用户名: 密码: 验证码:
纳米碳管气敏传感器及随机共振检测系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前气体检测基本运用了传感器的敏感元件对气体的吸附特性来改变其电学特性如电阻、电容、频率等参数,从而实现对气体的检测;但这类传感器普遍存在受外界环境影响大,吸附、脱附时间长,可重复性差,气体选择性小,使用周期短,检测设备复杂,成本高等缺点。为此提出了一种新的气敏传感器设计思想,它利用高电场电离待测气体,根据击穿电压和放电电流的不同来区分气体。然而在常温大气压下,要使气体具有稳定的导电能力需要很高的电压建立足够强的电场,使得这种传感器的使用受到了安全和费用等问题的限制。纳米碳管的出现有效地解决了该问题,在外加直流电压激励下,纳米碳管的尖端会形成很强的非均匀电场,在电压相对较低的情况下能很容易地电离气体且获得较大的放电电流。
     本文研究了一种基于气体放电原理的定向纳米碳管阵列的气敏传感器。其中定向纳米碳管阵列的制备采用了阳极氧化铝(AAO)模板法,利用氧化铝的纳米孔壁对碳管生长过程中起到的限制作用来保证其定向性。虽然目前已有许多研究小组都能在AAO模板上生长出定向纳米碳管,但通常所需的生长时间都很长。实验中通过交流电沉积法在AAO模板纳米孔底沉积了钴催化剂,采用化学气相沉积(CVD)法数分钟内就能快速生长定向纳米碳管。AAO模板法制得的纳米碳管阵列与铝基底相连,因此在用纳米碳管做电极时,基底作为电极一端引出,可以方便地与外部电路连接。由于纳米碳管和电极是一体的,简化了器件结构和工艺,控制和测量都很方便。
     纳米碳管气敏传感器工作时以纳米碳管阵列作为阳极,铝板为阴极,聚酰亚胺绝缘薄膜用来调节两极间距离,可以通过使用不同厚度的绝缘薄膜的方法来改变距离,使极间距离在数十至数百微米内可调。实验中在外加电压不超过500V的情况下,该传感器成功地对氩气、空气、氮气和二氧化碳进行了检测;同时也对不同浓度的氮气和氩气的混合气体、氩气和空气的混合气体、氨气和空气的混合气体以及氮气和氨气的混合气体进行了地检测。对于外界的环境温度、湿度的影响也给予了分析,实验结果表明该传感器具有灵敏度高、响应时间快,可靠性高和重复性好等优点,有较大的实用价值。
     弱信号检测是传感器检测技术正在发展的领域,一般考虑弱信号检测技术时往往把注意力集中到如何抑制噪声上,而检测系统在抑制噪声的同时,被测信号也受到抑制或损害。随机共振理论的提出,为微弱信号检测提供了新的途径。随机共振的本质是由于输入信号、噪声和非线性系统的共同作用,使部分噪声能量转化为信号能量。基于随机共振的弱信号检测技术与传统检测方法的区别在于它是利用噪声而不是消除噪声来达到信号检测的目的。因此随机共振现象在微弱信号检测方面有着独特的优势,受到了广泛的关注。
     本文所研制的纳米碳管气敏传感器能够对包括惰性气体在内的多种单一气体和确定性混合气体进行检测,然而对于混合气体在某些浓度范围内却无法有效地分辨。鉴于随机共振在弱信号检测方面的成功应用,创新地提出了将随机共振检测系统引入气敏传感器领域来提高检测的灵敏度。文中构建了基于随机共振的气敏传感器检测系统,采用了多层随机共振算法来提高精度,根据信噪比最大值之间的差值完成了对气体不同的浓度的区分,从而提高了传感器的灵敏度。本文所提出的方法灵活有效,可进一步拓宽随机共振的应用领域。
     本文在纳米碳管气敏传感器和随机共振这两种新器件新理论框架下设计和研究了气体检测的新技术和新方法。实验和数值计算结果表明,该传感器具有结构简单、灵敏度高、响应时间快,可靠性高和重复性好等优点,有较大的实用推广价值。本项目的研究对于微纳技术在气体检测中的应用实施具有极大的现实意义,同时对于随机共振理论的进一步发展及其在弱信号检测中的应用也有一定的价值。
At present gas sensors mostly utilize adsorption-desorption characteristics of sensitive elements to detect gases. The electronic properties of sensitive elements are modified after absorbing gases, such as resistances, capacities and frequency, etc. However this kind of gas sensor has the disadvantages of long adsorption and desorption time, bad repeatability and selectivity, short usage time, complex detection device, large cost, and it can be affected by the environment easily. So a new different gas sensor was proposed in this project, which was used the principle of gas discharge to distinguish the gases. As different gases have their unique breakdown voltages and discharge currenst, it is possible to identify one gas or certain mixture gases. But the usage of this new gas sensor has been limited by its high voltage and insecurity. Carbon nanotubes (CNTs) are used to solve this problem effectively in this project. As controlled DC voltage is applied to the CNTs electrode, the sharp tips of CNTs can generate high electric fields, so it was easy to ionize gas and get larger current at lower voltages.
     A novel aligned CNTs gas sensor based on gas discharge was discussed in this project. The method of anodic aluminum oxide (AAO) template was adopted to grow aligned CNTs. The aligned CNTs can be guaranteed since the nanometer pores in the template will limit its direction during the growth of the CNTs. Although many research teams got aligned CNTs on the AAO template, they spent much longer time on its growth. A faster growth method was used in this experiment, which deposited cobalt catalyst in the bottom of template by the method of AC electrolytic deposition. We grew aligned CNTs in a few minutes by chemical vapour deposition (CVD) method. Due to adopting the method of AAO template to grow aligned CNTs, the electrode and CNTs were integrated, so the gas sensor simplified its structure and processing technics.
     The aligned CNTs worked as anode and aluminium as cathode in this gas sensor. The polyimide insulation film was utilized to adjust the distance between the electrodes. Thus the distance between two electrodes could be adjusted with a range of 20-200μm by the thickness of the film. The gas sensor succeeded in detecting argon, air, nitrogen and carbon dioxide with the applied voltage of less than 500V. Meanwhile the sensor can distinguish the gaseous mixture of nitrogen and argon, argon and air, ammonia and air, nitrogen and ammonia. The influences of temperature and humidity were discussed in detail, and the performance of the sensor was also evaluated. Experimental results show that the CNTs gas sensor has the merits of small size, fast response, good sensitivity and selectivity, and it is very convenient to be operated at room temperature, so it is feasible in gas detection.
     Detection of weak signal is a new developing technology in the sensor detection field. Commonly, much attention of weak signal detection technology has been focused on seeking the way to reduce or remove noise. But the problem is that measuring signal is reduced or even lost as reducing the background noise when the frequency of signal approximates that of noise. Yet the theory of stochastic resonance (SR) provides a new way for weak signal detection. SR is a nonlinear phenomenon where the synergistic effects of noise and nonlinearity systems lead to an enhanced response of a weak periodic signal with an addition of noise in optimal intensity. Thus the energy of noise can be transformed into signal, and the weak signal can be detected easily. Nowadays, using and leading but not reducing noise in the non-linear subject has already been a new research direction, which has attracted much attention.
     The gas sensor designed in this dissertation can identify single gas or certain mixture gases, but it can't effectively distinguish some gases mixed in certain concentration. In order to solve this problem and improve the sensitivity, the detecting system of SR was introduced in the gas sensor originally. The gas sensor detecting system was set up, which included the algorithm of modulation and multiplayer SR. The difference value between the max SNR values can be used to identify the mixture gas of different concentration. The detecting method proposed in this project is very effective and it can be used in other application fields of SR.
     The new techniques and algorithms of gas detecting were studied in this project, which involved the academic fields of CNTs and SR. The experimental and numerical computation results show that the CNTs gas sensor based on SR has the significance in the field of nanometer technology. Meanwhile it will promote the development of SR theory, and play a role in the application of weak signal detection.
引文
[1]黄行九.SnO<,2>气体传感器动态测试原理及其与SPME联用技术研究[D].合肥:中国科学技术大学,2004.
    [2]何希才 等编著.传感器技术及应用[M].北京:北京航空航天出版社,2004.
    [3]王雪文 等编著.传感器原理及应用[M].北京:北京航空航天出版社,2004.
    [4]李冬梅,黄元庆,张佳平 等.几种常见气体传感器的研究进展[J].传感器世界,2006,1.
    [5]郭淼.多壁纳米碳管的掺杂及气敏特性的研究[D].杭州:浙江大学,2006.
    [6]马戎,周王民,陈明.气体传感器的研究及发展方向[J].航空计测技术,2004,24(4).
    [7]任宏亮,何金田,梁二军等.纳米气敏传感器研究进展[J].微纳电子技术,2003,6.
    [8]Cantalini C,Valentini L,Armentano I,et al.Carbon nanotubes as new materials for gas sensing applications[J].Journal of the European Ceramic Society.2004,24(6):1405-1408.
    [9]Stephanie A.Hooker.Nanotechnology advantages applied to gas sensor development[C].The nanoparticles 2002 conference proceedings.
    [10]Iijima S.Helical microtubules of graphitic carbon[J].Nature,1991,354:56-58.
    [11]Kong J.Franklin N.R.Zhou C.et al.Nanotube Molecular Wires as Chemical Sensors[J].Science,2000,287:622-625.
    [12]Valentin N.Popov.Carbon nanotubes:properties and application[J].Materials science and engineering R,2004,43:61-102.
    [13]M P Anantram,F Leonard.Physics of carbon nanotube electronic devices[J].Reports on progress in physics,2006,69:507-561.
    [14]丁秉钧 主编.纳米材料[M].北京:机械工业出版社,2004.
    [15]孙静.碳纳米管及其研究进展[J].世界科学,2006,5.
    [16]Garg A,Han J,Simnott S B.Interactions of carbon-nanotubule proximal probe tips with diamond and graphene[M].Phys Rev Lett,1998,81(11):2260.
    [17]Kasumov A Y,Deblock R,Kociak M.Supercurrents throught single-walled carbon nanotubes[M].Science,1999,284:1508.
    [18]Philip G.Collins,Keith Bradley,Masa Ishigami,et al.Extreme oxygen sensitivity of electronic properties of carbon nanotubes[J].Science,2000,287:1801-1804.
    [19]M.Bienfait,B.Asmussen,M.Johnson,et al.Methane mobility in carbon nanotubes[J].Surface science 460(2000):243-248.
    [20]O.K.Varghese,P.D.Kichambre,D.Gong,et al.Gas sensing characteristics of multi-wall carbon nanotubes[J].Sensors and actuators B,200i,81:32-41.
    [21]K.G.Ong,C.A.Grimes.A carbon nanotube-based sensor for CO_2 monitoring[J].Sensors,2001,1:193-205.
    [22]Keat Ghee Ong,Kefeng Zeng,Craig A.Grimes,et al.A wireless,passive carbon nanotube-based gas sensor[J].IEEE sensors journal,2002,2(2):82-88.
    [23]Y.M.Wong,W.P.Kang,J.L Davidson,et al.A novel microelectronic gas sensor utilizing carbon nanotubes for hydrogen gas detection[J].Sensors and actuators B,2003,93:327-332.
    [24]陈长伦,何建波,刘锦淮.新型电化学CO气体传感器的研制[J].传感器技术,2004,23(5):32-35.
    [25]Junya Suehiro,Guangbin Zhou,Masanori Hara,et al.Detection of partial discharge in SF gas using a carbon nanotube-based gas sensor[J].Sensors and Actuators B,2005,105:164-169.
    [26]陈金霞,郭淼,陈文菊等.基于多壁纳米碳管的传感器对甲苯的气敏特性研究[J].传感技术学报,2005,18(1):39-42.
    [27]Ashishi M.,Nikhil K.,et al.Miniaturized gas ionization sensors using carbon nanotubes[J].Nature,2003,424:171-174.
    [28]Zhang Yong,Liu Junhua,Li Xin,et al.Study of improving identification accuracy of carbon nanotube film cathode gas sensor[J].Sensors and actuators A,2005,125:15-24.
    [29]Zhang Yong,Liu Junhua,Li Xin,et al.The structure optimization of the carbon nanotube film cathode in the application of gas sensor[J].Sensor and actuators A,2006,128:278-289.
    [30]Jia-Rui Huang,Min-Qiang Li,Zhong-Ying Huang,et al.A novel conductive humidity sensor based on field ionization from carbon nanotubes[J].Sensors and actuators A,2006,SNA-5336.
    [31]Roberto Benzi,Alfonso Sutera,Angelo Vulpiani.The mechanism of stochastic resonance[J].J. Phys.A:Math.Gen,1981,14:453-457.
    [32]S.Fauve,F.Heslot.Stochastic resonance in a bistable system[J].Phys.Rev.Lett,1983,97A:5-7.
    [33]B.McNamara,K.Wiesenfield,R.Roy.Observation of stochastic resonance in a ring laser[J].Phys.Rev.Lett,1988,60:2626-2629.
    [34]李华峰.双稳态随机共振系统的输出的性能衡量[D].杭州:浙江大学,2003:3-17.
    [35]杨祥龙.随机共振理论在微弱信号检测中的应用研究[D].杭州:浙江大学,2003:3-7.
    [36]吴莉莉,惠国华,潘敏等.生物医学领域中随机共振的理论及应用研究[J].国际生物医学工程杂志,2007,30(2):86-90.
    [37]B.McNamara,K.Wiesenfeld.Theory of stochastic resonance[J].Phys.Rev.A,1989,39(9):4854-4869.
    [38]Roberto Benzi,Alfonso Sutera,Angelo Vulpiani.The mechanism of stochastic resonance[J].J.Phys.A:Math.Gen,1981,14:453-457.
    [39]Luca Gammaitoni,Peter Hanggi,Peter Jung,et al.Stochastic resonance[J].Reviews of modern physics,1998,70(1):223-287.
    [40]Hanggi,P.V.E.McClintock.Bistablity driven by colored noise:theory and experiment[J].Phys.Rev.A,1985,32(1):695-698.
    [41]P.Jung,P.Hanggi.Stochastic nonlinear dynamic modulated by external periodic forces[J].Europhys.Lett.,1989,8(6):505-510.
    [42]P.Jung,P.Hanggi.Amplification of small signals via stochastic resonance[J].Phys.Rev.A,1991,44(12):8032-8042.
    [43]M.I.Dykman,R.Mannella,P.V.E McClintock,et al.Comment on 'stochastic resonance in bistable systems'[C].Preceding Comment,Phys.Rev.Lett,1990,65:2606.
    [44]T.Zhou,F.Moss.Analog simulations of stochastic resonance[J].Phys.Rev.A,1990,41(8):4255-4264.
    [45]Thomas Wellens,Vyacheslav Shatokhin,Andreas Buchleitner.Stochastic resonance[J].Reports on progress in physics,2004,(67):45-105.
    [46]Mitaim.S,Kosko.B.Neural fuzzy stochastic resonance[C].Systems,Man and Cybernetics,IEEE International Conference,1998,vol 3:2237-2242.
    [47]Mitaim.S,Kosko.B.Adaptive stochastic resonance with fuzzy systems[C].Fuzzy Information Processing Society-NAFIPS,Conference of the north American,1998.
    [48]Mitaim.S,Kosko.B.Adaptive stochastic resonance and fuzzy approximation[C].Intelligent Control(ISIC),Intelligent Systems and Semiotics(ISAS),Proceedings of the 1998 IEEE International Symposium,1998,471-476.
    [49]N.G.Stocks,Suprathreshold stochastic resonance in multilevel threshold systems,Phys.Rev.Lett.,2000(84):2310-2313.
    [50]杨定新.微弱特征信号检测的随机共振方法与应用研究[D].合肥:国防科学技术大学,2004.
    [51]M.F.Carusela,R.P.J.Geisel,Stochastic resonance in neuron models:Endogenous stimulation revisited[J].Phys.Rev.E,2001,63(3),031916.
    [52]M.Riani,E.Simonotto.Stochastic resonance in the perceptual interpretation of ambiguous figures:A neural network model[J].Phys.Rev.Lett,1994,72(19):3120-3123.
    [53]B.Lindner,L Schimansky-Geier.Transmission of noise coded versus additive signal through a neuronal ensemble[J].Phys.Rev.Lett,2001,86(4):2934-2937.
    [54]Frank Moss,Lawrence M.Ward,Walter G.Sannita.Stochastic resonance and sensory information processing:a tutorial and review of application[J].Clinical Neurophysiology,2004,(115):267-281.
    [55]吴晓静.随机共振理论及其在分析化学中的应用研究[D].合肥:中国科学技术大学,2003:10-12.
    [56]F.Heneghan,C.C.Chow,J.J.Collins,et al.Information measures quatifying aperiodic stochastic resonance[J].
    [57]Mykhaylo Evstigneev,Peter Reimann,Carmen Schmitt,et al.Quantifying stochastic resonance:theory versus experiment[J].Journal of physics:condensed matter,2005,(17):3795-3809.
    [58]J.K.Douglass,L Wilkens,E.Pantazelou,et al.Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance[J].Nature,1993,(365):337-340.
    [59]龚璞林.随机非线性动力系统研究及其在神经元时间编码中的应用[D].西安:西安交通大学,2000:17-18.
    [60]B.Xu,F.Duan,R.Bao,et al.Stochastic resonance with tuning system parameters:the application of bistable systems in signal processing[J].Chaos,Solitons & Fractals,2002, 13(4):633-644.
    [61]A.N.Grigorenko,P.I.Nikitin,G.V.Roschepkin,et al.A new technique for high frequency sub-threshold magnetic field sensing in nanometer scale based upon magnetostochastic resonance[J].Sensors and actuators A,1997,59:277-279.
    [62]宋爱国,李建清,黄惟一.基于随机共振的机器人二值化触觉传感器降噪方法[J].传感技术学报,2001,4:312-317.
    [63]Chih-Hsiung Shen,Bow-Wen Wang.A high performance CMOS compatible thermopile based on noise added mechanism[C].Sensors,Proceedings of IEEE,2004,vol 2:611-614.
    [64]Ritaban Dutta,Aruneema Das,Nigel G.Stocks et al.Stochastic resonance-based electronic nose:A novel way to classify bacteria[J].Sensors and actuators B,2006,115:17-27.
    [65]Yong Zhang,Junhua Liu,Xin Li,et al.Study of gas sensor with carbon nanotube film on the substrate of porous silicon[C].Proceedings of the IEEE International Vacuum Microelectronics Conference,IVMC,2001:13-14.
    [1]Kasumov A Y,Deblock R,Kociak M.Supercurrents throught single-walled carbon nanotubes[M].Science,1999,284:1508.
    [2]Philip G.Collins,Keith Bradley,Masa Ishigami,et al.Extreme oxygen sensitivity of electronic properties of carbon nanotubes[J].Science,2000,287:1801-1804.
    [3]M.Bienfait,B.Asmussen,M.Johnson,et al.Methane mobility in carbon nanotubes[J].Surface science 460(2000):243-248.
    [4]O.K.Varghese,P.D.Kichambre,D.Gong,et al.Gas sensing characteristics of multi-wall carbon nanotubes[J].Sensors and actuators B,2001,81:32-41.
    [5]K.G.Ong,C.A.Grimes.A carbon nanotube-based sensor for CO_2 monitoring[J].Sensors,2001,1:193-205.
    [6]Keat Ghee Ong,Kefeng Zeng,Craig A.Grimes,et al.A wireless,passive carbon nanotube-based gas sensor[J].IEEE sensors journal,2002,2(2):82-88.
    [7]Y.M.Wong,W.P.Kang,J.L.Davidson,et al.A novel microelectronic gas sensor utilizing carbon nanotubes for hydrogen gas detection[J].Sensors and actuators B,2003,93:327-332.
    [8]陈长伦,何建波,刘锦淮.新型电化学CO气体传感器的研制[J].传感器技术,2004,23(5):32-35.
    [9]Junya Suehiro,Guangbin Zhou,Masanori Hara,et al.Detection of partial discharge in SF gas using a carbon nanotube-based gas sensor[J].Sensors and Actuators B,2005,105:164-169.
    [10]陈金霞,郭淼,陈文菊等.基于多壁纳米碳管的传感器对甲苯的气敏特性研究[J].传感技术学报,2005,18(1):39-42.
    [11]Yong Zhang,Junhua Liu,Xin Li,et al.Study of gas sensor with carbon nanotube film on the substrate of porous silicon[C].Proceedings of the IEEE International Vacuum Microelectronics Conference,IVMC,2001:13-14.
    [12]Zhang Yong,Liu Junhua,Li Xin,et al.Study of improving identification accuracy of carbon nanotube film cathode gas sensor[J].Sensors and actuators A,2005,125:15-24.
    [13]Zhang Yong,Liu Junhua,Li Xin,et al.The structure optimization of the carbon nanotube film cathode in the application of gas sensor[J].Sensor and actuators A,2006,128:278-289.
    [14]Ashishi M.,Nikhil K.,et al.Miniaturized gas ionization sensors using carbon nanotubes[J]. Nature,2003,424:171-174.
    [15]B.E.戈兰特.等离子体物理基础[M].北京:原子能出版社,1993.
    [16]Jong Min Kim,Won Bong Choi,Nae Sung Lee,et al.Field emission from carbon nanotubes for display[J].Diamond and related materials,2000,9:1184-1189.
    [17]徐军明,张孝彬,陈飞,等.氧化铝模板上定向纳米碳管的快速生长及超声切短[J].物理化学学报,2004,20(3):271-274.
    [18]杨定新.微弱特征信号检测的随机共振方法与应用研究[D].长沙:国防科学技术大学,2004.
    [19]冷永刚,王太勇,郭焱.基于级联双稳系统的信息检测[J].仪器仪表学报,2004,25(4):713-714.
    [20]冷永刚,王太勇,郭焱 等.级联双稳系统的随机共振特性[J].物理学报,2005,54(3):1108-1125.
    [21]徐学基,诸定昌 编著.气体放电物理[M].上海:复旦大学出版社,1996,8.
    [22]朱亚波.碳纳米管及相关材料的生长与电学性质研究[D].重庆:重庆大学,2003,11.
    [23]朱德桓,严璋.高电压绝缘[M].北京:清华大学出版社,1996.
    [24]张宇宁,杨扬,雷威等.纳米碳管周围的电位和电场分布[J].电子器件,2004,27(1):53-56.
    [1]Iijima S.Helical microtubules of graphitic carbon[J].Nature,1991,354:56-58.
    [2]刘登友,何志斌,周海晖 等.定向/有序碳纳米管制备的研究进展[J].材料导报,2003,17(2):38-39.
    [3]Guo T.Catalytic growth of single-walled nanotubes by laser vaporization[J].Chem.Phys.Lett.,1995,243(1-2):49-54.
    [4]Ebbesen T W,Ajayan P M.Large-scale synthesis of carbon nanotubes[J].Nature,1992,358(6383):220-222.
    [5]王敏炜,彭年才,李凤仪.化学气相沉积法制备碳纳米管的研究进展[J].现代化工,2002,22(4):18-21.
    [6]Ajayan P.M.,Stephan O,Colliex C,et al.Aligned carbon nanotubes arrays formed by cutting a polymer resin-nanotube composite[J].Science,1994,265:1212-1214.
    [7]De Heer W.A,Bacsa W.S,Chatelain A,et al.Aligned natotube films:Production and optical and electronic properties[J].Science,1995,268(4):845.
    [8]Li.W.Z.,Xie S.S.,Qian,L X..,et al.Large-Scale synthesis of aligned carbon nanotubes[J].Science,1996,274:1701-1703.
    [9]S.Fan,M.Chapline,N.Franklin,et al.Self-oriented regular arrays of carbon nanotubes and their field emission properties[J].Science,1999,283:512-514.
    [10]徐军明.定向纳米碳管及其复合膜的制备与表征[D].杭州:浙江大学,2004:34-68.
    [11]徐东升,郭国霖,桂琳琳 等.以多孔硅为模板制备取向碳纳米管[J].中国科学,2000,30(4):289-293.
    [12]Parthasarath y,Ranjani V,Phani K.L,N,Martin.Template synthesis of graphitic nanotubes[J].Advanced materials,1995,7(11):896-7.
    [13]H.Masuda,K.Fukuda.Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina[J].Science,1995,268:1466-1468.
    [14]Soo-Hwan Jeong,Ok-Joo Lee,Kun-Hong Lee,et al.Preparation of aligned carbon nanotubes with prescribed dimensions:template synthesis and sonication cutting approach[J].Chemistry materials 2002,14:1859-1862.
    [15]B.F.Antonio.Template synthesis of carbon nanotubes by vapor deposition polymerization[J].Carbon,2002,40:1600-1603.
    [16]王成伟,李梦柯,潘善林 等.用多孔氧化铝模板制备高度取向碳纳米管阵列膜的研究[J].科学通报,2000,45(5):493-497.
    [17]陈飞.CVD法制备定向纳米碳管及其表征[D].杭州:浙江大学,2004:34-47.
    [18]M.Terrones,N.Gobert,J.P.Zhang,et al.Preparation of aligned carbon nanotubes catalysed by laser-etched cobalt thin films[J].Chemical Physcis Letters,1998(285):299-305.
    [19]张孝斌,徐军明,侯崑 等.定向生长阵列化纳米碳管研究进展[J].材料科学与工程,2002,20(2):279-282.
    [20]Cheol Jin Lee,Jeunghee Park,Seung Youol Kang,et al.Growth and field electron emission of vertically aligned multiwalled carbon nanotubes[J].Chemical Physics Letters,2000,326:175-180.
    [21]Z.F.Ren,Z.P.H uang,J.W.Xu,et al.Synthesis of large arrays of well-aligned carbon nanotubes on glass[J].Science,1998,282:1105-1107.
    [22]Y.Tu,Z.P.Huang,D.Z.Wang,et al.Growth of aligned carbon nanotubes with controlled site density[J].Applied physics letters,2002,80:4018-4020.
    [23]王升高,汪建华,王传新 等.镍基板上低温合成定向纳米碳管[J].高等学校化学学报,2003,24(7):1163-1165.
    [24]王必本,王万录,刘高斌 等.定向生长碳纳米管的研究进展[J].重庆大学学报(自然科学版),2002,25(8):134-136.
    [25]Choi Y.C.,Kim D.W.,Lee T.J.,et al.Growth mechanisms of vertically aligned carbon nanotubes on silicon substrates[J].Synthetic Metals,2001,117:81-86.
    [26]Jung M,Eum K.Y.,Baik Y.J.,et al.Effect of NH_3 environment gas on the growth of aligned carbon nanotube in catalystically pyrolizing C_2H_2[J].Thin solid films,2001,398:150-155.
    [27]Chris Bower,Wei Zhu,Sungho Jin,et al.Plasma-induced alignment of carbon nanotubes[J].Applied physics letters,2000,77:830-832.
    [28]徐军明,张孝彬,陈飞 等.氧化铝模板上定向纳米碳管的快速生长及超声切短[J].物理化学学报,2004,20(3):271-274.
    [29]Keller F,Hunter M S,Robinson D L,Structural festures of oxide coating on aluminum[J].Electrochem Soc,1953,100(9):411-419.
    [30]Jessensky O,Muller F,Gosele U.Self-organized formation of hexagonal pore arrays in anodic alumina[J].Appl Phys Lett,1998,72(10):1173-1178.
    [31]陶敏龙,郭光华,孙李媛 等.高度有序多孔氧化铝模板的制备工艺与生长机制的研究[J].中国材料科技与设备,2006,2:40-42.
    [32]ZH Yuan,H.Huang,HY Dang,et al.Field emission property of highly ordered monodispersed carbon nanotube arrays[J].Appl.Phys.Lett.2001,78(20):3127-3129.
    [33]高云震,铝合金表面处理[M].北京:冶金工业出版社,1991,64-68.
    [34]J.F.Murphy,C.E.Micheslon.A.Theory for the formation of anodic oxide coatings on aluminum[C].Proc.Conf.Anodizing aluminum federation,London,1962:83-88.
    [35]Y.Xu,G.E.Thompson,G.C.Wood.Machanism of anodic film growth on aluminum[J].Trans.Inst.Met.Fin,1985,63:98-103.
    [36]K.Shimizu,K.Kobayashi,G.E.Thompson.Development of porous anodic films on aluminum[J].Philosophical Magazine A,1992,66(4):643-648.
    [37]Parkhutik V.P.,Shershulsky V.I.,Trauth D.Theoretical modeling of porous oxide growth on aluminium[J].Phys D:Appl Phys,1992,25:1258-1263.
    [38]Jessensky O,Muller F,Gosele U.Serf-organized formation of hexagonal pore arrays in anodic alumina[J].Appl Phys Lett,1998,72(10):1173-1178.
    [39]Li.A P,Muller F,Birner A,et al.Hexagonal pore arrays with a 50-420nm interpore distance formed by self-organization in anodic alumina[J].J Appl Phys,1998,84:6-23.
    [40]陶敏龙,郭光华,孙李媛 等.高度有序多孔氧化铝模板的制备工艺与生长机制的研究[J].中国材料科技与设备,2006,2:40-42.
    [41]江小雪,赵乃勤.多孔氧化铝膜的制备与形成机理的研究概况[J].功能材料,2005,4(36):487-489.
    [42]G.E.Thompson.Porous anodic alumina:fabrication,characterization and applications[J].Thin solid films,1997,297:192-201.
    [43]Thompson G E,Fumeaux R C,Wood G C,et al,Nucleation and growth of porous anodic films on aluminum[J].Nature,1987,272(30):433-435.
    [44]刘虹雯,郭海明,王业亮 等.阳极氧化铝膜表面自组织条纹的形成[J].物理学报,2004,53(2):656-660.
    [45]巩运兰,王为,王惠 等.铝阳极氧化膜纳米孔阵列结构的自组织过程分析[J].物理化学学报,2004,20(2):199-201.
    [46]Thompson G.E.,Furneaux R.C.,Wood G.C.,et al.Nucleation and growth of porous anodic films on aluminum[J].Nature,1978,30:272-277.
    [47]李谦.基于模板法碳纳米管阵列的制备及特性研究[D].兰州:兰州大学,2006,5.
    [48]王志.碳纳米管阵列、掺硼碳纳米管的ECR-CVD法制备与表征[D].沈阳:东北大学,2004,9.
    [49]巩运兰.规则纳米孔结构阳极氧化铝薄膜形成过程[D].天津:天津大学,2004,6.
    [1]吴莉莉,惠国华,潘敏 等.基于随机共振的纳米碳管气体传感器的研究[J].传感技术学报,2006,19(5):2114-2119.
    [2]Stevan A.Milinkovic.Application of an ionization chamber as gas sensor.Nuclear instruments and methods in physics research,1998,A 408:562-572.
    [3]李昕,白鹏,刘君华 等.基于碳纳米管的尖端电极对汤生放电型气体传感器特性的影响[J].仪器仪表学报,2003,24(5):501-505.
    [4]李昕,刘君华,张勇 等.催化剂颗粒对自持放电型纳米管气体传感器电极的影响[J]. 仪器仪表学报,2003,24(24):49-52.
    [5]Yong Zhang,Junhua Liu,Xin Li,et al.Study of gas sensor with carbon nanotube film on the substrate of porous silicon[C].Proceedings of the IEEE International Vacuum Microelectronics Conference,IVMC,2001:13-14
    [6]Ashishi Modi,Nikhil Koratkar,et al.Miniaturized gas ionization sensors using carbon nanotubes[J].Nature,2003,424(6945):171-174.
    [7]Zhang Yong,Liu Junhua,Li Xin,et al.Study of improving identification accuracy of carbon nanotube film cathode gas sensor[J].Sensors and actuators A,2005,125:15-24.
    [8]Zhang Yong,Liu Junhua,Li Xin,et al.The structure optimization of the carbon nanotube film cathode in the application of gas sensor[J].Sensors and Actuators A,2006,128:278-289.
    [9]凉曦东,陈昌渔,周远翔.高电压工程[M].北京:清华大学出版社,2003.
    [10]徐学基,诸定昌 编著.气体放电物理[M].上海:复旦大学出版社,1996,8.
    [11]Nicholas A.Krall.郭书印等译.等离子体物理学原理[M].北京:原子能出版社,1983.
    [12]B.E.戈兰特.等离子体物理基础[M].北京:原子能出版社,1993.
    [13]徐学基,诸定昌 编著.气体放电物理[M].上海:复旦大学出版社,1996,8.
    [14]肖如泉,王黎明,倪梅娟 等.高压放电的原理与演示[M].北京:中国水利水电出版社,2003.
    [15]胡志强,甄汉生,施迎难 编著.气体电子学[M].北京:电子工业出版社,1985,12.
    [16]林世宁 编著.气体电子学[M].北京:人民教育出版社,1951,9.
    [17]杨保初,刘晓波,戴玉松 编著.高电压技术[M].重庆:重庆大学出版社,2001,12.
    [18]Dai Pinghu,Ling Baoming.Study of a new gas sensor based on electrical conductance of gases in a high electrical field[J].Chinese journal of scientific instrument,1998,19(3):239-244.
    [19]Jong Min Kim,Won Bong Choi,Nae Sung Lee,et al.Field emission from carbon nanotubes for display[J].Diamond and related materials,2000,9:1184-1189.
    [20]Hee Jin Jeong,Seong Chu Lim,Keun Soo Kim,et al.Edge effect on the field emission properties from vertically aligned carbon nanotube arrays[J].Carbon,2004,42:3036-3039.
    [21]Philippe Lambin.Electronic structure of carbon nanotubes[J].C.R.Physique,2003,4:1009-1019.
    [22]Nicolis G,Prigogine I.Exploring Complexity[M].New York:W H Freeman & Co,1989.
    [23]邵瑰玮.两相体放电实验和仿真研究及其在环保中的应用出探[D].武汉:华中科技大学,2005,9.
    [1]吴莉莉,惠国华,潘敏 等.基于随机共振的纳米碳管气体传感器的研究[J].传感技术学报,2006,19(5):2114-2119.
    [2]吴莉莉,惠国华,潘敏 等.电晕放电纳米碳管气敏传感器的实验研究[J].浙江大学学报(工学版),2007,41(5):34-37.
    [3]徐学基,诸定昌 著.气体放电物理[M].上海:复旦大学出版社,1996,8.
    [4]惠国华,吴莉莉,潘敏 等.基于定向纳米碳管气体放电的气敏传感器研究[J].分析化 学,2006,34 (12): 1813-1816.
    [5] Held B., Peyrous R., Physical and Chemical Studies of Corona Discharges in Air[J]. Journal of Physics, 1999, 49 (3):301-320.
    [6] Jaehyun Chung, Kyong-Hoon Lee, Junghoon Lee, et al. Multi-walled carbon nanotubes experiencing electrical breakdown as gas sensors [J]. Nanotechnology, 2004, 15: 1596-1602.
    [7] Jia-Rui Huang, Min-Qiang Li, Zhong-Ying huang, et al. A novel conductive humidity sensor based on field ionization from carbon nanotubes [J]. Sensors and Actuators A: Physical, 2006,133 (2): 467471.
    [8] Zhang Yong, Liu Junhua, Li Xin, et al. Study of improving identification accuracy of carbon nanotube film cathode gas sensor[J]. Sensors and actuators A, 2005,125:15-24.
    [9] Valentini L., Cantalini C, Armentano I., et al. Highly sensitive and selective sensors based on carbon nanotubes thin films for molecular detection[J]. Diamond and Related Materials, 2004, (13):1301-1305.
    [10] Zhang Yong, Liu Junhua, Li Xin, et al. The structure optimization of the carbon nanotube film cathode in the application of gas sensor [J]. Sensors and Actuators A: Physical, 2006: 278-289.
    [1]Luca Gammaitoni,Peter Hanggi,Peter Jung,et al.Stochastic resonance[J].Reviews of modern physics,1998,70(1):223-287.
    [2]B.McNamara,K.Wiesenfeld.Theory of stochastic resonance[J].Phys.Rev.A,1989,39(9):4854-4869.
    [3]Fox R.Stochastic resonance in a double well[J].Phys Rev A,1989,39:4148-4153.
    [4]Thomas Wellens,Vyacheslav Shatokhin,Andreas Buchleitner.Stochastic resonance[J].Reports on progress in physics,2004,(67):45-105.
    [5]胡岗.随机力与非线性系统[M].上海:上海科技教育出版社,1994.
    [6]Moshe Gitterman,George H.Weiss."Escape" of a periodically driven particle from a metastable state in a noisy system[J].J.Statist.Phys.,1993,70:107-123.
    [7]Adam Simon,Albert Libchaber.Escape and synchronization of a Brownian particle[J].Phys. Rev.Lett.,1992,68:3375.
    [8]冷永刚.大信号变尺度随机共振的机理分析及其工程应用研究[D].天津:天津大学,2004.
    [9]杨祥龙.随机共振理论在弱信号检测中的应用研究[D].杭州:浙江大学,2003.
    [10]杨定新.微弱特征信号检测的随机共振方法与应用研究[D].长沙:国防科学技术大学,2004.
    [11]Wu LL,Hui GH,Chen YQ,et al.Detection of weak signal from strong noise by adaptive stochastic resonance,7th International Conference on Electronic Measurement and Instruments,2005,AUG 16-18,VOL 1:286-290,2005.
    [12]M.Locher,M.E.Inchiosa.Theory of controlling stochastic resonance[J].Phys.Rev.E,2000,62(1):317-327.
    [13]B.McNamara,K.Wiesenfeld,R.Roy.Observation of stochastic resonance in a ring laser[J].Phys.Rev.Lett,1988,4:3-4.
    [14]A.S.Asdi,A.H.Tewfik,Detection of weak signals using adaptive stochastic resonance.Proceedings of the IEEE,pp 1332-1335,1995.
    [15]Yang Dingxin,Hu Niaoqing,Numerical Simulation of Stochastic Resonance in Bistable System for Detecting Weak Signal,Journal of national university of defense technology,Vol.25,No.6,2003.
    [16]Wu Lili,Hui Guohua,Chen Yuquan,et al.Detection of weak signal from strong noise by adaptive stochastic resonance[C].Conference proceedings of the seventh international conference on electronic measurement & instruments,2005.
    [17]郭卫民.随机共振方法及定量构效关系研究[D].合肥:中国科学技术大学,2004.
    [18]吴莉莉,惠国华,潘敏 等.基于随机共振的纳米碳管气体传感器的研究[J].传感技术学报,2006,19(5):2114-2119.
    [19]Zonghua Liu,Ying-Cheng Lai,Arje Nachman.Enhancement of noisy signals by stochastic resonance[J].Physics Letters A,2002,297:75-80.
    [20]Debasis Dan,A.M.Jayannavar.Bona fide stochastic resonance:a view point from stochastic energetics[J].Physica A,2005,345:404-410.
    [21]Qinghua Ye,Haining Huang,Xinyi He,et al.A study on the parameters of bistable stochastic resonance systems and adaptive stochastic resonance[C].Proceedings of the 2003 IEEE,International conference Robotics,Intelligent systems and Signal Processing,2003,10.
    [22]J.M.G.Vilar,G.Gomila,J.M.Rubi.Stochastic resonance in noisy nondynamical systems[J].Physical review letters,1998,1(81):14-17.
    [23]Jung P,Hanggi P.Amplification of small signal via stochastic resonance[J].Phys.Rev.A,1991,44(12):8032-8042.
    [24]Yue Jian hai,Zeng Fan zi,Qiu Zheng ding.Analysis of bistable system noise and study for weak signal detection[J].Acta Metrologica Sinica,2005,26(1):60-65.
    [25]Leng Yong gang,Wang Tai Yong,Guo Yan,et al.Study of the property of the parameters of bistable stochastic resonance[J].Acta Physica Sinica,2007,56(1):30-35.
    [26]J M G Vilar,J M Rubi.Stochastic multiresonance[J].Phys Rew Lett,1997,78,(15):2882-2885.
    [27]Hou Z H,Xin H W.Enhancement of stochastic resonance by noise delay[J].Phys Lett A,1999,263:360-364.
    [28]Xin H W.Theoretical study on stochastic resonance in chemical systems[J].Chinese journal of chemical physics,2000,13,(4):388-405.
    [29]张季谦,辛厚文.两种体系中多重随机共振的噪声调控[J].化学物理学报,2001,14,(3):269-274.
    [30]Wang J,Cao L Wu D J.Stochastic multiresonance in a bistable sawtooth potential driven by correlated multiplicative and additive noise[J].The Euroean physical journal B,2002,29:123-128.
    [31]G Y Liang,L Cao,J Wang,et al.Modulated stochastic multiresonance in a single-mode laser system driven by colored additive and multiplicative noises without external periodic force[J].Physica A,2003,327:304-312.
    [32]S Matyjaskiewicz,A Krawiecki,J A Holyst,et al.Stochastic multiresonance due to interplay between noise and fractals[J].Phys Rev E,2003,68:016216-1-7.
    [33]A.Krawiecki,K Kaceperski,S Matyjaskiewicz,et al.Log-periodic oscillations and noise-free stochastic multiresonance due to self-similarity of fractals[J].Chaos,Solitons and Fractals,2003,18:89-96.
    [1]杨定新.微弱特征信号检测的随机共振方法与应用研究[D].长沙:国防科学技术大学,2004.
    [2]吴莉莉,惠国华,潘敏 等.基于随机共振的纳米碳管气体传感器的研究[J].传感技术学报,2006,19(5):2114-2119.
    [3]Zonghua Liu,Ying-Cheng Lai,Arje Nachman.Enhancement of noisy signals by stochastic resonance[J].Physics Letters A,2002,297:75-80.
    [4]Leng Yong gang,Wang Tai Yong,Guo Yan,et al.Study of the property of the parameters of bistable stochastic resonance[J].Acta Physica Sinica,2007,56(1):30-35.
    [5]冷永刚,王太勇,郭焱.基于级联双稳系统的信息检测[J].仪器仪表学报,2004,25(4):713-714.
    [6]冷永刚,王太勇,郭焱 等.级联双稳系统的随机共振特性[J].物理学报,2005,54(3):1108-1125.
    [7]Yue Jian hai,Zeng Fan zi,Qiu Zheng ding.Analysis of bistable system noise and study for weak signal detection[J].Acta Metrologica Sinica,2005,26(1):60-65.
    [8]Debasis Dan,A.M.Jayannavar.Bona fide stochastic resonance:a view point from stochastic energetics[J].Physica A,2005,345:404-410.
    [9]Jung P,Hanggi P.Amplification of small signal via stochastic resonance[J].Phys.Rev.A,1991,44(12):8032-8042.
    [10]Toshiya Iwai.Study of stochastic resonance by method of stochastic energetics[J].Physica A,2001,300:350-358.
    [11]Li Qiang,Wang Taiyong,Leng Yonggang,et al.Engineering signal processing based on adaptive step-changed stochastic resonance[J].Mechanical systems and signal processing,2007,21:2267-2279.
    [12]Fabing Duan,Derek Abbott.Binary modulated signal detection in a bistable receiver with stochastic resonance[J].Physica A,2007,376:173-190.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700