用户名: 密码: 验证码:
用于内毒素去除的新型亲和吸附剂的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着生物制药和生物医学工程相关领域的发展,人们对产品中可能存在的微量有害物质的清除越来越重视。内毒素(ET)是一种在自然界广泛存在的污染物,是一种毒性很强的致炎和热原物质。有效清除制品中、特别是生物制品中污染的内毒素一直是医学、制药、生物工程等领域研究的热点。由于内毒素的相对分子质量较大,与大分子生物制品在同一数量级,因此从这类制品中去除微量的内毒素难度很大。迄今为止,在实际生产过程中得到应用的材料和方法并不多。一些已经商品化的产品也存在吸附效率低,价格高等问题。因此,对这一领域的研究仍具有十分重要的价值和实际意义。本课题针对当前内毒素亲和吸附剂存在的问题,从载体、配基两方面着手,结合反应条件的研究,发展了几种新型的适于用作ET吸附的活性配基物质,制备出了对内毒素吸附量高、特异性好、血液相容性好的新型吸附材料。通过对这些材料的吸附特性的研究,为内毒素亲和吸附剂的进一步结构设计和制备提供依据。
     在载体材料的研究方面,论文主要研究了作为活性吸附剂载体的多孔硅胶的孔径和比表面等参数对亲和吸附剂制备的影响。以多孔硅胶为载体的亲和吸附剂是采用表面接枝的方法制备的。选用组氨酸(His)为活性配基。经酸化处理的多孔硅胶先以硅烷偶联剂KH550硅烷化,在硅胶表面引入活性胺基,然后以戊二醛为间隔臂将组氨酸接枝在多孔硅胶载体上,制成用于内毒素去除的亲和吸附剂。用IR,TGA、元素分析和功能基化学滴定的方法测定了每步反应的转化率,即不同反应物在多孔硅胶上的接枝率。结果表明,反应物在硅胶上的含量与硅胶的比表面积及孔径有关,且多步反应使硅胶载体的孔径不断减小。由于ET的分子尺寸较大,因此,选用较大孔径的多孔硅胶基质制成的亲和吸附剂对ET的吸附效果较好。这样才能使ET分子扩散到硅胶孔内被接枝在孔壁上的活性配基吸附。
     在配基的研究方面,本论文研究了三种不同的配基:一种是文献上已有大量报道的组氨酸配基,一种是根据组氨酸中咪唑基对ET的特殊亲和作用而选则的乙烯基咪唑配基(VI),最后一种是在实验过程中发现的含环氧基的亲和配基。前两种配基中的主要活性位均是咪唑基团,但组氨酸分子中还含有负电性的羧基和具反应活性的胺基。乙烯基咪唑是通过自由基聚合反应接枝到硅胶载体上的,得到的是一种大分子配基。通过上述两种吸附剂对水溶液中ET的静态和动态吸附性能进行比较,发现以聚乙烯咪唑为配基的吸附剂对ET有更高的吸附容量和去除率。这不仅证明了咪唑基作为活性功能基对ET有很高的选择吸附性,而且也证明,配基与ET之间的静电相互作用是使其具有较好吸附特性的主要原因。当配基分子中含有羧基等负电性基团时,会削弱咪唑基对ET的吸附作用。含环氧基的化合物作为ET的亲和配基至今未见文献报道。这种含环氧基的配基可以通过与相应的硅烷偶联剂反应引入吸附剂表面,或是通过在含端烯基的载体上接枝甲基丙烯酸缩水甘油酯(GMA)而固载到载体上。研究表明,一旦环氧基被打开,相应的吸附剂对ET就不再呈示吸附能力,说明环氧基团是对ET起选择吸附作用的活性位。有关该配基与ET作用的机理还有待于进一步的深入研究。但这一发现拓宽了活性配基选择的范围。
     聚乙烯基咪唑作为大分子配基用于ET的吸咐虽然有很高的选择性和吸附容量,但VI较强的分子间作用力及咪唑基过高的接枝密度会显著影响该配基的吸附效率。论文通过VI与甲基丙烯酸酯的共聚较好地调节了咪唑基在接枝链上的分布。由于VI与甲基丙烯酸酯在溶液中发生共聚反应的竞聚率有很大差别,属r1<1,r2>1的非恒比共聚反应。所以在共聚时,乙烯基咪唑自聚的能力会很差。因此,在与甲基丙烯酸酯单体形成的共聚链中绝大多数乙烯基咪唑单元会被若干个丙烯酯单元隔开成单个分布。可以认为,对ET基本无吸附效果的丙烯酸酯在共聚体中发挥了间隔臂的作用,使单位咪唑基对ET的吸附量得到提高。论文通过共聚接枝的方法还有反相悬浮聚合的方法制备了一系列VI与第二单体的共聚粒子,并测定了不同单体配比下得到的共聚接枝物对ET的吸附性能。
     在合成路线方面,除了KH550方法外,论文还研究了用环氧法引入组氨酸配基的方法。首先用含环氧基的偶联剂KH560对硅胶载体进行硅烷化处理,引入环氧基,然后利用环氧基与组氨酸分子上的氨基直接开环加成,或利用将环氧基氧化形成的醛基为中介进行加成,使组氨酸配基结合在硅胶载体上。结果表明,直接开环加成制成的吸附剂对ET有更高的吸附容量。
     论文对吸附剂的各种制备方法中配基接枝反应的条件进行了详细研究。如温度、时间、介质的pH、单体浓度等。例如,在作为间隔臂和桥连剂的戊二醛与硅胶上端胺基的反应中,温度和介质的pH有很大影响。当反应温度低于50℃,介质的pH为中性条件时,二者加成所得产物中的活性醛基相对含量较高。而在高温和碱性环境下反应时,戊二醛会发生自聚,虽然用TGA测得的戊二醛在硅胶上的含量较高,但活性醛基的含量却很低。因此,反应条件的控制十分重要。
     论文研究了不同方法制备的亲和吸附剂对ET的吸附特性。发现以硅胶为载体,组氨酸为配基的亲和吸附剂在水中对ET的等温吸附符合典型的Langmuir模型,吸附过程约2h达平衡。其饱和吸附量q_m和表观解离常数K_d分别为1194μg/g和1.35×10~(-9)M。该吸附剂在血清或蛋白溶液中对ET的去除率大于85%,且对血清中各成份的非选择性吸附很小,具有良好的血液相容性。PVI-接枝得到的吸附剂对ET吸附80min可达平衡,吸附动力学符合二级方程,且速率常数k_2随起始ET浓度的增高而降低。ET在PVI/Silica gel粒子表面的等温吸附较好地满足Freundlich方程。测得常数K_f为109.6,n=1.35。在更高的ET初始浓度下,该吸附剂的等温线行为呈现bimodal型,与文献报道的以聚合物为配基的吸附剂的典型等温线相似。吸附剂的平衡吸附率随温度升高略增。在中性条件下,PVI-silica gel吸附剂对BSA蛋白溶液中的ET去除率大于96%。
     本论文的研究表明,硅胶是一种适用于制备ET亲和吸附剂的优良载体。以乙烯基咪唑为活性配基,以硅胶为载体制成的亲和吸附剂对ET具有良好的吸附选择性和去除能力,且较少受介质的pH和离子强度的影响。制备简便,性能稳定,是一种具有良好应用前景的亲和吸附剂。
Now with the research development in field of biomedicine and bioengineering, more and more importance are attached to the clearance of trace hazardous substances possibly exist in the product. Endotoxin is a kind of potential contaminant broadly existing everywhere and may cause serious pyrogenic and shock reactions. So the removal of endotoxin from system especially from the bio-preparations is becoming increasingly crucial and has remained an important research aim. Among these the ET removal from macromolecular substance-containing solutions is rather difficult. Till now only a little method and material has gained practical application which, however, suffers from low removal efficiency and high expense. So the study in this field is still valuable and significative.
     The thesis of this dissertation comes from a Med-X fund cooperative program of Fudan University and Zhongshan Hospital. According to the problems of the present ET affinity adsorbent, some novel affinity adsorbents for ET removal were developed in this dissertation starting with matrix and ligand, which were proven to have high adsorption capacity, selectivity and compatibility to blood. And the study on preparation and ET adsorption properties of these adsorbents could provide reference for the further design of ET removal materials.
     As for the matrix, the porous silica gel was mainly selected and the influence of its pore size and specific surface area on the property of the resultant adsorbent was studied. His was used as ligand here, and was grafted on the KH550 modified silica gel through the link with glutaraldehyde (Glu). The grafting yield of the functional group in each step were studied by means of IR, thermogravimetric analysis (TGA), elemental analysis and chemical titration method. The results show that the grafting yield of each reactant on silica gel is affected by the pore size and specific surface area of the silica gel matrix, and during the successional reactions the pore size continually decreases. Since ET has a large molecule, it is better to choose the matrix with a larger pore size to allow the diffusion of ET into the internal pore walls and to be catched by the ligand on it.
     As for the ligand, three ligands were investigated in this dissertation. They are: Histidine (His), which has been largely reported in literature; vinylimidazole (VI), selected here from the elicitation of the affinity mechanism of imidazole group in His; and the epoxy group-containing compound, discovered during our experiment. The active site of His and VI are both imidazole group, but His also has reactive amido and -COOH with negative charge. The ligand obtained from VI graft polymerization on silica gel is a kind of polymeric form. Through comparison between the ET removal performance of the affinity adsorbent with His and PVI as ligand respectively, a much higher capacity, efficiency and much better applicability in terms of pH and ionic strength of PVI ligand was found, which proves not only the high affinity of the active imidazole group toward ET, but also the leading function of ionic interaction between ligand and ET molecule. The epoxy-containing compound such as KH560 or GMA for use as ET ligand has never been reported yet. It was found that once the epoxy group was opened, the resultant adsorbent couldn't show ET removal ability any longer, which verifies the function of epoxy group. This finding extends the scope of ET ligand selection.
     Although PVI as a polymeric ligand showed high ET removal capacity, it was still affected by the too high graft density and the strong forces between its molecules. By the copolymerization of VI and methacrylate monomers, the distribution of VI chains on the matrix could be adjusted and improved. Since the reactivity ratios of VI and the methacrylates are widely discrepant, almost each VI unit in the copolymer chain will be isolated by the methacrylate segment, thus the ET removal capacity of per VI unit was increased as a result of the presence of polymeric spacer arm.
     As for the graft route of ligand, besides KH550, another method using KH560 for the activation of silica gel to introduce His ligand on it was studied. Two kinds of reactions were then conducted to introduce His on the epoxy-silica gel. The ET removal tests show that the direct opening of epoxy group to react with His is superior to the oxidation-addition method which use -CHO as the media reactive group.
     In the preparation process of these affinity adsorbents, the reaction conditions such as temperature, time, pH, concentration of reactant for His introduction on KH550 or KH560 modified silica gel and for PVI graft polymerization on KH570 modified silica gel were studied in detail. For example, the reaction of Glu with amido-silica gel was found to be greatly influenced by temperature and pH value of the reaction medium. At temperature lower than 50℃and in neutral pH, the highest content of active -CHO could be obtained. At higher temperatures than 50℃and more basic conditions, self-polymerization of Glu will occur, and the content of -CHO decreased despite the high grafting yield of Glu by TGA. Again, in the graft reaction of PVI, a series of adsorbents with PVI content (grafting degree) from 1.1% to 16% could be obtained by changing the conditions, which showed different ET removal efficiency. So the control of reaction conditions is important.
     The ET removal properties of the above affinity adsorbents prepared by different method or with different ligands were studied. The adsorption isotherm of His-Glu-KH550-silica gel adsorbent showed good accordance with the Langmuir model, the maximum adsorption capacity q_m and apparent dissociation constant K_d were calculated to be 1194 g/g and 1350 g/L. The adsorbent had little nonspecific adsorption of protein and other components in a serum-endotoxin solution, with a ET removal efficiency of above 85%. The isotherms of PVI-silica gel displayed well fit for Freundlich isotherm model, which is indicative of surface heterogeneity of the sorbent. The Freundlich constants K_f and n were calculated to be 109.6 EU/mg and 1.35. The adsorption kinetics was well accorded with the second order equation. The equilibrium ET adsorption efficiency increased slightly with the temperature.
     The study of this dissertation reveals that silica gel is a good matrix for ET affinity adsorption preparation, and PVI-silica gel adsorbent is promising in ET removal.
引文
[1]张顺财.内毒素基础与临床[M].北京:科学出版社,2003:1.
    [2]梁前进.内毒素及其生物学效应.生物学通报,1997,32(9),18-19.
    [3]焦炳华.分子内毒素学[M].上海:上海科学技术文献出版社,1995:2-5,84-89.
    [4]Dagmar P,Friedrich B.A.,et al.Endotoxin removal from protein solutions.Journal of Biotechnology,2000,76,97-119.
    [5]唐虹,刘群,孙国德.内毒素及内毒素血症治疗研究进展.医学综述,2005,11(2),109-111.
    [6]FANG Hui(方晖),WEI Jiao(的、魏佼),YU Yao-Ting(俞耀庭).Chem.J.Chinese Universities(高等学校化学学报),2004,25(6),1056-1059.
    [7]Edward L.The human response to endotoxin.Sepsis,1998,2,255-262.
    [8]Chuichi Hirayama,Masayo Sakata.Journal of Chromatography B,2002,781,419-432.
    [9]Anspach F.B..Endotoxin removal by affinity sorbents.J.Biochem.Biophys.Methods,2001,49,665-681.
    [10]Petsch D.,Anspach F.B..Endotoxin removal from protein solutions.J.Biotech.,2000,76,97-119.
    [11]方晖.新型内毒素吸附剂的制备及性能研究[D].天津:南开大学,2004.
    [12]Hou K.C.,Zaniewski R..J.Parent.Sci.Technol.,1990,44,204.
    [13]Sanjai J.P.,Jon Chorover.Infrared spectroscopy studies of cation effects on lipopolysaccharides in aqueous solution.Colloids and Surfaces B:Biointerfaces,2007,55,241-250.
    [14]Yun Kang,Robert G.Luo.Chromatographic removal of endotoxin from hemoglobin preparations:Effects of solution conditions on endotoxin removal efficiency and protein recovery.J.chromatogr.A,1998,809,13-20.
    [15]Marlys Weary and Frederick Pearson Ⅲ.A Manufacturer's Guide to Depyrogenation.Biopharm.Appli.,1988,22-29.
    [16]俞枚,徐家毅.治疗内毒素血症的研究进展和现状.离子交换与吸附,2000,16(6),567-572.
    [17]钱骅.壳聚糖亲和膜用于蛋白质溶液中内毒素的脱除[D].杭州:浙江大学,2004.
    [18]蔡惠丽.生物技术药品分离纯化过程中内毒素的去除.海峡药学,2006,18(2),157-159.
    [19]Marie-Claude Amoureux,Edit Hegyi,Dzung Le,Peter Grandics,et al.A new method for removing endotoxin from plasma using hemocompatible affinity chromatography technology,applicable for extracorporea[treatment of septic patients.Journal of Endotoxin Research,2004,10(2),85-95.
    [20]Schulze C,Oesser S,Hein H,et al.Risk of endotoxemia during the initial phase of gut decontamination with antimicrobial agents.Res.Exp.Med.,2001,200,169-174.
    [21]Lepper PM,Held TK,Schneider EM,et al.Trautmann M.Clinical implications of antibiotic-induced endotoxin release in septic shock.Intensive Care Med,2002,28,824-833.
    [22]Crawley B.A.,Morris J.A.,Drucker D.B.et al..FEMS Immunology and Medical Microbiology,1999,25,131-135.
    [23]Michael Z.,Karin B.,Stefan K.et al..Clin.Chem.Lab.Med.,1999,37(3),373-379.
    [24]Li LP,Luo RG.Quantitative determination of Ca~(2+)effects on endotoxin removal and protein yield in a two-stage uttrafiltration process.Separation Science Technology,1999,34(9),1729-1741.
    [25]Li LP,Luo RG.Use of Ca~(+2)to re-aggregate lipopolysaccharide(LPS)in hemoglobin solutions and the subsequent removal of endotoxin by ultrafiltration.Biotechnology Techniques,1998,12(2),119-122.
    [26]龚承元,苏建勇,朱孟府.荷电微孔滤膜的制备及其性能的初步研究.中国药学杂志,1994,29(4),214-217.
    [27]苏建勇,龚承元,朱孟府.荷电微孔滤膜去除细菌内毒素的试验研究.军事医学科学院院刊,1995,19(4),289-292.
    [28]Kenneth C H,Richard Zaniewski.Depyrogenation by endotoxin removal with positively charged depth filter cartridge.Journal of Parenteral Science & Technology,1990,44(4),204-209.
    [29]Y.Aida,M.J.Pabst.Removal of endotoxin from protein solutions by phase separation using Triton X-114.J.Immunol.Methods,1990,132,191-195.
    [30]Liu SG,Tobias R,McClure S,Styba G.Removal of endotoxin from recombinant protein preparations.Clinical Biochemistry,1997,30(6),455-463.
    [31]Timo Zimmerman,Corinne Petit Frere,Marion Satzger,et al.J.Immunol.Methods,2006,314,67-73.
    [32]于德强,张岚.内毒素与基因工程产品.微生物学免疫学进展,1997,25(2),62-65.
    [33]Grabner R.M.Process for removing pyrogenic material from aqueous solutions.U.S.Patent 3,897,309,1975.
    [34]Shibatani T,et al.Purification of high molecular weight urokinase from human urine and comparative study of two active forms of urokinase.Thromb Haemostasis,1983,49,91-95.
    [35]Bengsch S,Boos KS,Nagel D.SHOCK,2005,23(6),494-500.
    [36]So-Hee Lee,Jung-Soo Kim,Chan-Wha Kim.Process Biochemistry,2003,38,1091-1098.
    [37]Campbell D H,Cherkin A.The destruction of pyrogen by hydrogen peroxides.Science,1945,102,535-538.
    [38]高恒,祁克宗,程玉磊.内毒素抑制剂的研究进展.上海畜牧医通讯,2006,6.10-12.
    [39]杜锦珠.百日咳杆菌去内毒素及保护性抗原的纯化.中国生物化学与分子生物学报,1986,2(4),37.
    [40]V.M.Gun'ko,W.R.Betz,S.Patel.Adsorption of lipopolysaccharide on carbon sieves.Carbon,2006,44,1258-1262.
    [41]孔祥文.氢氧化铝吸附法去除蛋白溶液中的热原物质的研究.药物生物技术,1998,5(2),112-115.
    [42]Nagaki.M,Hughes RD,Lau JYN,et al..Removal of endotoxin and cytokines by adsobents and the effect of plasma protein binding.Int.J.Artif.Organs,1991,14(1),43-50.
    [43]Nagaki.M,Hughes.RD,Keane HM,et al.In vitro plasma perfusion through adsorbents and plasma ultrafiltration to remove endotoxin and cytokines.Circ.Shock,1992,38,182-188.
    [44]艾智武,康光明,王前喜,邹莉.抗人淋巴细胞免疫球蛋白制品中的热原处理工艺.中国生物制品学杂志,2002,15(4),239-240.
    [45]朱云松,侯凡凡,张训.免疫吸附清除内毒素休克兔循环TNF对IL-1、IL-6水平的影响.解放军医学杂志,1998,23(6),461-463.
    [46]梁敏.内毒素休克特异性阻断治疗的治疗进展.国外医学:流行病学.传染病学分册,1995,22(6),263-266.
    [47]师贤,王俊德.生物大分子的液相色谱分离和制备[M].北京:科学出版社,1999:51-115.
    [48]Hage D S,Cazes J.Handbook of Affinity Chromatography.2nd ed.Boca Raton:CRC Press,2005.
    [49]熊宗贵.生物技术制药[M].北京:高等教育出版社,1999:135-139.
    [50]孙彦.生物分离工程[M].北京:化学工业出版社,2004:193-226.
    [51]Cuatrecasas P.,Wilchek M..Biochem.Biophys.Res.Commun.,1968,33,235-239.
    [52]Axen R,Porath J,Ernback S.Chemical coupling of peptides and proteins to polysaccharides by means of cyanogen halides.Nature,1967,214,1302-1304.
    [53]严希康.生化分离技术[M].上海:华东理工大学出版社,1996:93-94.
    [54]刘望才,朱家文.亲和色谱技术研究进展.上海化工,2007,32(4),27-29.
    [55]K.霍斯泰特曼,A.马斯顿,M.霍斯泰特曼,制备色谱技术—在天然产物分离中的应用(赵维民 张天佑译)[M].北京:科学出版社,2000:271-277.
    [56]Clarke W,Chowdhuri A R,Hage D S.Anal.Chem.,2001,73,2157.
    [57]Wiepz G J,Guadaramma A G,Fulgham D L,Bertics P J.Methods Mol Biol,2006,327,25.
    [58]Zhao Y X,Zhao R,Shangguan D H,Xiong S X,Liu G Q.Biomed.Chromatogr.,2001,15,487.
    [59]Zhao R,LuoH,ShangguanDH,LGQ.J Chromatogr.B,2005,816,175.
    [60]Walker J M.The Protein Protocols Handbook.2nd ed.Totowa:Human Press,2002:993.
    [61]时钧,袁权,高从堦.膜技术手册[M].北京:化学工业出版社,2001.
    [62]Rudd P M,Elliott T,CressweU P,Wilson I A,Dwek R A.Science,2001,291,2370.
    [63]田阳.新型固定化金属离子亲和吸附介质的研究[D].天津:天津大学,2000.
    [64]刘国诠.生物工程下游技术[M].北京:化学工业出版社,2003:252.
    [65]Hermanson GT,et al.Immobilized affinity ligand techniques.San Diego:Academic Press,1992:137-275.
    [66]赵永芳.生物化学技术原理及应用(第三版)[M].北京:科学出版社,2002:151-163.
    [67]Anspach,F.B.,Petsch,D.Bioseparation,1996,6,165.
    [68]Walters R.R..J.Chromatogr.,1982,249,19-28.
    [69]雷引林.聚乙烯醇系大孔亲和吸附剂的制备及其在云芝糖肽纯化中的应有研究[D].上海:华东理工大学,2000
    [70]M.Kastowsky,T.Gutberlet,H.Bradaczek.J.Bacteriol.1992,174,4798.
    [71]Newton,B.A.et al.The properties and mode of action of the polymyxins.Bac.Rev.1956,20,14-27.
    [72]Lopes,J,et al.Electron microscopy of effect of polymyxin on Escherichia coli lipopolysaccharide.J.Bacteriol.,1969,100,1128-1131.
    [73]Celestine J.Thomas,Beechanahalli P.Gangadhar,Namita Surolia,Avadhesha Surolia.Kinetics and Mechanism of the Recognition of Endotoxin by Polymyxin B.J.Am.Chem.Soc.1998,120,12428-12434.
    [74]郭为,商振华,于亿年,等.大孔纤维素亲和膜在生化制剂纯化中的应用.中国药学杂志,1998,33(12),731-734.
    [75]Kazuo Teramoto,Yoshiaki Nakamoto,Tetsunosuke Kunitomo,et al.Removal of Endotoxin in Blood by Polymyxin B Immobilized Polystyrene-Derivative Fiber.Therapeutic Apheresis,2002,6(2),103-108.
    [76]Wicks,I.P.,et al.Bacterial lipopolysaccharide copurifies with plasmid DNA:Implications for animal models and human gene therapy.Hum.Gene.Ther.,1995,6,317-321.
    [77]Montbriand,P.M.et al,Improved method for removal of endotoxin from DNA.J.Biotechnol.,1996,44,43-46.
    [78]T.E.Karplus,R.J.Ulevitch,C.B.Wilson.J.Immunol.Methods.,1987,105,221.
    [79]F.B.Anspach,O.Hilbeck.Removal of endotoxins by affinity adsorbents.J.Chromatogr.A,1995,711,81-92.
    [80]Minobe,S.et al.Preparation of adsorbents for pyrogen adsorption.J.Chromatogr.,1952,248,401-408.
    [81]Minobe,S.et al.Characteristics and applications of adsorbents for pyrogen removal.Biotechnol.Appl.Biochem.,1988,10,143-153.
    [82]Hou,K.C.Zaniewski R.The effect of hydrophobic interaction on endotoxin adsorption by polymeric affinity matrix.Biochim.Biophys.Acta,1991,1073,149-154.
    [83]Petsch.D.et al,Membrane adsorbers for selective removal of bacterial endotoxin.J.Chromatogr B.,1997,693,79-91.
    [84]Matsumae H,Minobe S,Kindan K,et al.Specific removal of endotoxin from protein solutions by immobilized histidine.Biotech.Appli.Biochem.,1990,12(2),129-140.
    [85]Minobe S,Watanabe T,Sato T,et al.Preparation of adsorbents for pyrogen adsorption.J.Chromatogr.,1953,262,193.
    [86]商振华,周冬梅,郭为.去除内毒素的柱亲和介质和膜亲和介质的制备和特征.分析化学,1997,25(9),1010-1015.
    [87]Zhong Wei,Wei Huang,Jihong Li,et al.Studies on endotoxin removal mechanism of adsorbents with amino acid ligands.Journal of Chromatography B,2007,852,288-292.
    [88]Petsch D,Rantze E,Anspach FB.Selective adsorption of endotoxin inside a polycationic network of flat-sheet microfiltration membranes.J.Molecular Recognition.,1998,11,222-230.
    [89]S.Mitzner,J.Schneidewind,D.Falkenhagen,F.Loth,H.Klinkmann.Extracorporeal endotoxin removal by immobilized polyethyleneimine.Artif.Organs,1993,17,775-781.
    [90]S.Morimoto,M.Sakata,T.Iwata,A.Esaki,C.Hirayama.Preparations and applications of polyethyleneimine-immobilized cellulose fibers for endotoxin removal.Polymer J.,1995,27,831-839.
    [91]Dagmar Petsch,Wolf-Dieter Deckwer,Friedrich Birger Anspach,et al.Endotoxin removal with poly(ethyleneimine)-immobilized adsorbers:Sepharose 4B versus flat sheet and hollow fibre membranes.Journal of Chromatography,1998,707,121-130.
    [92]Clayton McNeff,Qianhua Zhao,Elisabeth Almlof,et al.The efficient removal of endotoxins from Insulin using quaternized polyethyleneimine-coated porous zirconia.Analytical Biochemistry,1999,274,181-187.
    [93]M.Sakata,M.Todokoro,C.Hirayama,Am.Biotechnol.Lab.,2002,20,36.
    [94]Anspach FB,Petsch D,Deckwer WD.Model studies on the mechanism of endotoxin adsorption on flat-sheet microfiltration membrane adsorbers.Can J.Chem.Eng.,1999,77,921-930.
    [95]Anspach FB,Petsch D.Membrane adsorbers for selective endotoxin removal from protein solutions.Process Biochem.,2000,3,1005-1012.
    [96]魏桂林,商振华,于亿年,等.纤维素亲和层析膜用于医药制剂中内毒素的去除.膜科学与技术,2000,20(4),54.
    [97]Davidova VN,Yermak IM,Gorbach VI,Solov'eva TF.The effect of temperature on the interaction of Yersinia pseudotuberculosis lipopolysaccharide with chitosan.Biologicheskie membr.,1999,16(1),42-49.
    [98]Sun HX,Zhang L,Chai H,Chen HL.Removing Endotoxin from Protein Solution by Chitosan Modified Affinity Membrane.Chinese J.Chem.Eng.,2005,13(4),457-463.
    [99]Machado RL,Arruda EJ,Santana CC,Bueno SMA.Evaluation of a chitosan membrane for removal of endotoxin from human IgG solutions.Process biochem.,2006,41,2252-2257.
    [100]Li J,Shao Y,Chen Z,Cong R,Wang J,Liu X.Membrane cartridge for endotoxin removal from interferon preparations.J Chromatogr.B,2003,791:55-61.
    [101]Davidova VN,Yermak IM,Gorbach VI,Krasikova IN,Solov'eva TF.Interaction of bacterial endotoxins with chitosan—Effect of endotoxin structure,chitosan molecular mass,and ionic strength of the solution on the formation of the complex.Biochemistry(Moscow),2000,65,1082-1190.
    [102]Jeak Ling Ding,Yong Zhu,Bow Ho.High-performance affinity capture-removal of bacterial pyrogen from solutions.Journal of Chromatography B,2001,759,237-246.
    [103]Laura A.McAllister,Mark S.Hixon,Roberta Schwartz,Diane S.Kubitz,Kim D.Janda.Synthesis and Application of a Novel Ligand for Affinity Chromatography Based Removal of Endotoxin from Antibodies.Bioconjugate Chem.,2007,18,559-566.
    [104]Hongjun Wang,Jianbiao Ma,Yuehua Zhang.Reactive & Functional Polymers,1997,32,1-7.
    [105]赵庆香,阎虎生,程晓辉,何炳林.N—去甲万古霉素亲和吸附剂的合成及性能.高等学校化学学报,2000,7,1134-1137.
    [106]Bayramoglu G,Senel AU,Arica MY.Effect of spacer-arm and Cu(Ⅱ)ions on performance of L-histidine immobilized on poly(GMA/MMA)beads as an affinity ligand for separation and purification of IgG.Sep Purif Technol,2006,50:229-239.
    [107]王虹,袁直,刘晓航,等.尿毒症中分子毒物吸附剂的研究.中国科学B辑,2001,4,298-304.
    [108]张克胜,孙君坦,何炳林.含胍基交联聚乙烯醇的合成及其对胆红素吸附性能研究.高等学校化学学报,1999,20(6),965-968.
    [109]张克胜,孙君坦,何炳林.新型低密度脂蛋白吸附剂的合成及吸附性能研究.高分子学报,1999,12(6),662-667.
    [110]Hirayama C,Ihara H,Li X.Removal of endotoxins using macroporous spherical poly(γ-methyl L-glutamate)beads and their derivatives.J.Chromatogr.,1990,530,148.
    [111]Hirayama C,Sakata.M et al.Removal of endotoxin from culture supernatant of bordetella pertussis with aminated po[y(gamma-methyl-L-glutamate)spherical beads.Chem.Pharm.Bull.Tokyo.1992,40(8),2106-2109.
    [112]Hirayama C,Sakata M,Morimoto S,et al.The removal of endotoxins from protein solutions using column packings with aminated poly(γ-methyl L-glutamate)spheres.Chromatographia.,1995,40(1/2),33.
    [113]秦峰,刘学良,等.生物医药制剂中内毒素去除研究进展.药物生物技术.2003,10(1),53-56.
    [114]M.Sakata,M.Todokoro,Y.Kai,M.Kunitake,C.Hirayama.Effect of Cationic Polymer Adsorbent pKa on the Selective Removal of Endotoxin from an Albumin Solution.Chromatographia,2001,53,619-623.
    [115]R.Darkow,Th.Groth,W.Albrecht,et al.Functionalized nanoparticles for endotoxin binding in aqueous solutions.Biomaterials,1999,20,1277-1283.
    [116]Ullrich H,Jakob W,Frohlich D,et al.A new endotoxin adsorber:First clinical application.Therapeutic Apheresis,2001,5(5),326-334.
    [117]Zhi Yuan,Mei Yu,Jihong Li,Endotoxin adsorbent using dimethylamine ligands.Biomaterials,2005,26,2741-2747.
    [118]Karl DW,Magnusson JC,Carr PW,Flickinger MC.Preliminary assessment of removal of pyrogenic lipopolysaccharides with colloidal zirconia adsorbents.Enzyme and Microbial Technology,1991,13(9),708-715.
    [119]John P.Zhang,Qun Wang,Timothy R.Smith,William E.Hurst,and Thomas Sulpizio.Endotoxin Removal Using a Synthetic Adsorbent of Crystalline Calcium Silicate Hydrate.Biotechnol.Prog.,2005,21,1220-1225.
    [120]Amro Hanora,Fatima M.Plieva,Martin Hedstrom,et al..Capture of bacterial endotoxins using a supermacroporous monolithic matrix with immobilized polyethyleneimine,lysozyme or polymyxin B.Journal of Biotechnology,2005,118,421-433.
    [1]杜仕国.硅烷偶联剂的性能与应用.河北化工,1994,4,5.
    [2]C.Mc Neff,Q.H.Zhao,E.Almlof,Anal.Biochem.,1999,274,181.
    [3]J.Lin,J.A.Siddiqui,R.M.Ottenbrite.Surface modification of Inorganic Oxide Particles with silane coupling agent and organic dyes.Polym.Adv.Technol.,2001,12,285.
    [4]李敏.以siO2为基质的含N类复合分离材料的研究.苏州大学,2001.
    [5]F.He,R.X.Zhuo,L.J.Liu,M.Y.Xu.Immobilization of acylase on porous silica beads:preparation and thermal activation studies.Reactive & Functional Polymers,2000,45,29-33.
    [6]Seung Won Park,Yong In Kim,Koo Hun Chung,et al.,Covalent immobilization of GL-7-ACA acylase on silica gel through silanization.Reactive and Functional Polymers, 2002,51,79-92.
    [7]钱军民,李旭祥,锁爱莉.氨基化硅胶固定化葡萄糖氧化酶的研究.生物化学与生物物理进展.Prog.Biochem.Biophys.,2002,29(3),394.
    [8]Wei Guo,Eli Ruckenstein.Modified glass fiber membrane and its application to membrane affinity chromatography.J.Membr.Sci.,2003,215,141-155.
    [9]M.BjOrklund,M.T.W.Hearn.J.chromatogr.A,1996,728,149-169.
    [10]Q.H.Shi,Y.Tian,X.Y.Dong,S.Bai,Y.Sun.Chitosan-coated silica beads as immobilized metal affinity support for protein adsorption.Biochemical Engineering Journal,2003,16(3),317-322.
    [11]Wu JM,Luan MM,Zhao JY.Trypsin immobilization by direct adsorption on metal ion chelated macroporous chitosan-silica gel beads.International Journal of Biological Macromolecules,2006,39(4-5),185-191.
    [12]Yan Z,Li GT,Mu L,Tao SY.Pyridine-functionalized mesoporous silica as an efficient adsorbent for the removal of acid dyestuffs.Journal of Materials Chemistry,2006,16(18),1717-1725.
    [13]Li-Fan Ho,Si-Yu Li,Sung-Chyr Lin,Wen-Hwei Hsu.Integrated enzyme purification and immobilization processes with immobilized metal affinity adsorbents.Process Biochemistry,2004,39(11),1573-1581.
    [14]R.Darkow,Th.Groth,W.Albrecht,K.Lutzow,D.Paul,Functionalized nanoparticles for endotoxin binding in aqueous solutions.Biomaterials,1999,20,1277.
    [15]Shigui Liu,Rowel Tobias,Shannon McClure,et al.,Removal of Endotoxin from Recombinant Protein Preparations.Clin.Biochem.,1997,30,455.
    [16]H.H.Weetall,Trypsin and papain covalently coupled to porous glass:preparation and characterization,Science.1969,166,615-617.
    [17]L.Jervis,N.M.Pettit,Purification of ribonuclease T1 on porous glass affinity adsorbents,J.Chromatogr.,1974,97,33-38.
    [18]A.Borcher,K.Buchholz,Improved biocatalyst effectiveness by controlled immobilization of enzymes,Biotechnol.Bioeng.,1984,26,727-736.
    [19]M.K.Weibel,H.H.Weetall,H.J.Bright,Insolubilized coenzymes:the covalent coupling of enzymatically active NAD to glass surfaces,Biochem,Biophys.Res.Commun.,1971,4(2),347-352.
    [20]H.H.Weetall,Preparation and characterization of antigen and antibody adsorbents covalently coupled to an inorganic carrier,Biochem.J.,1970,117,257-261.
    [21]M.B.Stark,K.Holmberg,Covalent immobilization of lipase in organic solvent,Biotechnol. Bioeng.,1989,34,942-950.
    [22]Margarethe Bialk,Oswald Prucker,Jurgen Ruhe.Grafting of polymers to solid surfaces by using immobilized methacrylates.Colloids and Surfaces A:Physicochemical and Engineering Aspects.,2002,198-200,543-549.
    [23]J.F.Kennedy,Data on techniques of enzyme immobilization and bioaffinity procedures,in:A.Wiasman(Ed.),Handbook of Enzyme Biotechnology,third ed.,Ellis Horwood,London,1995:584.
    [24]龚波林,耿信笃.单分散交联聚甲基丙烯酸环氧丙酯树脂的制备及亲和纯化伴刀豆球蛋白-A.分析化学研究报告,2003,31(8),923-927.
    [25]邢其毅.基础有机化学.北京:高等教育出版社,1993.
    [26]Huiru.Zhao,Ned.D.Heindel,Determination of degree of substitution of formyl groups in polyaldehyde dextran by the hydroxylamine hydrochloride method.Pharm.Res.,1991,3(8),400-402.
    [27]冯亚青,刘燕,张晓东,李熙凤.氧化纤维素的制备及吸附性能的研究.天津大学学报,2002,35(6),685-687.
    [28]任广智,李振华,何炳林.磁性壳聚糖微球用于脲激酶的固定化研究.离子交换与吸附,2000,16(4),304-310.
    [29]刘祖黎,杨雄波.J.Huazhong Univ.of Sci.&Tech.(Nature Science Edition),2006,34,46-48.
    [30]闻平,细菌内毒素研究进展.齐鲁医学检验,2005,16(1),1-3
    [31]H.A.Chase.Prediction of the performance of preparative affinity chromatography.J Chromatography,1984,297,179-202
    [32]Gulay Bayramoglu,Aysegul Ulku Senel,M.Yakup Arica.Effect of spacer-arm and Cu(Ⅱ)ions on performance of L-histidine immobilized on poly(GMA/MMA)beads as an affinity ligand for separation and purification of IgG.Separation and Purification Technology,2006,50,229-239.
    [33]Liu YC,Stellwagen E,Accessibility and multivaleney of immobilized Cibacramlue F3GA.J.Biol.Chem.,1987,262,583-588.
    [34]Umeda M.,Asakawa M.,Terada T.,Tatsumi Y.,et al.,Japan J.Aatif.Organs,1983,12,275-278.
    [35]F.B.Anspach,O.Hilbeck.J.Chromatogr.A,1995,711,81.
    [36]H.Matsumae,S.Minobe,K.Kindan,et al..Biotechnol.Appl.Biochem.,1990,12,129.
    [37]Z.H.Shang,D.M.Zhou,W.Guo.Chinese J.Anal.Chem.,1997,25,1010.
    [38]孙海翔.聚偏氟乙烯改性亲和膜及其吸附与免疫分离性能的研究[D].浙江大学,2006:56.
    [1]Seung Won Park,Sang Yong Choi,Koo Hun Chung,Suk In Hong,And Seung Wook Kim.Journal of Bioscience and bioengineering.2002,94(3),218-224.
    [2]BAI Zhengwu ZHOU Yikai REN Shu.Preparation of a New Enzyme Carrier and Its Application in the Immobilization of Lipase.Journal of Molecular Catalysis(China).1999,13(2),143-145.
    [3]Maria J.Hernaiz,David H.G.Crout.Enzyme and Microbial Technology 2000,27,26-32.
    [4]J.Lin,J.A.Siddiqui,R.M.Ottenbrite,Polym.Adv.Technol.2001,12,285.
    [5]Jeffrey B.Wheatley,Donald E.Schmidt Jr.Salt-induced immobilization of affinity ligands onto epoxide activated supports.Journal of Chromatography A,1999,849,1-12.
    [6]时钧,袁权,高从堦.膜技术手册[M].北京:化学工业出版社,2001.
    [7]Pavel G.Mingalyov,Alexander Yu.Fadeev.Journal of Chromatography.1996,719,291-297.
    [8]InomataY,WadaT,FujimotoK,et al..J.Biomater Sci.Polymer Edn,1994,5,293.
    [9]Yakup Arica M,Gulay Bayramoglu,Niyazi Bicak.Process Biochem,2004,39,2007.
    [10]Hou,K.C.Zaniewski R.The effect of hydrophobic interaction on endotoxin adsorption by polymeric affinity matrix.Biochim.Biophys.Acta,1991,1073,149-154.
    [11]W.Guo,E.Ruckenstein.A new matrix for membrane affinity chromatography and its application to the purification ofconcanavalin A.J.Membr.Sci.,2001,182,227-234.
    [1]Petsch.D.,Beeskow T.C.,Anspach F.B.,et al..J.Chromatogr.B,1997,693(1),79-91.
    [2]潘祖仁.高分子化学[M].北京:化学工业出版社,2003:106.
    [3]Nuria Fontanals,Rosa Maria Marce,Marina Galia.Journal of Polymer Science:Part A:Polymer Chemistry,2004,42,2019-2025.
    [4]Ali Kara,Lokman Uzun,Necati Besirli,Adil Denizli.Poly(ethylene glycol dimethacrylate-n-vinyl imidazole)beads for heavy metal removal.Journal of Hazardous Materials 2004,106B,93-99.
    [5]刘建国,丛威,廖永红,李崧,欧阳藩.甲基丙烯酸羟乙酯共聚和均聚球状珠体的制备.离子交换与吸附,2000,16(3),247-251.
    [6]Lee WF,Yang LG.Superabsorbent polymeric materials.Journal of Applied Polymer Science,2006,102(1),927-934.
    [7]Bajpai SK,Bajpai M,Sharma L.Designed Monomers and Polymers,2007,10(2):181-192.
    [8]郭贤权,孙越,陈友安,等.新型低密度脂蛋白吸附剂的制备及吸附性能研究.中国生物医学工程学报,2001,20(4),317-320.
    [9]Hai Tao LI,Zhi YUAN,Xin Fu CHEN,Bin LIU,Bin SHEN,Bing Lin HE.Preparation and Adsorption Properties of PAM Based Adsorbent for Plasma Lipoproteins.Chinese Chemical Letters.,2004,15(4),449-452.
    [10]余喜讯,李莉,乐以伦,陈槐卿.一种LDL吸附剂载体——聚丙烯酰胺微球的合成及应用.生物医学工程学杂志,2004,21(4),582-586.
    [11]邓勇辉.功能性磁性聚合物微球的制备、表征及其初步应用.复旦大学,2005:77.
    [12]郭锦棠,提岩,李丽娜,李伶.pH敏感聚衣康酸/丙烯酰胺水凝胶微球的制备与性能.天津大学学报,2007,40(4),427-431.
    [13]Ni CH,Wang Z,Zhu XX.Preparation and characterization of thermosensitive beads with macroporous structures.Journal of Applied Polymer Science,2004,91(3),1792-1797.
    [14]Liu MZ,Guo TH.Preparation and swelling properties of crosslinked sodium polyacrylate. Journal of Applied Polymer Science,2001,82(6),1515-1520.
    [15]潘祖仁,翁志学,黄志明.悬浮聚合[M].北京:化学工业出版社,1997.
    [16]何炳林,黄文强.离子交换与吸附树脂.上海:上海科技教育出版社,1995:104,109.
    [17]刘军,刘建周,刘凤丽,于海蔚.AM/AQ反相悬浮聚合反应中分散剂的研究.江苏化工,2005,33(5),32-34.
    [18]Li Xiaofeng,Chen Zhirong,Li Haoran,Liu Dixia,Han Shijun.The effect of total amount of emulsifiers on the optimum HLB in the system of Span80-Tween-rapeseed oil-water.Chemistry,2000,6,21.
    [19]胡建波,朱谱新,吴大诚.采用反相悬浮聚合法合成水溶性固体丙烯酸共聚物.棉纺织技术.2004,32(9),526.
    [20]范娟.多功能球形木质素基吸附材料的制备及其性能研究[D].华南理工大学,2005.
    [21]Feng-Chin Wu a,Ru-Ling Tseng b,Ruey-Shin Juang.Journal of Hazardous Materials,2001,B81,167-177.
    [1]于建,喻洁,高彦芳,郭朝霞.乙烯基高分子/无机粉体复合型纳米微球的合成制备.塑料,2001,30(6),14-18.
    [2]范忠雷,刘大壮.硅胶聚胺复合材料的合成及应用.化学通报,2003,66,1-5.
    [3]Peng Liu,Jun Tian,Weimin Liu,Qunji Xue.Preparation and characterization of polystyrene grafted nano-sized silica.Mat Res lnnovat,2003,7,105-109.
    [4]Wu K.H.,Chang T.C.,Wang Y.T.,et al..Eur.Polym.J.,2003,39(2),239-245.
    [5]Fu GQ,Li HY,Yu HF,Liu L,Yuan Z,He BL.Synthesis and lipoprotein sorption properties of porous chitosan beads grafted with poly(acrylic acid).React.Funct.Polym.,2006,66,239-246.
    [6]Teke AB,Baysal SH.Immobilization of urease using glycidyl methacrylate grafted nylon-6-membrane.Process Biochem.,2007,42,439-443.
    [7]Bialk M,Prucker O,Ruhe J.Grafting of polymers to solid surfaces by using im mobilized methacrylates.J.Colloids and Surfaces A:Physicochemical and Engineering Aspects,2002,198-200,543-549.
    [8]姜鹏飞,高保娇,雷海波.化学学报,2006,64(8),817-823.
    [9]Guoqi Fu,Haiyan Li,Haofeng Yu,et al.Synthesis and lipoprotein sorption properties of porous chitosan beads grafted with poly(acrylic acid).Reactive & Functional Polymers,2006,66,239-246.
    [10]范云鸽,李燕鸿,马建标.交联聚苯乙烯型多孔吸附剂的中孔性质研究.高等学校化学学报,2002,23(8),1622-1626.
    [11]Ho Y.S.,McKay G..Process Biochem.,1999,34(5):451-465.
    [12]Wu F.C.,Tseng R.L.,Juang R.S..J.Hazard.Mater.,2001,81(1-2):167-177.
    [13]Samatya S,Kabay N,Yuksel U,Arda M,Yuksel M.Removal of nitrate from aqueous solution by nitrate selective ion exchange resins.React Funct Polym,2006,66,1206-14.
    [14]Wei Shi,Fengbao Zhang,Guoliang Zhang,Journal of Chromatography B,2005,819,301-306.
    [15]Hem Lata,V.K.Garg,R.K.Gupta.Removal of a basic dye from aqueous solution by adsorption using Parthenium hysterophorus:An agricultural waste.Dyes and Pigments,2007,74,653-658.
    [16]F.B.Anspach,D.Petsch.Process Biochem,2000,35,1005.
    [17]Zhong Wei,Wei Huang,Guanghui Hou,Zhi Yuan,Jie Fang.Process Biochemistry,2007,42.285-288.
    [18]王学江,张全兴,赵建夫,夏四清,陈玲.氨基修饰聚苯乙烯树脂对酚酸物质的吸附性能.高分子学报,2005,1,93-97.
    [19]Ramazan Coskun,Cengiz Soykan,Mehmet Sacak.Separation and Purification Technology,2006,49,107-114.
    [20]熊春华,徐银荣,甲壳素对锌(Ⅱ)的吸附性能.Nonferrous Metals,2007,59(1),72-76.
    [21]F.B.Anspach,O.Hilbeck.Removal of endotoxins by affinity adsorbents.J.Chromatogr.A,1995,711,81-92.
    [22]SUN Hai-Xiang(孙海翔),ZHANG Lin(张林),CHAI Hong(柴红)et al..Chinese J.Chem.Eng.(中国化学工程学报)2005,13(4),457-463.
    [23]TANG Shou-Wan(唐守万),KONG Liang(孔亮),OU Jun-Jie(欧俊杰)et al..Chinese J.Anal.Chem.(分析化学研究报告),2006,34(4),455-458.
    [24]Machado RL,Arruda E J,Santana CC,Bueno SMA.Evaluation of a chitosan membrane for removal ofendotoxin from human IgG solutions.Process biochem,2006,41,2252-2257.
    [25]G.Bayramoglu,A.U.Senel,M.Y.Arica.Sep.Purif.Technol.,2006,50,229.
    [26]张凌云.大孔交联吸附树脂的合成及其对甾体药物HC吸附性能研究[D].南开大学:2005.
    [27]R.Darkow,Th.Groth,W.Albrecht,et al.,Biomaterials,1999,20,1277.
    [1]K.Sambasivudu,G.Maheedhar,V.Srinivasa Rao,M.V.Syam Kumar,D.Shailaja.Synthesis of Amphiphilic 4-Vinyl Pyridine and n-Vinyl Pyrrolidone Copolymer Beads.Journal of Applied Polymer Science,2006,102,192-197.
    [2]Baojiao Gao,Sanxiong He,Jianfeng Guo,Ruixin Wang.Preparation and antibacterial.character of a water-insoluble antibacterial material of grafting polyvinylpyridinium on silica gel.Materials Letters,2007,61,877-883.
    [3]潘祖仁.高分子化学(第三版)[M].北京:化学工业出版社,2003:95.
    [4]J.Brandup,E.H.Immergut,E.Grulke.Polymer handbook.New York:John Wiley,1998.
    [5]K.H.Wu,T.C.Chang,Y.T.Wang,Y.S.Hong,T.S.Wu.Interactions and mobility of copper(Ⅱ)-imidazole-containing copolymers.European Polymer Journal,2003,39,239-245.
    [6]Kazem D.Safa,Mohammad H.Nasirtabrizi.Ring opening reactions of glycidyl methacrylate copolymers to introduce bulky organosilicon side chain substituents.Polymer Bulletin,2006,57,293-304.
    [7]刘万强,王学业.Polymer materials science and engineering,2006,22,170-173.
    [8]Dafader NC,Haque ME,Akhtar F,Ahmad MU.Study on grafting of different types of acrylic monomers onto natural rubber by gamma-rays.Radiation Physics and Chemistry 2006,75(1),168-172.
    [9]HuiLiang Wang,Hugh R.Brown.Autoadhesion of high density polyethylene(HDPE)to HDPE by ultraviolet grafting of methacrylates and acrylates.The Journal of Adhesion,2003,79(10),955-971.
    [10]E.A.Abdel-Razik.Journal of Photochemistry and Photobiology A:Chemistry,1997,107,271-274.
    [11]Nursel Pekel,Zakir M.O.Rzaev,Olgun Guven.Synthesis and Characterization of Poly(N-vinylimidazole-co-acrylonitrile)and Determination of Monomer Reactivity Ratios.Macromol.Chem.Phys.,2004,205,1088-1095.
    [12]Ajji Z,Ali AM.Preparation of poly(vinyl alcohol)membranes grafted with N-vinyl imidazole/acrylic acid binary monomers.Nuclear Instruments and Methods in Physics Research B.,2005,236,580-586.
    [13]El-Sayed A.Hegazy,H.A.Abd El-Rehim,H.A.Shawky.Radiat.Phys.Chem.,2000,57,85-95.
    [14]H.A.Abd El-Rehim,El-Sayed A.Hegazy,A.M.Ali.Journal of Applied Polymer Science,1999,74,806-815.
    [15]H.A.Abd El-Rehim,M.B.El-Arnaouty.J.Biomed.Mater.Res.Part B:Appl Biomater, 2004,68BB,209-215.
    [16]Pazhanisamy P,Sulochana P,Anwaruddin Q.J Polym Sci,PartA:Polym Chem,1997,35(1),193-195.
    [17]BrarA S,MalhotraM.J Appl Polym Sci,1995,70(2),373-381.
    [18]刘晓暄,邓湘华,张婷,吴光国,高分子学报,2006,(1),118-123.
    [19]Kelen T,Tdos F,Kennedy J P.J Polym Sci,Polym Chem Ed,1977,15,3047-3058.
    [20]Kelen T,Tdos F.J.Macromol.Sci.Chem.,1975,A9(1),1-27.
    [21]Tdos F,Kelen T,Foldes Berezsnish T,Turcsanyi B.J Macromol Sci Chem,1976,A 10(8),1513-1540.
    [22]Pan Cai yuan(潘才元).Macromolecular Chemistry(高分子化学)[M].Hefei(合肥):Chinese Science and Technology Press(中国科技出版)2001:196-206

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700