CO oxidation and that the activity is even higher in humid atmosphere. After that, intensive and extensive research efforts have been devoted to the subject of Au catalysis. It has been found that besides CO oxidation, nitrogen oxide elimination and water-gas shift (WGS) reaction supported gold catalysts also exhibit unique performance in many other types of organic synthesis reactions, such as selective reduction and oxidation. Compared with supported Pd and Pt, gold catalyst is distinguished by its low-temperature reactivity and high chemo-selectivity. Thus, till now, supported gold catalyst has been successfully employed in alcohol oxidation, amine oxidation, C-H oxidation, carbonyl hydrogenation, nitro reduction and olefin hydrogenation.
     In order to unravel the origin of the unique catalytic properties of gold catalysts, several aspects of gold catalysts have been widely investigated, including the particles size effect of gold, nature of support materials, preparation methods and chemical state of active gold species, etc. There is a general consensus that the activity of supported gold catalysts largely depends on the gold particle size, the type of the oxide support as well as the preparation method. Generally, for most organic reduction and oxidation reactions, metal oxides is the first option for the catalyst's support owing to its redox ability and Lewis acid/base sites on the surface. As for the preparation method, NaOH deposition-precipitation (DP) method is wildly used in gold catalyst preparation. Through this method, gold catalyst with high gold dispersion and strong metal-support interaction can be facilely obtained.
     Nowadays, one great challenge for the current sustainable chemistry is the development of new green catalytic technologies that can afford resource-saving, environmentally benign, mild and atom-economic synthesis of fine chemicals. However, the diversity of the gold catalyst use in selective reduction and oxidation as well as the novel approach for the multi-functional gold catalyst preparation offer great opportunity for the catalysis research. In this dissertation, we study the catalytic behavior of metal-oxide-supported nano-gold catalysts in transfer-hydrogen deoxygenation of epoxides and selective oxidation of alcohols. Moreover, against the transfer-hydrogen strategy, we also develop the novel integrated gold-catalytic system for organic reactions, including epoxidation of olefins and ammoximation of cyclohexanone. The main conclusions are described as follows:
     1. Deoxygenation of epoxides over supported gold catalysts with CO and H2O
     The catalytic activities of a series of gold catalysts with different supports (Au/TiO2, Au/Fe2O3, Au/C, Au/CeO2) and other supported noble metal catalysts (Pt, Pd, Ru, Ag, Ir) for the deoxygenation of styrene epoxide under CO/H2O assisted transfer-hydrogenation condition was studied. Out of all the noble metals, only gold catalysts exhibit potential in this reaction condition. As for the support, the catalytic activity of TiO2-supported gold was much higher than other gold catalysts. Through modified-deposition-precipitation method using special gold precursor, a TiO2supported gold catalyst with very small gold particle size was obtained. It was found that the decrease in gold particle size strongly enhanced the catalytic activity in olefin deoxygenation. With this catalyst, styrene epoxide could be fully converted to styrene in only1.2h even under room temperature and very low CO pressure (2atm).
     With the optimized catalyst, we explored the scope of the deoxygenation of structure-diverse epoxides. It was found that Au/TiO2-CO/H2O transfer hydrogenation system could afford excellent yield for all the substrates. No dehalohydrination reaction occurred in the deoxygenation of halogen-substituted epoxide. Compared to aromatic epoxides, aliphatic epoxides required higher temperature and longer reaction time. Moreover, the Au/TiO2also showed good stability in successive five runs.
     Controlled experiments showed that no H2was produced in the reaction process, the substitution of H2with CO/H2O largely lowered the epoxide conversion and the reaction cannot proceed without the addition of water. Based on these results, we assumed that the Au-H species, which took away the oxygen in epoxide, was directly formed through the reaction of CO and H2O over gold catalysts, but not via the WGS pathway.
     2. Gold-catalyzed selective alcohol oxidation using H2O2as green oxidant
     The catalytic activities of several commercial supported gold catalysts for selective oxidation of1-phenylethanol in water were examined. Under same conditions, TiO2performed much better than other supports. When using the same support (TiO2), Au/TiO2(Mintek) offered higher conversion than Au/TiO2(WGC). Transmission electron microscope showed that the gold particle size in Au/TiO2(Mintek) was smaller than in Au/TiO2(WGC). Then, we prepared a series of Au/TiO2with different gold particle size through treating Au/TiO2(Mintek) in elevated temperature. The difference of these catalysts in the alcohol oxidation reactivity further convinced that smaller the gold particle size, better the catalytic performance.
     The Au/TiO2(Mintek)-H2O2system afforded excellent conversion in the oxidation of many kinds of alcohols. The oxidation of secondary alcohol or primary alcohol gave ketone or aldehyde and acid as main product, respectively. Especially, for aliphatic alcohols, the Au/TiO2(Mintek)-H2O2system also showed great catalytic reactivity.
     3. Selective oxidation with supported gold catalysts via O2reductive activation
     Using formate salts as hydrogen source, supported gold catalysts could convert O2into H2O2. And with this in-situ formed H2O2, the titanosilicate could afford various organic oxidation reactions.
     First, the H2O2productivity of several supported gold catalysts in CH3OH/H2O with formate salts was examined. It was found that Au/CeO2together with HCOOK gave the best activity in H2O2synthesis. Then, we studied the catalytic ability of various titanosilicates in the epoxidation of styrene with commercial H2O2. Among all the titanosilicates, the titanosilicate with MFI structure (TS-1) afford the highest epoxide yields. Based on these results, we integrated these two processes into one pot, in which the H2O2was in-situ formed over Au/CeO2, and then interact with TS-1to afford the epoxidation reaction. In this condition, the binary catalysts system (Au/CeO2&TS-1) could smoothly convert styrene to corresponding styrene epoxide with34%conversion at93%selectivity. The kinetic study of the binary catalyst system showed that the H2O2formation was the rate-determined step, and the mechanical-mixing state of the catalyst system limited the styrene conversion. In order to overcome this obstacle, we designed a novel integrated supported gold catalyst, in which the CeO2was supported on the TS-1and the gold particles selectively deposited on the surface of CeO2. This strategy largely promoted the conversion of styrene from34%to98%, with the epoxide selectivity at87%. The integrated catalyst was highly stable and efficient for epoxidation of many kinds of olefins.
     Based on the results above, we further extended this O2reductive activation strategy into the ammoximation of cyclohexanone. In this study, water was chosen as the solvent. And Au/Al2O3together with HCOONH3gave the best activity in H2O2synthesis. Additionally, HCOONH3could act as not only the hydrogen donor but also the ammonium source, which made it prior to other formate salts (HCOOK and HCOONa). In the titanosilicate screen, among all the catalysts, the titanosilicate with MWW structure (Ti-MWW) afford the highest oxime yields. The kinetic study also implied the same results, that the H2O2generation is the rate-determined step. Following the previous strategy, we prepared the Au/Al2O3/Ti-MWW integrated catalyst, and this catalyst enhanced the oxime yield from31%(for binary catalysts system) to98%(for integrated catalyst).
引文
1. G.C. Bond, C. Louis, D.T. Thompson, Catalysis by gold [M]. Imperial College Press:2006.
    2. R.S. Yolles, B.J. Wood, H. Wise. Hydrogenation of alkenes on gold [J]. J. Catal., 1971,21(1):66-69.
    3. G.C. Bond, P. Sermon. Gold catalysts for olefin hydrogenation-transmutation of catalytic properties [J]. Gold Bull.,1973,6(4):102-105.
    4. M. Haruta, T. Kobayashi, H. Sano, N. Yamada. Novel Gold Catalysts for the Oxidation of Carbon-Monoxide at a Temperature Far Below O-Degrees-C. Chem. Lett. [J],1987:405-408.
    5. M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M. J. Genet, B. Delmon. Low-Temperature Oxidation of CO over Gold Supported on TiO2, alpha-Fe2O3, and Co3O4. J. Catal. [J],1993,144:175-192.
    6. M. Haruta, N. Yamada, T. Kobayashi, S. Iijima. Gold Catalysts Prepared by Coprecipitation for Low-Temperature Oxidation of Hydrogen and of Carbon-Monoxide. J. Catal. [J],1989,115:301-309.
    7. G. Hutchings. New directions in gold catalysis. Gold Bull. [J],2004,37:3-11.
    8. A.C. Gluhoi, S.D. Lin, B.E. Nieuwenhuys. The beneficial effect of the addition of base metal oxides to gold catalysts on reactions relevant to air pollution abatement. Catal. Today [J],2004,90:175-181.
    9. S. Schimpf, M. Lucas, C. Mohr, U. Rodemerck, A. Bruckner, J. Radnik, H. Hofmeister, P. Claus. Supported gold nanoparticles:in-depth catalyst characterization and application in hydrogenation and oxidation reactions. Catal. Today [J],2002,72:63-78.
    10. D.T. Thompson. An overview of gold-catalysed oxidation processes. Gold Bull. [J],2006,38:231-240.
    11. A.S.K. Hashmi, G.J. Hutchings. Gold catalysis. Angew. Chem. Int. Ed. [J],2006, 45:7896-7936.
    12. M. Valden, X. Lai, D.W. Goodman. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science [J],1998,281: 1647-1650.
    13. M. Haruta. Catalyst in the 21st Century:Preparation, Working Mechanism and Applications. Gold Bull. [J],2004,37:1-2.
    14. R. Zanella, S. Giorgio, C.H. Shin, C.R. Henry, C. Louis. Characterization and reactivity in CO oxidation of gold nanoparticles supported on TiO2 prepared by deposition-precipitation with NaOH and urea. J. Catal. [J],2004,222:357-367.
    15. H.G. Boyen, G. Kastle, F. Weigl, B. Koslowski, C. Dietrich, P. Ziemann, J.P. Spatz, S. Riethmuller, C. Hartmann, M. Moller. Oxidation-resistant gold-55 clusters. Science [J],2002,297:1533-1536.
    16. A.A. Herzing, C.J. Kiely, A.F. Carley, P. Landon, G.J. Hutchings. Identification of Active Gold Nanoclusters on Iron Oxide Supports for CO Oxidation. Science [J],2008,321:1331-1335.
    17. K. Okumura, K. Yoshino, K. Kato, M. Niwa. Quick XAFS Studies on the Y-Type Zeolite Supported Au Catalysts for CO-O2 Reaction. J. Phys. Chem. B [J],2005,109:12380-12386.
    18. M.A. Bollinger, M.A. Vannice. A kinetic and DRIFTS study of low-temperature carbon monoxide oxidation over Au-TiO2 catalysts. Appl. Catal. B:Environ. [J], 1996,8:417-443.
    19. M. Comotti, C. Della Pina, R. Matarrese, M. Rossi. The Catalytic Activity of "Naked" Gold Particles. Angew. Chem. Int. Ed. [J],2004,43:5812-5815.
    20. R.J. Davis. All that glitters is not Au0. Science [J],2003,301:926-927.
    21. C. Xu, J. Su, X. Xu, P. Liu, H. Zhao, F. Tian, Y. Ding. Low temperature CO oxidation over unsupported nanoporous gold. J. Am. Chem. Soc. [J],2007,129: 42-43.
    22. V. Zielasek, B. Juergens, C. Schulz, J. Biener, M.M. Biener, A.V. Hamza, M. Baeumer. Gold Catalysts:Nanoporous Gold Foams. Angew. Chem. Int. Ed. [J], 2007,38:8241-8244.
    23. M.M. Schubert, S. Hackenberg, A.C. van Veen, M. Muhler, V. Plzak, R.J. Behm. CO oxidation over supported gold catalysts-"inert" and "active" support materials and their role for the oxygen supply during reaction. J. Catal. [J],2001,197: 113-122.
    24. N. Lopez, T.V.W. Janssens, B.S. Clausen, Y. Xu, M. Mavrikakis, T. Bligaard, J.K. Norskov. On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation. J. Catal. [J],2004,223:232-235.
    25. N. Lopez, J.K. Norskov. Catalytic CO oxidation by a gold nanoparticle:A density functional study. J. Am. Chem. Soc. [J],2002,124:11262-11263.
    26. N. Lopez, J.K. Norskov, T.V.W. Janssens, A. Carlsson, A. Puig-Molina, B.S. Clausen, J.D. Grunwaldt. The adhesion and shape of nanosized Au particles in a Au/TiO2 catalyst. J. Catal. [J],2004,225:86-94.
    27. K. Okazaki, S. Ichikawa, Y. Maeda, M. Haruta, M. Kohyama. Electronic structures of Au supported on TiO2. Appl. Catal. A:Gen. [J],2005,291:45-54.
    28. J.T. Calla, R.J. Davis. X-ray absorption spectroscopy and CO oxidation activity of Au/Al2O3 treated with NaCN. Catal. Lett. [J],2005,99:21-26.
    29. P. Conception, S. Carrettin, A. Corma. Stabilization of cationic gold species on Au/CeO2 catalysts under working conditions. Appl. Catal. A:Gen. [J],2006,307: 42-45.
    30. J.C. Fierro-Gonzalez, B.G. Anderson, K. Ramesh, C.P. Vinod, J.W. Niemantsverdriet, B.C. Gates. Zeolite NaY-supported gold complexes prepared from Au (CH3)2 (C5H7O2):reactivity with carbon monoxide. Catal. Lett. [J],2005, 101:265-274.
    31. J.C. Fierro-Gonzalez, V.A. Bhirud, B.C. Gates. A highly active catalyst for CO oxidation at 298 K:mononuclear Au iii complexes anchored to La2O3 nanoparticles. Chem. Comm. [J],2005:5275-5277.
    32. S.T. Daniells, M. Makkee, J.A. Moulijn. The effect of high-temperature pre-treatment and water on the low temperature CO oxidation with Au/Fe2O3 catalysts. Catal. Lett. [J],2005,100:39-48.
    33. M. Date, M. Okumura, S. Tsubota, M. Haruta. Vital role of moisture in the catalytic activity of supported gold nanoparticles. Angew. Chem. Int. Ed. [J], 2004,43:2129-2132.
    34. Y. Iizuka, A. Kawamoto, K. Akita, M. Date, S. Tsubota, M. Okumura, M. Haruta. Effect of impurity and pretreatment conditions on the catalytic activity of Au powder for CO oxidation. Catal. Lett. [J],2004,97:203-208.
    35. B. Solsona, M. Conte, Y. Cong, A. Carley, G. Hutchings. Unexpected promotion of Au/TiO2 by nitrate for CO oxidation. Chem. Comm. [J],2005:2351-2353.
    36. G.M. Veith, A.R. Lupini, S.J. Pennycook, G.W. Ownby, NJ. Dudney. Nanoparticles of gold on γ-Al2O3 produced by DC magnetron sputtering. J. Catal. [J],2005,231:151-158.
    37. I. Dobrosz, K. Jiratova, V. Pitchon, J.M. Rynkowski. Effect of the preparation of supported gold particles on the catalytic activity in CO oxidation reaction. J. Mol. Catal. A:Chem. [J],2005,234:187-197.
    38. H.S. Oh, J.H. Yang, C.K. Costello, Y.M. Wang, S.R. Bare, H.H. Kung, M.C. Kung. Selective catalytic oxidation of CO:effect of chloride on supported Au catalysts. J. Catal. [J],2002,210:375-386.
    39. G.C. Bond, D.T. Thompson. Catalysis by gold. Catal. Rev. Sci. Eng. [J],1999,41: 319-388.
    40. F. Moreau, G.C. Bond, A.O. Taylor. Gold on Titania catalysts for the oxidation of carbon monoxide:control of pH during preparation with various gold contents. J. Catal. [J],2005,231:105-114.
    41. R. Zanella, S. Giorgio, C.R. Henry, C. Louis. Alternative methods for the preparation of gold nanoparticles supported on TiO2. J. Phys. Chem. B [J],2002, 106:7634-7642.
    42. R. Zanella, L. Delannoy, C. Louis. Mechanism of deposition of gold precursors onto TiO2 during the preparation by cation adsorption and deposition-precipitation with NaOH and urea. Appl. Catal. A:Gen. [J],2005,291: 62-72.
    43. L. Delannoy, N. El Hassan, A. Musi, N.N. Le To, J. Krafft, C. Louis. Preparation of supported gold nanoparticles by a modified incipient wetness impregnation method. J. Phys. Chem. B [J],2006,110:22471-22478.
    44. R. Zanella, A. Sandoval, P. Santiago, V.A. Basiuk, J.M. Saniger. New Preparation Method of Gold Nanoparticles on SiO2. J. Phys. Chem. B [J],2006, 110:8559-8565.
    45. T.F. Jaramillo, S.H. Baeck, B.R. Cuenya, E.W. McFarland. Catalytic activity of supported Au nanoparticles deposited from block copolymer micelles. J. Am. Chem. Soc. [J],2003,125:7148-7149.
    46. F. Porta, L. Prati, M. Rossi, G. Scari. New Au (0) sols as precursors for heterogeneous liquid-phase oxidation catalysts. J. Catal. [J],2002,211:464-469.
    47. N. Zheng, G.D. Stucky. A general synthetic strategy for oxide-supported metal nanoparticle catalysts. J. Am. Chem. Soc. [J],2006,128:14278-14280.
    48. Y. Yuan, A.P. Kozlova, K. Asakura, H. Wan, K. Tsai, Y. Iwasawa. Supported Au catalysts prepared from Au phosphine complexes and As-precipitated metal hydroxides:Characterization and low-temperature CO oxidation. J. Catal. [J], 1997,170:191-199.
    49. H. Zhu, C. Liang, W. Yan, S.H. Overbury, S. Dai. Preparation of highly active silica-supported Au catalysts for CO oxidation by a solution-based technique. J. Phys. Chem. B [J],2006,110:10842-10848.
    50. M. Okumura, K. Tanaka, A. Ueda, M. Haruta. The reactivities of dimethylgold (Ⅲ). Beta-diketone on the surface of TiO2:A novel preparation method for Au catalysts. Solid State Ionics [J],1997,95:143-149.
    51. H. Tsunoyama, H. Sakurai, Y. Negishi, T. Tsukuda. Size-specific catalytic activity of polymer-stabilized gold nanoclusters for aerobic alcohol oxidation in water. J. Am. Chem. Soc. [J],2005,127:9374-9375.
    52. A. Abad, P. Concepcion, A. Corma, H. Garcia. A collaborative effect between gold and a support induces the selective oxidation of alcohols. Angew. Chem. Int. Ed. [J],2005,44:4066-4069.
    53. A. Abad, C. Almela, A. Corma, H. Garica. Unique gold chemoselectivity for the aerobic oxidation of allylic alcohols. Chem. Commun. [J],2006:3178-3180.
    54. A. Corma, M.E. Domine. Gold supported on a mesoporous CeO2 matrix as an efficient catalyst in the selective aerobic oxidation of aldehydes in the liquid phase. Chem. Commun. [J],2005:4042-4044.
    55. C.H. Christensen, B. Jorgensen, J. Rass-Hansen, K. Egeblad, R. Madsen, S.K. Klitgaard, S.M. Hansen, M.R. Hansen, H.C. Andersen, A. Riisager. Formation of Acetic Acid by Aqueous-Phase Oxidation of Ethanol with Air in the Presence of a Heterogeneous Gold Catalyst. Angew. Chem. Int. Ed. [J],2006,45:4648-4651.
    56. P. Haider, A. Baiker. Gold supported on Cu-Mg-Al-mixed oxides:Strong enhancement of activity in aerobic alcohol oxidation by concerted effect of copper and magnesium. J. Catal. [J],2007,248:175-187.
    57. F.Z. Su, Y.M. Liu, L.C. Wang, Y. Cao, H.Y. He, K.N. Fan. Ga-Al mixed-oxide-supported gold nanoparticles with enhanced activity for aerobic alcohol oxidation. Angew. Chem. Int. Ed. [J],2008,47:340-343.
    58. M. Rossi, L. Prati, S. Biella. Selective oxidation of d-glucose on gold catalyst. J, Catal. [J],2002,206:242-247.
    59. N. Thielecke, K.D. Vorlop, U. Prusse. Long-term stability of an Au/Al2O3 catalyst prepared by incipient wetness in continuous-flow glucose oxidation. Catal. Today [J],2007,122:266-269.
    60. T. Hayashi, K. Tanaka, M. Haruta. Selective Vapor-Phase Epoxidation of Propylene over Au/TiO2 Catalysts in the Presence of Oxygen and Hydrogen. J. Catal. [J],1998,178:566-575.
    61. B.S. Uphade, S. Tsubota, T. Hayashi, M. Haruta. Selective oxidation of propylene to propylene oxide or propionaldehyde over Au supported on titanosilicates in the presence of H2 and O2. Chem. Lett. [J],1998,12:1277-1278.
    62. A.K. Sinha, S. Seelan, S. Tsubota, M. Haruta. A Three-Dimensional Mesoporous Titanosilicate Support for Gold Nanoparticles:Vapor-Phase Epoxidation of Propene with High Conversion. Angew. Chem. Int. Ed. [J],2004,116: 1546-1548.
    63. N.S. Patil, B.S. Uphade, P. Jana, S.K. Bharagava, V.R. Choudhary. Epoxidation of styrene by anhydrous t-butyl hydroperoxide over reusable gold supported on MgO and other alkaline earth oxides. J. Catal. [J],2004,223:236-239.
    64. N.S. Patil, R. Jha, B.S. Uphade, S.K. Bhargava, V.R. Choudhary. Epoxidation of styrene by anhydrous t-butyl hydroperoxide over gold supported on Al2O3, Ga2O3, In2O3 and T12O3. Appl. Catal. A. [J],2004,275:87-93.
    65. N.S. Patil, B.S. Uphade, D.G. McCulloh, S.K. Bhargava, V.R. Choudhary. Styrene epoxidation over gold supported on different transition metal oxides prepared by homogeneous deposition-precipitation. Catal. Commun. [J],2004,5: 681-685.
    66. M.D. Hughes, Y.J. Xu, P. Jenkins, P. McMorn, P. Landon, D.I. Enache, A.F. Carley, G.A. Attard, G.J. Hutchings, F. King, E.H. Stitt, P. Johnston, K. Griffin, C.J. Kiely. Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions. Nature [J],2005,437:1132-1135.
    67. M. Turner, V.B. Golovko, O.P.H. Vaughan, P. Abdulkin, A. Berenguer-Murcia, M.S. Tikhov, B.F.G. Johnson, R.M. Lambert. Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature [J],2008, 454:981-983.
    68. R. Zhao, D. Ji, G.M. Lv, G. Qian, L. Yan, X.L. Wang, J.S. Suo. A highly efficient oxidation of cyclohexane over Au/ZSM-5 molecular sieve catalyst with oxygen as oxidant. Chem. Commun. [J],2004:904-945.
    69. K.K. Zhu, J.C. Hu, R. Richards. Aerobic oxidation of cyclohexane by gold nanoparticles immobilized upon mesoporous silica. Catal. Lett. [J],2005,100: 195-199.
    70. L.F. Chen, J.C. Hu, R. Richards. Intercalation of aggregation-free and well-dispersed gold nanoparticles into the walls of mesoporous silica as a robust "green" catalyst for n-alkane oxidation. J. Am. Chem. Soc. [J],2009,131: 914-915.
    71. S.K. Klitgaard, K. Egeblad, U.V. Mentzel, A.G. Popov, T. Jensen, E. Taarning, I.S. Nielsen, C.H. Christensen. Oxidations of amines with molecular oxygen using bifunctional gold-titania catalysts. Green Chem [J],2008,10:419-423.
    72. A. Grirrane, A. Corma, H. Garcia. Gold-catalyzed synthesis of aromatic azo compounds from anilines and nitroaromatics. Science [J],2008,322:1661-1664.
    73. B. Zhu, M. Lazar, B.G. Trewyna, R.J. Angelici. Aerobic oxidation of amines to imines catalyzed by bulk gold powder and by alumina-supported gold. J. Catal. [J],2008,260:1-6.
    74. X. Zhang, H. Shi, B.Q. Xu. Catalysis by gold:isolated surface Au3+ ions are active sites for selective hydrogenation of 1,3-butadiene over Au/ZrO2 catalysts. Angew. Chem. Int. Ed. [J],2005,44:7132-7135.
    75. Z.P. Liu, C.M. Wang, K.N. Fan. Single gold atoms in heterogeneous catalysis: selective 1,3-butadiene hydrogenation over Au/ZrO2. Angew. Chem. Int. Ed. [J], 2006,45:6865-6868.
    76. J.E. Bailie, G.J. Hutchings. Promotion by sulfur of gold catalysts for crotyl alcohol formation from crotonaldehyde hydrogenation. Chem. Comm. [J],1999: 2151-2152.
    77. C. Mohr, H. Hofmeister, P. Claus. The influence of real structure of gold catalysts in the partial hydrogenation of acrolein. J. Catal. [J],2003,213:86-94.
    78. C. Mohr, H. Hofmeister, J. Radnik, P. Claus. Identification of Active Sites in Gold-Catalyzed Hydrogenation of Acrolein. J. Am. Chem. Soc. [J],2003,125: 1905-1911.
    79. P. Claus, H. Hofmneister, C. Mohr. Identification of active sites and influence of real structure of gold catalysts in the selective hydrogenation of acrolein to allyl alcohol. Gold Bull. [J],2004,37:181-186.
    80. R. Zanella, C. Louis, S. Giorgio. R. Touroude. Crotonaldehyde hydrogenation by gold supported on TiO2." structure sensitivity and mechanism. J. Catal. [J],2004, 223:328-339.
    81. A. Corma, P. Serna. Chemoselective hydrogenation of nitro compounds with supported gold catalysts. Science [J],2006,313:332-334.
    82. A. Corma, P. Serna, H. Garcia. Gold catalysts open a new general chemoselective route to synthesize oximes by hydrogenation of a,(3-unsaturated nitrocompounds with H2. J. Am. Chem. Soc. [J],2007,129:6358-6359.
    83. D.P. He, H. Shi, Y. Wu, B.Q. Xu. Synthesis of chloroanilines:selective hydrogenation of the nitro in chloronitrobenzenes over zirconia-supported gold catalyst. Green. Chem. [J],2007:849-851.
    84. L.Q. Liu, B.T. Qiao, Z.J. Chen, J. Zhang, Y.Q. Deng. Novel chemoselective hydrogenation of aromatic nitro compounds over ferric hydroxide supported nanocluster gold in the presence of CO and H2O. Chem. Commun. [J],2009: 653-655.
    85. S. Hashiguichi, A. Fujii, J. Takehara. T. Ikariya, R. Noyori. Asymmetric transfer hydrogenation of aromatic ketones catalyzed by chiral Ruthenium (Ⅱ) complexes. J. Am. Chem. Soc. [J],1995,117:7562-7563.
    86. F.Z. Su, L. He, J. Ni, Y. Cao, H.Y. He, K.N. Fan. Efficient and chemoselective reduction of carbonyl compounds with supported gold catalysts under transfer hydrogenation conditions. Chem. Commun. [J],2008:3531-3533.
    87. L. He,Ji Ni, L.C. Wang, F.J. Yu, Y. Cao, H.Y. He. K.N. Fan. Aqueous room-temperature gold-catalyzed chemoselective transfer hydrogenation of aldehydes. Chem. Eur. J. [J],2009,15:11833-11836.
    88. X.B. Lou, L. He, Y. Qian, Y.M. Liu, Y. Cao, K.N. Fan. Highly chemo-and regioselective transfer reduction of aromatic nitro compounds using ammonium formate catalyzed by supported gold nanoparticles. Adv. Synth. Catal. [J],2011, 353:281-286.
    89. L. He, L.C. Wang, H. Sun, J. Ni, Y. Cao, H.Y. He, K.N. Fan. Efficient and selective room-temperature gold-catalyzed reduction of nitro compounds with CO and H2O as the hydrogen source. Angew. Chem. Int. Ed. [J],2009,48: 9538-9541.
    90. M.M. Wang, L. He, Y.M. Liu, Y. Cao, H.Y. He, K.N. Fan, Gold supported on mesostructured ceria as an efficient catalyst for the chemo selective hydrogenation of carbonyl compounds in neat water, Green Chem. [J],2011:602-607.
    1. A. Thangaraj, M.J. Eapen, S. Sivasanker, P. Ratnasamy. Studies on the synthesis of titanium silicalite, TS-1. Zeolites [J],1992,12:943-950.
    2. R. Zanella, A. Sandoval, P. Santiago, V.A. Basiuk, J.M. Saniger. New preparation method of gold nanoparticles on SiO2. J. Phys. Chem. B [J].2006, 110:8559-8565.
    3. B.P. Block, J.C. Bailar, Jr. The reaction of Gold(Ⅲ) with some bidentate coordinating Groups. J. Am. Chem. Soc. [J].1951,73:4722-4725.
    1. R.A. Sheldon, J.K. Kochi. Metal-Catalyzed Oxidation of Organic Compounds [M], Academic Press, New York,1981.
    2. W.J. Mijs, C.R. H. de Jonge. Organic Synthesis by Oxidation with Metal Compounds [M], Plenum Press, New York,1986.
    3. Z.S. Hou, N. Theyssen, A. Brinkmann. W. Leitner, Aerobic oxidation of alcohols catalyzed by poly(ethylene glycol)-stabilized palladium nanoparticles in supercritical carbon dioxide. Angew. Chem. Inter. Ed. [J].2005,44:1346-1349.
    4. B. Z. Zhan, M. A. White, T. K. Sham, J. A. Pincock, R. J. Doucet, K. V. R. Rao, K. N. Robertson, T. S. Cameron. Zeolite-confined nano-RuO2:a green, selective, and efficient catalyst for aerobic alcohol oxidation. J. Am. Chem. Soc. [J],2003, 125:2195-2199.
    5. B. T. Guan, D. Xing, G. X. Cai, X. B. Wan, N. Yu, Z. Fang, Z. J. Shi. Highly selective aerobic oxidation of alcohol catalyzed by a gold(I) complex with an anionic ligand. J. Am. Chem. Soc. [J],2005,127:18004-18005.
    6. C. X. Zhang, P. Chen, J. Liu, Y. H. Zhang, W. Shen, H. L. Xu, Y. Tang. Ag microparticles embedded in Si nanowire arrays:a novel catalyst for gas-phase oxidation of high alcohol to aldehyde. Chem. Commun. [J],2008:3290-3292.
    7. J. Shen, W. Shan, Y. H. Zhang, J. M. Du, H. L. Xu, K. N. Fan, W. Shen, Y. Tang. A novel catalyst with high activity for polyhydric alcohol oxidation: nanosilver/zeolite film. Chem. Commun. [J],2004:2880-2881.
    8. T. Mallat, A. Baiker. Oxidation of alcohols with molecular oxygen on solid catalysts. Chem. Rev. [J],2004,104:3037-3058.
    9. A. Abad, P. Concepcion, A. Corma, H. Garcia. A collaborative effect between gold and a support induces the selective oxidation of alcohols. Angew. Chem. Int. Ed. [J],2005,44:4066-4069.
    10. L.C. Wang, Y.M. Liu, M. Chen, Y. Cao, H.Y. He, K.N. Fan. MnO2 nanorod supported gold nanoparticles with enhanced activity for solvent-free aerobic alcohol oxidation. J. Phys. Chem. C [J],2008,112:6981-6987.
    11. F.Z. Su, Y.M. Liu, L.C. Wang, Y. Cao, H.Y. He, K.N. Fan. Ga-Al mixed-oxide-supported gold nanoparticles with enhanced activity for aerobic alcohol oxidation. Angew. Chem. Int. Ed. [J],2008,47:334-337.
    12. L.C. Wang, L. He, Q. Liu, Y.M. Liu, M. Chen, Y. Cao, H.Y. He, K.N. Fan. Solvent-free selective oxidation of alcohols by molecular oxygen over gold nanoparticles supported on β-MnO2 nanorods. Appl. Catal. A:Gen. [J],2008,344: 150-157.
    13. P. Haider, A. Baiker. Gold supported on Cu-Mg-Al-mixed oxides:Strong enhancement of activity in aerobic alcohol oxidation by concerted effect of copper and magnesium. J. Catal. [J],2007,248:175-187.
    14. H. Tsunoyama, H. Sakurai, Y. Negishi, T. Tsukuda. Size-specific catalytic activity of polymer-stabilized gold nanoclusters for aerobic alcohol oxidation in water. J. Am. Chem. Soc. [J],2005,127:9374-9375.
    15. H. Miyamura, R. Matsubara, Y. Miyazaki, S. Kobayashi, Aerobic oxidation of alcohols at room temperature and atmospheric conditions catalyzed by reusable gold nanoclusters stabilized by the benzene rings of polystyrene derivatives. Angew. Chem. Int. Ed. [J],2007,46:4151-4154.
    16. L. Prati, M. Rossi. Gold on carbon as a new catalyst for selective liquid phase oxidation of diols. J. Catal. [J],1998,176:552-560.
    17. N. F. Zheng, G. D. Stucky. Promoting gold nanocatalysts in solvent-free selective aerobic oxidation of alcohols. Chem. Commun. [J],2007:3862-3864.
    18. B.M. Trost, Y. Masuyama. Chemoselectivity in molybdenum catalyzed alcohol and aldehyde oxidations. Tetrahedron Lett. [J],1984,25:173-176.
    19. O. Bortolini, V. Conte, F. Di Furia, G. Modena. Metal catalysis in oxidation by peroxides. Part 25. Molybdenum-and tungsten-catalyzed oxidations of alcohols by diluted hydrogen peroxide under phase-transfer conditions. J. Org. Chem. [J], 1986,51:2661-2663.
    20. G. Barak, J. Dakka, Y. Sasson. Selective oxidation of alcohols by a H2O2-RuCl3 system under phase-transfer conditions. J. Org. Chem. [J],1988,53:3553-3555.
    21. Y. Ishii, K. Yamawaki, T. Ura, H. Yamada, T. Yoshida, M. Ogawa. Hydrogen peroxide oxidation catalyzed by heteropoly acids combined with cetylpyridinium chloride. Epoxidation of olefins and allylic alcohols, ketonization of alcohols and diols, and oxidative cleavage of 1,2-diols and olefins. J. Org. Chem. [J],1988,53, 3587-3593.
    22. R. Zennaro, F. Pinna, G. Strukul, H. Arzoumanian. A possible molecular pathway for the catalytic oxidation of secondary alcohols to ketones with hydrogen peroxide using platinum (Ⅱ) complexes as catalysts. J. Mol. Catal. [J],1991,70: 269-275.
    23. C. Venturello, M.Gambaro. Selective oxidation of alcohols and aldehydes with hydrogen peroxide catalyzed by methyltrioctylammonium tetrakis-(oxodiperoxotungsto)-phosphate (3-) under two-phase conditions. J. Org. Chem. [J],1991,56:5924-5931.
    24. A. C. Dengel, W. P. Griffith, B. C. Parkon. Studies on polyoxo-and polyperoxo-metalates. Part 1. Tetrameric heteropolyperoxotungstates and heteropolyperoxomolybdates. J. Chem. Soc. Dalton Trans. [J],1993,2683-2688.
    25. R. Neumann, M. Gara. The Manganese-Containing Polyoxometalate, [WZnMn[]2(ZnW9O34)2] 12", as a remarkably effective catalyst for hydrogen peroxide mediated oxidations. J. Am. Chem. Soc. [J],1995,117,5066-5074.
    26. G. Li, D.I. Enaehe, J. Edwards, A.F. Carley, D.W. Knight, G.J. Hutchings. Solvent-free oxidation of benzyl alcohol with oxygen using zeolite-supported Au and Au-Pd catalysts. Catal.Lett. [J],2006,110:7-13.
    27. N. Kruse, S. Chenakin. XPS characterization of Au/TiO2 catalysts:Binding energy assessment and irradiation effects. Appl. Catal. A [J],2011,391:367-376.
    28. Y. Kon, Y. Usui and K. Sato. Oxidation of allylic alcohols to α, β-unsaturated carbonyl compounds with aqueous hydrogen peroxide under organic solvent-free conditions. Chem. Commun. [J],2007:4399-4400.
    29. Y. Kon, H. Yazawa, Y. Usui and K. Sato. Chemoselective oxidation of alcohols by a H2O2-Pt black system under organic solvent-and halide-free conditions. Chem. Asian J. [J],2008,3:1642-1648.
    30. F. Boccuzzi, A. Chiorino, M. Manzoli. Au/TiO2 nanostructured catalyst:pressure and temperature effects on the FTIR spectra of CO adsorbed at 90 K. Surf. Sci. [J],2002,502-503:513-518.
    31. A. Abad, A. Coma, H. Garcia. Catalyst parameters determining activity and selectivity of supported gold nanoparticles for the aerobic oxidation of alcohols: the molecular reaction mechanism. Chem. Eur. J. [J],2008,14:212-222.
    32. M. Takato, N. Akifumi, M. Tomoo, J. Koichiro, K. Kiyotomi. Efficient aerobie oxidation of alcohol using a hydrotalcite-supported gold nano particle catalyst. Ady.Synth.Catal. [J],2009,351:1890-1896.
    33. J. Yang, Y.J. Guan, T. Verhoeven, R. van Santen, C. Li, E.J.M. Hensen. Basie metal carbonate supported gold nano Particles:Enhanced Performance in aerobie alcohol oxidation. Green Chem. [J],2009:322-325.
    1. J.E. Bailie, G.J. Hutchings. Promotion by sulfur of gold catalysts for crotyl alcohol formation from crotonaldehyde hydrogenation. Chem. Comm. [J],1999: 2151-2152.
    2. C. Mohr, H. Hofmeister, P. Claus. The influence of real structure of gold catalysts in the partial hydrogenation of acrolein. J. Catal. [J],2003,213:86-94.
    3. C. Mohr, H. Hofmeister, J. Radnik, P. Claus. Identification of Active Sites in Gold-Catalyzed Hydrogenation of Acrolein. J. Am. Chem. Soc. [J],2003,125: 1905-1911.
    4. P. Claus, H. Hofmeister, C. Mohr. Identification of active sites and influence of real structure of gold catalysts in the selective hydrogenation of acrolein to allyl alcohol. Gold Bull. [J],2004,37:181-186.
    5. R. Zanella, C. Louis, S. Giorgio. R. Touroude. Crotonaldehyde hydrogenation by gold supported on TiO2:structure sensitivity and mechanism. J. Catal. [J],2004, 223:328-339.
    6. A. Corma, P. Serna. Chemoselective hydrogenation of nitro compounds with supported gold catalysts. Science [J],2006,313:332-334.
    7. A. Corma, P. Serna, H. Garcia. Gold catalysts open a new general chemoselective route to synthesize oximes by hydrogenation of α,β-unsaturated nitrocompounds with H2. J. Am. Chem. Soc. [J],2007,129:6358-6359.
    8. D.P. He, H. Shi, Y. Wu, B.Q. Xu. Synthesis of chloroanilines:selective hydrogenation of the nitro in chloronitrobenzenes over zirconia-supported gold catalyst. Green. Chem. [J],2007:849-851.
    9. L.Q. Liu, B.T. Qiao, Z.J. Chen, J. Zhang, Y.Q. Deng. Novel chemoselective hydrogenation of aromatic nitro compounds over ferric hydroxide supported nanocluster gold in the presence of CO and H2O. Chem. Commun. [J],2009: 653-655.
    10. F.Z. Su, L. He, J. Ni, Y. Cao, H.Y. He, K.N. Fan. Efficient and chemoselective reduction of carbonyl compounds with supported gold catalysts under transfer hydrogenation conditions. Chem. Commun. [J],2008:3531-3533.
    11. L. He,Ji Ni, L.C. Wang, F.J. Yu, Y. Cao, H.Y. He. K.N. Fan. Aqueous room-temperature gold-catalyzed chemoselective transfer hydrogenation of aldehydes. Chem. Eur. J. [J],2009,15:11833-11836.
    12. X.B. Lou, L. He, Y. Qian, Y.M. Liu, Y. Cao, K.N. Fan. Highly chemo-and regioselective transfer reduction of aromatic nitro compounds using ammonium formate catalyzed by supported gold nanoparticles. Adv. Synth. Catal. [J],2011, 353:281-286.
    13. L. He, L.C. Wang, H. Sun, J. Ni, Y. Cao, H.Y. He, K.N. Fan. Efficient and selective room-temperature gold-catalyzed reduction of nitro compounds with CO and H2O as the hydrogen source. Angew. Chem. Int. Ed. [J],2009,48: 9538-9541.
    14. M.M. Wang, L. He, Y.M. Liu, Y. Cao, H.Y. He, K.N. Fan, Gold supported on mesostructured ceria as an efficient catalyst for the chemoselective hydrogenation of carbonyl compounds in neat water, Green Chem. [J],2011:602-607.
    15. R. A. Sheldon, J. K. Kochi. Metal Catalyzed Oxidations of Organic Compounds [M]. Academic Press, New York,1981.
    16. S. T. Oyama. Mechanisms in Homogeneous and Heterogeneous Epoxidation Catalysis [M]. Elsevier Science,2008.
    17. K. B. Sharpless, M. A. Umbreit, M. T. Nieh, T. C. Flood. Lower valent tungsten halides. New class of reagents for deoxygenation of organic molecules. J. Am. Chem. Soc. [J],1972,94:6538-6540.
    18. P. Dowd, K. Kang. Stereospecific deoxygenation of epoxides with octacarbonyldicobalt. Chem. Commun. [J],1974:384-385.
    19. P.F. Hudrlik, D. Peterson, R.J. Rona. Reactions of a, (3-epoxysilanes with organocuprate reagents. A new stereospecific olefin synthesis. J. Org. Chem. [J], 1975,40:2263-2264.
    20. G. Descotes. Carbohydrates as Orgnic Raw Materials Ⅱ. VCH [M], New York, 1993.
    21. R.N. Mirrington, E. Ritchie, C.W. Shoppee, S. Sternhell, W.C. Taylor. Some metabolites of Nectria radicicola Gerlach & Nilsson (syn. Cylindrocarpon radicicola Wr.):The structure of radicicol (monorden) Mirrington Aust. J. Chem. [J],1966,19:1265-1284.
    22. R. C. Larock, Comprehensive Organic Transformations [M], Wiley, New York, 1999, P.272.
    23. M. Mahesh, J. A. Murphy, H. P. Wessel. Novel Deoxygenation Reaction of Epoxides by Indium. J. Org. Chem. [J],2005,70:4118-4123.
    24. H. Firouzabadi, N. Iranpoor, M. Jafapour. Rapid, highly efficient and stereo selective deoxygenation of epoxides by ZrC14/NaI. Tetrahedron Lett. [J], 2005,46:4107-4110.
    25. Z. Zhu, J. H. Espenson. Methylrhenium trioxide as a catalyst for oxidations with molecular oxygen and for oxygen transfer. J. Mol. Catal. A [J],1995,103:87-94.
    26. K. P. Gable, E. C. Brown. Rhenium-catalyzed epoxide deoxygenation. Synlett. [J],2003,2243-2245.
    27. T. Itoh, T. Nagano, M. Sato, M. Hirobe, Tetrahedron Lett. [J],1989,20,6387.
    28. H. Isobe, B. P. Branchaud, Tetrahedron Lett. [J],1999,40,8747.
    29. S.C.A. Sousa, A.C. Fernandes. Rhenium-catalyzed deoxygenation of epoxides without adding any reducing agent. Tetrahedron Lett.[J],2011,52:6960-6962
    30. R. Zanella, A. Sandoval, P. Santiago, V.A. Basiuk, J.M. Saniger. New preparation method of gold nanoparticles on SiO2. J. Phys. Chem. B [J].2006, 110:8559-8565.
    31. T. Mitsudome, A. Noujima, Y. Mikami, T. Mizugaki, K. Jitsukawa, K. Kaneda. Room-temperature deoxygenation of epoxides with CO catalyzed by hydrotalcite-supported gold nanoparticles in water. Chem. Eur. J. [J],2010,16: 11818-11821.
    32. M.A. Sanchez-Castillo, C. Couto, W.B. Kim, J.A. Dumesic. Gold-nanotube membranes for the oxidation of CO at gas-water interfaces. Angew. Chem. Int. Ed. [J],2004,43:1140-1142.
    33. W.C. Ketchie, M. Murayama, R.J. Davis. Promotional effect of hydroxyl on the aqueous phase oxidation of carbon monoxide and glycerol over supported Au catalysts. Top. Catal. [J],2007,44:307-317.
    1. G. Centi. "Greening Chemistry"-in Turin and the World. Chem. SuS. Chem. [J], 2008,1:663-663.
    2. R.A. Sheldon. Green and sustainable chemistry:challenges and perspectives. Green Chem. [J],2008:359-360.
    3. G. Centi, S. Perathoner. One-step H2O2 and phenol syntheses:Examples of challenges for new sustainable selective oxidation processes. Catal. Today [J], 2009,143:145-150.
    4. D. Hanoi, J. Green, E.J Beckman. H2O2 in CO2:□ Sustainable Production and Green Reactions. Acc. Of Chem. Res. [J],2002,35:757-764.
    5. P.R.O. Montellano. Cytochrome P-450:structure, mechanism, and biochemistry [M]. Plenum Press, New York,1986.
    6. L. Que, R.Y.N. Ho. Dioxygen Activation by Enzymes with Mononuclear Non-Heme Iron Active Sites. Chem. Rev. [J],1996,96:2607-2624.
    7. K.E. Liu, S.J. Lippard. The mechanism of soluble methane monooxygenase. Adv. Inorg. Chem. [J],1995,42:263-289.
    8. J.E. Remias, T.A. Pavlosky, A. Sen. Catalytic hydroxylation of benzene and cyclohexane using in situ generated hydrogen peroxide:new mechanistic insights and comparison with hydrogen peroxide added directly. J. Mol. Catal. A:Chem. [J],2003,203:179-192.
    9. B.S. Uphade, M. Okumura, S. Tsubota, M. Haruta. Effect of physical mixing of CsCl with Au/Ti-MCM-41 on the gas-phase epoxidation of propene using H2 and O2:Drastic depression of H2 consumption. App. Catal. A Gen. [J],2000,190: 43-50.
    10. A.K. Sinha, S. Seelan, S. Tsubota, M. Haruta. A three-dimensional mesoporous titanosilicate support for gold nanoparticles:Vapor-phase epoxidatoin of propene with high conversion. Angew. Chem. Int. Ed. [J],2004,43:1546-1548.
    11. B. Chowdhury, J.J. Bravo-Suarez, M. Date, S. Tsubota, M. Haruta. Trimethylamine as a gas-phase promoter:Highly efficient epoxidation of propylene over supported gold catalysts. Angew. Chem. Int. Ed. [J],2006,45: 413-415.
    12. E.E. Stangland, K.B. Stavens, R.P. Andres, W.N. Delgass. Characterization of gold-titania catalysts via oxidation of propylene to propylene oxide. J. Catal. [J], 2000,191:332-347.
    13. N. Yap, R.P. Andres, W.N. Delgass. Reactivity and stability of Au in and on TS-1 for epoxidation of propylene with H2 and O2. J. Catal. [J],2004,226: 156-170.
    14. J.Q. Lu, X.M. Zhang, J.J. Bravo-Suarez, K.K. Bando, T. Fujitani, ST. Oyama. Direct propylene epoxidation over barium-promoted Au/Ti-TUD catalysts with H2 and O2:Effect of Au particle size. J. Catal. [J],2007,250:350-359.
    15. B.S. Lane, K. Burgees. Metal-catalyzed epoxidations of alkenes with hydrogen peroxide. Chem. Rev. [J],2003,103:2457-2473.
    16. R.M. Lambert, F.J. Williams, R.L. Cropley, A. Palermo. Heterogeneous alkene epoxidation:Past, Present and Future. J. Mol. Catal. A [J],2005,228:27-33.
    17. S.T. Oyama. Mechanisms in homogeneous and heterogeneous epoxidation catalysis [M]. Elsevier Press,2008.
    18. C.B. Khouw, C.B. Dartt, J.A. Labinger, M.E. Davis. Studies on the catalytic-oxidation of alkanes and alkenes by titanium silicates. J. Catal. [J],1994, 149:195-205.
    19. M.G. Clerici, P. Ingallina. Epoxidation of lower olefins with hydrogen peroxide and titanium silicalite. J. Catal. [J],1993,140:71-83.
    20. G. Bellussi, A. Carati, M.G. Clerici, G. Maddinelli, R. Millini. Reactions of titanium silicalite with protic molecules and hydrogen peroxide. J. Catal. [J], 1992,133:220-230.
    21. M.A. Camblor, M. Costantini, A. Corma, L. Gilbert, P. Esteve, A. Martinez, S. Valencia. Synthesis and catalytic activity of aluminium-free zeolite Ti-β oxidation catalysts. Chem. Commun. [J],1996:1339-1340.
    22.王瑞斌.过氧化氢含量准确测定方法的研究.化学工程师[J],2005,12:62-64.
    23. L. He,Ji Ni, L.C. Wang, F.J. Yu, Y. Cao, H.Y. He. K.N. Fan. Aqueous room-temperature gold-catalyzed chemoselective transfer hydrogenation of aldehydes. Chem. Eur. J. [J],2009,15:11833-11836.
    24. R. Kumar, A. Bhaumik. Triphase catalysis over titanium-silicate molecular sieves under solvent-free conditions:I. Direct hydroxylation of benzene. J. Catal. [J],1998,178:101-107.
    25. F. Song, Y.M. Liu, H.H. Wu, M.Y. He, P. Wu, T. Tatsumi. A novel titanosilicate with MWW structure:Highly effective liquid-phase ammoximation of cyclohexanone. J. Catal. [J],2006,237:359-367.
    26. S. Gontier, A. Tuel. Synthesis and characterization of Ti-containing mesoporous silicas. Zeolites [J],1995,15:601-610.
    27. A. Bensalem, J.C. Muller, F. Bozon-Verduraz. From bulk CeO2 to supported cerium-oxygen clusters:A diffuse reflectance approach. J. Chem. Soc., Faraday Trans. [J],1992,88:153-154.
    28. U. Kreibig, M. Vollmer. Optical Properties of Metal Clusters [M]. Springer, 1995.
    29. Hiroshi Ichihashi, Hiroshi Sato. The development of new heterogeneous catalytic processes for the production of s-caprolactam. App. Catal. A. Gen. [J],2001,221: 359-366.
    30. G. Bellussi, M.S. Rigutto. Chapter 19 Metal ions associated to molecular sieve frameworks as catalytic sites for selective oxidation reactions. Stud. Surf. Sci. Catal. [J],2001,137:911-955.
    31. J.S. Reddy, S. Sivasanker, P. Ratnasamy. Ammoximation of cyclohexanone over a titanium silicate molecular sieve, TS-2. J. Mol. Catal. [J],1991,69:383-392.
    32. P. Wu, T. Komatsu, T. Yashima. Ammoximation of ketones over Titanium mordenite. J. Catal. [J],1997,168:400-411.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700