用户名: 密码: 验证码:
稳定表达人CYP3A4基因与Bama小型猪CYP3A基因的HepG_2细胞株的建立及探针药物代谢表征的比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、研究背景
     人CYP3A在肝肠中表达最为丰富,约占CYP450总量的30%-40%,底物谱广,并可分成CYP3A4、CYP33A5、CYP33A7和CYP3A43四种亚型,其中CYP3A4在成年个体的肝和肠中表达最多,占肝CYPs的30%和肠CYPs的70%,参与了60%现有临床药物的代谢。
     新药临床前评价过程中需要其代谢相关数据。为获得可反映人体药物代谢概貌的最佳实验动物模型,通过对不同种属动物肝微粒体的比较研究发现,狗适合作为CYP2D代谢途径的动物模型;灵长类是最合适的CYP2CN家族动物模型,而小型猪的CYP1A、CYP2A、CYP3A与人类极为相似,且该动物体型较小、易于操作和较小的底物需求量,是人类CYP3A药物评价的最佳模型动物。
     目前研究认为小型猪CYP3A亚家族蛋白共有4种亚型,即CYP3A22、CYP3A29、CYP3A39和CYP3A88,其中CYP3A29具有典型的硝苯地平和睾酮6β-羟基化活性(人CYP3A4和3A5的特异活性),被苯巴比妥、利福平和地塞米松诱导的活性,及对酮康唑和醋竹桃霉素抑制的敏感性。因此,除灵长类和狗以外,小型猪成为唯一被FDA推荐的临床前大动物实验动物,在药物研发、生产和监管等领域越来越多地用于狗的替代模型动物。
     现有的临床前药物评价的小型猪主要有:Yucatan小型猪、德国的Gottingen小型猪、Hanford小型猪和Sinclair小型猪,特别是Gottingen在欧洲的得到了很好的推广运用;Bama小型猪产于我国的广西省,为香猪的进化品系,由于近交程度高,而且耐近交、遗传稳定、个体表型一致,在生物医药领域应用中已被证明是优秀的模型动物,并积累了丰富的解剖、生理生化、基础生物学特性及活体药物代谢背景资料,但有关其药物代谢表征的分子水平研究资料缺乏;由于重组酶成分单一,其药物代谢表征明确,被广泛用于酶表征的定性定量研究,是对酶进行特征研究的最佳工具。目前有关猪(小型猪)CYP3A亚家族同工酶的重组研究,在世界范围几乎是空白,猪(小型猪)CYP3A亚家族同工酶的药物代谢表征几乎全部都是通过人CYP3A探针药物的活体动物肝微粒体代谢特征获得,由于特异性探针药物对特定CYP450的相对性,以及猪肝微粒体成分的复杂性,其可靠性远低于重组酶。为了更好阐明Bama小型猪作为人CYP3A系统动物模型的有效性和合理性,以及各亚型在探针药物代谢中的作用特征,本研究通过对人CYP3A4和小型猪CYP3A基因克隆、HepG_2稳定表达细胞株的建立、以及在微粒体和全细胞两个水平对稳定表达细胞株的CYP3A特异性底物和抑制剂的鉴定,旨在分子水平阐明Bama小型猪的药物代谢特征,从而为Bama小型猪作为临床前药物代谢模型实验动物提供实验依据。
     二、研究内容和结果
     1.人CYP3A4基因和Bama小型猪CYP3A基因的克隆
     用总RNA经逆转录PCR获得目的基因,并将目的基因亚克隆至pMD-19-T上,测序确认获得了人CYP3A4,以及小型猪的CYP3A22、CYP3A29、CYP3A39和CYP3A88共5个基因;其中人CYP3A4、小型猪CYP3A39和CYP3A88与GeneBank中公布的序列完全一致;CYP3A29基因与NCBI记录的CYP3A29基因序列(GENE ID:403324)有2个碱基不同,即G96A、T105A,但其编码相同的CYP3A29的氨基酸酸序列(NP 999588);但获得的CYP3A22基因与GeneBank中公开的基因序列(AB006010.1)有6个碱基不同,即G 36 C、A 169 G、C 546 T、A 612 C、C1329 T和A 1351G,将该序列推定的蛋白质氨基酸序列与CYP3A22(BAD06180.1)进行比对发现有3个氨基酸差异,即W 12 C、W 57 V、N 451 D,且对来自5头小型猪的基因经过PCR扩增后测序结果完全一致,故此序列可能为Bama小型猪特有。
     2.稳定表达人CYP3A4基因和Bama小型猪CYP3A基因HepG_2细胞株的建立及探针药物代谢鉴定
     将克隆载体pMD-19-T上人CYP3A4和小型猪CYP3A系列的基因,在其5′和端3′插入酶切位点,并在3′插入6个组氨酸核苷酸序列,克隆至表达载体pcDNA3.1上,分别测序确认;将表达载体经脂质体转染至HepG_2细胞,经10代抗性筛选及RT-PCR、West-blot检测表明本研究成功建立了所需CYP3A基因在HepG_2中的稳定表达体系;以人CYP3A的特异性底物硝苯地平和睾酮为探针鉴定重组细胞的药物代谢活性,结果表明所得人CYP3A4和小型猪CYP3A基因HepG_2稳定表达株具有硝苯地平氧化代谢和睾酮6β-羟基化活性。
     3.稳定表达人CYP3A4基因和Bama小型猪CYP3A基因HepG_2细胞微粒体对探针药物的代谢表征分析
     以硝苯地平和睾酮作为探针底物,酮康唑作为抑制剂进行体外药物代谢的动力学分析,结果如下。
     (1)人CYP3A4与Bama小型猪CYP3A重组细胞中微粒体对硝苯地平的体外代谢符合米氏动力学特征,其中CYP3A4、CYP3A22、CYP3A29、CYP3A39和CYP3A88的Vmax分别为1.62、1.27、1.72、1.22和1.63nmol/min/mg,Km分别为12.12、18.98、12.83、18.42和12.46μM,内在清除率(Clint=Vm/Km)分别为133.66、66.91、134.06、66.23和130.29μL/min/mg。这些数据表明,CYP3A29和CYP3A88与CYP3A4的代谢特征极为相似,而CYP3A22和CYP3A39与CYP3A4的硝苯地平代谢差异较大。
     (2)重组细胞微粒体代谢睾酮符合Hill动力学特征,CYP3A4、CYP3A22、CYP3A29、CYP3A39和CYP3A88的Hill系数分别为1.14、1.61、1.34、1.62和1.35,说明本实验获得的重组CYP3A酶对睾酮的代谢均属于正协同作用;Vmax分别为7.13、4.34、6.21、4.15和6.08nmol/min/mg,S_(50)分别为41.87、73.64、50.08、69.76和50.24μM mol/L,Clint(Vm/S50)分别为172.06、58.90、124.0、59.49和121.03μL/min/mg,表明在对睾酮的6β-羟基化代谢中CYP3A4、CYP3A29和CYP3A88的酶作用效能比较接近。
     (3)本实验获得酮康唑对硝苯地平代谢反应抑制的IC_(50)值,CYP3A4、CYP3A22、CYP3A29、CYP3A39分别为0.132、0.233、0.090、0.262、0.104μM;对睾酮的代谢的IC_(50)值分别为0.032、0.0688、0.0562、0.077和0.065μM,这些数据表明酮康唑不论对硝苯地平或睾酮的代谢,其对CYP3A4、CYP3A29和CYP3A88抑制活性均较近。
     4.稳定表达人CYP3A4基因和Bama小型猪CYP3A基因稳定表达HepG_2全细胞对探针药物的代谢表征分析
     用基因重组全细胞体外孵育的方法,比较小型猪HepG_2-CYP3A与人HepG_2-CYP3A4的硝苯地平、睾酮和酮康唑代谢表征,其结果如下。
     (1)重组全细胞的硝苯地平体外孵育代谢符合米氏动力学特征,HepG_2-CYP3A4、HepG_2-CYP3A22、HepG_2-CYP3A29、HepG_2-CYP3A39和HepG_2-CYP3A88的酶动力学参数,Vmax分别为2.21、1.52、2.51、1.40和2.46nmol/min/mg,Km分别为16.77、20.51、15.47、21.93和15.56μM,其内源性清除率Clint分别为131.78、74.11、162.25、63.84和157.97μL/min/mg,这些数据表明重组全细胞的硝苯地平代谢特征与微粒体实验类似,CYP3A29和CYP3A88对硝苯地平的代谢动力学特征与CYP3A4的代谢特征近似。
     (2)重组全细胞的睾酮体外孵育代谢符合Hill动力学特征,HepG_2-CYP3A4、HepG_2-CYP3A22、HepG_2-CYP3A29、HepG_2-CYP3A39和HepG_2-CYP3A88的酶动力学参数,Vmax分别为2.55、1.83、2.37、1.72和2.39nmol/min/mg,Km分别为14.14、23.66、16.88、21.48和17.81μM,内源性清除率(Clint)180.40、77.59、140.36、93.20和134.40μL/min/mg,这些数据表明HepG_2-CYP3A4与HepG_2-CYP3A29和HepG_2-CYP3A88代谢特征较为相似,而与HepG_2-CYP3A22和HepG_2-CYP3A39的差别较大。
     (3)重组全细胞酮康唑对硝苯地平代谢的IC_(50)值,HepG_2-CYP3A4、HepG_2-CYP3A22、HepG_2-CYP3A29、HepG_2-CYP3A39和HepG_2-CYP3A88,分别为0.539、0.8785、0.4985、0.8787和0.556μM;对睾酮的IC_(50)值分别为0.120、0.207、0.125、0.229和0.128μM,这些数据表明酮康唑对HepG_2-CYP3A4、HepG_2-CYP3A29和HepG_2-CYP3A88的睾酮代谢的抑制均较近,且显著高于对CYP3A22和CYP3A39的抑制活性。
     5.结论
     通过对人CYP3A4基因和Bama小型猪CYP3A22、CYP3A29、CYP3A39和CYP3A88基因重组细胞的微粒体和全细胞的CYP3A特异性探针底物的硝苯地平和睾酮代谢活性,以及CYP3A的特异性抑制剂的体外孵育实验表明,人CYP3A4与Bama小型猪CYP3A29和CYP3A88具有较近的底物代谢表征,证实了前人提出的CYP3A29是CYP3A4在小型猪体内的同源酶的假说;同时发现CYP3A88也具有同CYP3A4较近的药物代谢表征,提示有必要进行进一步的研究,探索其内在的生物学基础。CYP3A22和CYP3A39之间具有近似的体外探针药物代谢表征,二者与CYP3A4、CYP3A29和CYP3A88之间具有较大的体外探针药物代谢表征差异。
Research background
     CYP3A enzymes,which are the most abundant CYPs expressed in the liver and intestine,and accounting for 30%-40%in the total CYPs contents expressed in liver and intestine,involve in the disposition of diverse exogenous chemical substances.There are four isoenzymes in CYP3A subfamily,namely,CYP3A4,CYP3A5,CYP3A7and CYP3A43.The CYP3A4,which is expressed most abundant in liver and intestine in the adults,accounting for 30%of liver CYPs contents and 70%of intestinal CYPs contents,is involved in the metabolism of 60%of clinical drugs.
     Relevant data need for their metabolism in the process of pre-clinical drug evaluation In order to obtain the best experimental animals for human drug metabolism,comparative studies of the pooled microsomes from different species of animals found that dog is a suitable model animal for CYP2D subfamily;and primate is the most suitable model animal for the complex CYP2C subfamily,which has so many isoenzymes involving in so many complicated metabolic pathways;and pig(miniature pig),owing to its very similar characteristics of drug metabolism with human,along with its small size,easy operation and a smaller substrate demand comparing with dog,is the most suitable model animal for human CYP1A,CYP2A and CYP3A subfamily.
     At present,there are four isoenzymes in CYP3A subfamily of pig (miniature pig),namely CYP3A22,CYP3A29,CYP3A39 and CYP3A88. CYP3A29,the most studied isoenzymes,has typical nifedipine oxidation activity and testosterone 6β-hydroxy-activity(of the human CYP3A4 and 3A5-specific activity),phenobarbital,rifampicin and dexamethasoneinduced activity,as well as triacetyloleandomycin and ketoconazole inhibitory activity.Therefor,the pig is the only big animal recommended by FDA for the pre-clinical drug in the big animal experiments in addition to primate and dog,and is increasingly used as alternative of dog in the pre-clinical drug evaluation by more and more drug reaserch and development,pharmaceutical industry and regulatory agencies.
     At present,the famous strains of miniature pig used for the pre-clinical drug evaluation are mainly Yucatan,Gottingen,Hanford, Sinclair minpig.As the evolution of strains of pigs,Bama miniature pigs have a high extent of in breeding,and stable heredity,and a consistent phenotype,can bear inbreeding also.They have been proved to be excellent model animals,because there are much background information about anatomy,physiology,biochemistry and basic biological characteristics of Bama miniature pigs.
     In order to elucidate the characteristics of drug metabolism at a more essential level,the genes of CYP 3A4,CYP3A22,CYP3A29,CYP3A39 andCYP3A88 were cloned,the cloned genes were transfected into HepG_2 cells,the transfected cells were screened for positive cells by G418,the stable expression cell lines were established after ten generation subculture,at last the characteristics of probe drugs were studied in the established HepG_2-CYP3A cell lines at the microsomes and whole-cell level,the present research aims to provide experimental evidences for the Bama miniature pig used as a preclinical experimental model animal of drug metabolism.
     Research methods and results
     1.Cloning human CYP3A4 and CYP3A gene of Bama miniature pig
     The total RNA was extracted from human liver and miniature pig respectively,the target genes obtained by RT-PCR from total RNA were subcloned into T-vector pMD-19-T,the sequencing results and sequence analysis showed that five target genes of human CYP3A4,CYP3A22, CYP3A29,CYP3A39 and CYP3A88 of Bama miniature pig were obtained. The gene sequences of CYP3A4,CYP3A39 and CYP3A88 were completely consistent with the corresponding sequence published in GeneBank.There were two base differences in presently-cloned CYP3A29 compared with CYP3A29(403324) sequence in GeneBank,namely,G96A, T105A,there was no difference comparing the deduced amino acid sequence from the present CYP3A29 with amino acid sequence of CYP3A29((NP_999588)) from the NCBI protein data bank;there were six nucleotide differences in the CYP3A22 gene obtained in the present experiment comparing with CYP3A22 gene published in GeneBank, namely,G 36 C,A 169 G,C 546 T,A 612 C,C1329 T and A 1351G,and three amino acids differences were found in the present protein sequence of CYP3A22 compared with protein sequence of CYP3A22(BAD06180.1) published in NCBI Protein DataBank, namely,W12C,W57V,N451D,because the present CYP3A22,which out of the sequenced nine positive clones from five Bama miniature pigs, showed completely consistent results in the eight of the nine clones,It suggested that the present CYP3A22 gene cloned from Bama miniature pigs was the specific gene sequence for the pigs.
     2.Establishment of HepG_2 cell lines stably expressing Human CYP3A4 and CYP3A gene of Bama minipig,and identification of the metabolic characteristics of probe drugs in the established cell lines.
     The genes of human CYP3A4 and CYP3A of miniature pigs were cloned into expression vector pCDNA3.1(designated as pCDNA-CYP3A) from subcloning vector pMD-19-T by PCR,then the pCDNA-CYP3As were transfected into HepG_2 cells by Lipofectamine 2000 Reagent, RT-PCR and west-blot results showed the successful establishment of stably expression human CYP3A4 and CYP3A gene of miniature pigs in HepG_2 cell lines after ten generation selection of G418.The results from identification of metabolic activity by the specific CYP3A probe drugs, namely,nifedipine and testosterone,showed that the established HepG2-CYP3A cell lines had full oxidation of nifedipine activity and testosterone 6β-hydroxylation activity.
     3.The metabolic analysis of probe drugs by microsomes in HepG2-CYP3A cell lines.
     Kinetic parameters,including the Km,Vmax,are the key factors to determine the characteristics of enzymatic reaction curve.In order to compare the kinetic characteristics of human CYP3A4 and CYP3A of Bama miniature pigs,the microsomes extracted from HepG_2-CYP3A cell lines were incubated with nifedipine and testosterone as a probe substrates, and ketoconazole as inhibitors in regeneration system in vitro.The results showed as following.
     (1) The metabolic kinetic characteristics of nifedipine were in line with the Michaelis-Menten kinetics.The Vmax for CYP3A4, CYP3A22,CYP3A29,CYP3A39 and CYP3A88 was 1.62,1.27,1.72,1.22 and 1.63 nmol/min/mg respectively;the Km for CYP3A4,CYP3A22, CYP3A29,CYP3A39 and CYP3A88 was 12.12,18.98,12.83,18.42 and12.46μM respectively,Intrinsic clearance(Clint) was 133.66,66.91, 134.06,66.23 and 130.29μL/min/mg respectively,These data indicated that CYP3A29 and CYP3A88 and CYP3A4 had the very similar characteristics in the metabolism of nifedipne,and were dissimilar to CYP3A22 and CYP3A39.
     (2) Enzyme kinetic characteristics of testosterone metabolism were consistent with hill kinetics.For CYP3A4,CYP3A22,CYP3A29, CYP3A39 and CYP3A88,the n value was 1.14,1.61,1.34,1.62 and 1.35 respectively,all of them were more than 1,which indicated that the testosterone interacted with CYP3As in a synergy way;kinetic parameter of Vmax was 7.13,4.34,6.21,4.15 and 6.08 nmol/min/mg repectively, kinetic parameters of S_(50) was 1.87,73.64,50.08,69.76 and 50.24μM repectively,Clint was 172.06,58.90,124.0,59.49 and 121.03μL/min/mg repectively.
     (3) For CYP3A4,CYP3A22,CYP3A29,CYP3A39 and CYP3A88, IC50 value obtained in the present experiment for the ketoconazole inhibition on the metabolism of nifedipine was 0.132,0.233,0.090,0.262, 0.104μM respectively,and IC50 value for the ketoconazole inhibition on the metabolism of testosterone was 0.032,0.0688,0.0562,0.077 and 0.065μM respectively for CYP3A4,CYP3A22,CYP3A29,CYP3A39 and CYP3A88,These data indicated that ketoconazole imposed stronger inhibition on the metabolism of testosterone than that of nifedipine,and the same did on CYP3A4,CYP3A29 and CYP3A88 than CYP3A22 and CYP3A39.
     (4) The metabolic kinetic analysis of probe by whole-cell in HepG2-CYP3A cell lines.In order to compare the metabolic characteristics of human CYP3A4 and CYP3A of miniature pig,this study used recombinant cell microsomes and whole-cell in vitro incubation simultaneously.The analysis of the metabolic characteristics of nifedipine and testosterone in recombinant whole-cell of HepG2-CYP3A cell lines indicated that the metabolic kinetic characteristics of nifedipine were in line with the-Michaelis-Menten kinetics.For HepG_2-CYP3A4, HepG_2-CYP3A22,HepG_2-CYP3A29,HepG_2-CYP3A39 and HepG_2-CYP3A88,the kinetic parameter of Vmax was 2.21,1.52,2.51, 1.40 and 2.46 nmol/min/mg repectively,the kinetic parameter of Km was 16.77、20.51、15.47、21.93 and 15.56μM repectively,the Clint were 131.78, 74.11,162.25,63.84 and 157.97μL/min/mg respectively;
     The data indicated that CYP3A29 and CYP3A88 and CYP3A4 shared the very similar characteristics in the metabolism of nifedipne in recombinant whole-cell,but were dissimilar to CYP3A22 and CYP3A39.The metabolic kinetic characteristics of testosterone were in line with the hill kinetics.For HepG_2-CYP3A4,HepG_2-CYP3A22, HepG_2-CYP3A29,HepG_2-CYP3A39 and HepG_2-CYP3A88,the kinetic parameter of Vmax was 2.55,1.83,2.37,1.72 and 2.39 nmol/min/mg respectively,the kinetic parameter of Km was 14.14,23.66,16.88,21.48 and 17.81μM respectively,intrinsic Clearance(Clint) was 180.40,77.59, 140.36,93.20 and134.40μL/min/mg respectively;The data indicated that CYP3A29 and CYP3A88 and CYP3A4 shared the very similar characteristics in the metabolism of testosterone,but were dissimilar to CYP3A22 and CYP3A39.
     For HepG_2-CYP3A4,HepG_2-CYP3A22,HepG_2-CYP3A29, HepG_2-CYP3A39 and HepG_2-CYP3A88,IC_(50) value obtained in the present experiment for the ketoconazole inhibition on the metabolism of nifedipine was 0.639,0.8785,0.4985,0.8787 and 0.556μM respectively;- IC50 value for the ketoconazole inhibition on the metabolism of testosterone was 0.120, 0.207,0.125,0.229 and 0.128μM respectively.The data indicated that the ketococonazole imposed stronger inhibition on HepG_2-CYP3A4, HepG_2-CYP3A88 and HepG_2-CYP3A29 than that of CYP3A22 and CYP3A39.
     Conclusion:This research confirmed the earlier hypothesis that CYP3A29 was homologous enzyme of human CYP3A4 in miniature pigs; that CYP3A88 shared similar pharmacokinetic characteristics and inhibitory activity with CYP3A4 and CYP3A29.It suggests that further research should be done to explore the biological basis for this phenomenon.
引文
[1]Werck-Reichhart,D.Feyereisen R.Cytochromes P450:a success story [J].Genome biology.2000,1(6):3003.1-3003.9.
    [2]Coon M J.Cytochrome P450:nature's most versatile biological catalyst [J].Annu Rev Phatmacol Toxicol.2005,45:1-25.
    [3]Zhou S F.Drug Behave as Substrates,Inhibition and Inducers of Humam Cytochrome p450 3A4[J].Cur Drug Metab.2008,9:310-322.
    [4]Kuehl P,Zhang J,Lin Y,et al 1 Sequence diversit y in CYP3A promoters and characterization of t he genetic basis of polymorp hic CYP3A5 expression [J].LN at Genet.2001,27(4):3831
    [5]Pelkonen O,Turpeinen M,Hakkola J,et al.Inhibition and induction of human cytochrome P450 enzymes:current status[J].Arch Toxicol.2008,82:667-715.
    [6]Stevens JC,Hines RN,Gu C,Koukouritaki SB,et al.Developmental expression of the major human hepatic CYP3A enzymes[J].J Pharmacol Exp Ther.2003,307(2):573-82.
    [7]Tetsuo Nunoya,Kazumoto Shibuya,Toshiki Saitoh,et al.Use of Miniature Pig for Biomedical Research,with Reference to Toxicologic Studies[J].J Toxicol pathol.2007,20(3):125-132.
    [8]杨家大,商海涛,魏泓,等.实时荧光定量检测中国实验用小型猪肝脏CYP3A29mRNA表达水平。HEREDITAS(Beijing)2007年5月,29(5):575-580。
    [9]Soucek P,Zuber R,Anzenbacherova E.Minipig cytochrome P450 enzymes have similar properties to human analogs[J].BMC Pharmacol.2001,1:11-15.
    [10]Liu Y,Zeng BH,Shang HT,et al.Bama miniature pigs(Sus scrofa domestica)as a model for drug evaluation for humans:comparison of in vitro metabolism and in vivo pharmacokinetics of lovastatin[J].Comp Med.2008,58(6):580-7
    [11]Li J,Liu Y,et al.Characterization of hepatic drug-metabolizing activities of Bama miniature pigs(Sus scrofa domestica):comparison with human enzyme analogs [J].Comp Med.2006, 56(4):286-90.
    [12] Scholz-Ahrens KE , Helfenstein A, Delling G,et al. Ibandronate treatment reverses glucocorticoid-induced loss of bone mineral density and strength in minipigs [J].Bone. 2007,40( 3), 645-655.
    [13] Bronner s,Murbach V,Peter JD,Ex Vivo Pharmacodynamics of Amoxicillin-Clavulanate against Lactamase Producing Escherichia coliin a Yucatan miniature pig modle that minics human pharmacokinetics [J].JSM.2002,46(12):3728
    [14] Meng Huang,Paul C.Ho.Identification of metabolites of meisoindigo in rat, pig and human liver microsomes by UFLC-MS/MS [J].Biochem Pharmacol.2009, 77(8): 1418-1428
    [15] Nobilis M,Kopecky J,Kvetina J,et al.Comparative biotransformation and disposition studies of nabumetone in humans and minipigs using high-performance liquid chromatography with ultraviolet, fluorescence and mass spectrometric detection [J]. J Pharm Biomed Anal.2003,32(4-5):641-56.
    
    [16] Monshouwer M., van't Klooster G.A.E., Nijmeijer S.M., et al. Characterization of cytochrome P450 isoenzymes in primary cultures of pig hepatocytes [J].Toxicol. in Vitro. 1998,12:715-723
    
    [17] Myers M.J., Farrell D.E., Howard K.D. ,et al. Identification of multiple constitutive and inducible hepatic cytochrome P450 enzymes in market weight swine [J].Drug Metab. Disposition. 2001, 29:908.
    [18] Jannine K. Patterson, Xin gen lei, et al. the pig as an experimental model for elucidating the mechanisms governing dietary influence on mineral absorption [J].Exp biol med (maywood).2008,233(6):651-64.
    [19] Fujita S, Ueda Y, Ko IK,et al. Functional evaluation of bioartificial liver using RT-PCR [J]. Biomed Mater Eng, 2005, 15(3):211-8.
    [20] Zuber R, Anzenbacherova E, Anzenbacher P. Cytochromes P450 and experimental models of drug metabolism [J]. J Cell Mol Med, 2002,6(2): 189-98.
    [21]魏泓 医学实验动物[D].四川人民出版社,1998,p209-210.
    [22]Li D,Ren BH,Shen Y,et al.A Swine model for long-term evaluation of prosthetic heart valves[J].ANZ J Surg.2007,77(8):654-8.
    [23]Zheng S,Feng X,Qing D,et al.The tolerance time limits of biliary tracts of liver grafts subjected to warm ischemia and cold preservation:an experimental study in swine[J].Transplant Proc.2008,40(5):1629-34.
    [24]Ma L,Shi Y,Chen Y,In vitro and in vivo biological performance of collagen -chitosan/silicone membrane bilayer dermal equivalent[J].J Mater Sci Mater Med.2007 Nov,18(11):2185-91.
    [25]Cai M,Yin W,Li Q,et al.Effects of NO-1886 on inflammation-associated cytokines in high-fat/high-sucrose/high-cholesterol diet-fed miniature pigs [J].Eur J Pharmacol.2006.540(1-3):139-46.
    [26]H.F.Perrett,Z.E.Barter,B.C.Jones,et al.Disparity in Holoprotein/Apoprotein Ratios of Different Standards Used for Immunoquantification of hepatic Cytochrome P450 Enzymes [J].DMD.2007,35:1733-1736
    [27]Jurima-Romet M,Casley WL,Leblanc CA Nowakowska M.Evidence for the catalysis of dextromethorphan O-demethylation by a CYP2D6-like enzyme in pig liver[J].Toxicol in Vitro.2000,14(3):253-263.
    [28]John C.Lipscomb,Torka S.Poet.In vitro measurements of metabolism for application in pharmacokinetic modeling[J].Pharmacol Thera.2008,118(1):82-103.
    [29]Gellner K,Eiselt R,Hustert E,et al.Genomic organizationof the human CYP3A locus:identification of a new,inducible CYP3A gene [J].Pharmacogenetics.2001,11(2):111-121.
    [30]Swindle,M.M.,Smith,A.C.Comparative anatomy and physiology of the pig [J].Lab.Anim.Sci.Suppl.1998,25:11-22.
    [31]Anzenbacher P,Soucek P,Anzenbacherova E,et al.Presence and activity of cytochrome P450 isoforms in minipig liver microsomes.Comparison with human liver samples[J].Drug Metab.Dispos.1998,26:90-93
    [32]Desille M,Corcos L,L'Helgoualc'h A,et al.Detoxifying activity in pig livers and hepatocytes intended for xenotherapy[J].Transplantation.1999,10:1437-1443
    [33]Skaanild M,Friis C.Cytochrome P450 sex differences in minipigs and conventional pigs[J].Pharm.Toxicol.1999,85:174-180
    [34]Skaanild MT,Friis C:Expression changes of CYP2A and CYP3A in microsomes from pig liver and cultured hepatocytes[J].Pharm.Toxicol.2000,87:174-17
    [35]Skaanild MT.Porcine cytochrome P450 and metabolism[J].Curr Pharm Des.2006,12(11):1421-7.
    [36]Vera Chirulli,Luigi Marvasi,Anna Zaghini,et al.Inducibility of AhR-regulated CYP genes by β-naphthoflavone in the liver,lung,kidney and heart of the pig[J].Toxicol.2007,240:25-37.
    [37]Sekar Natesampillai,Jason Kerkvliet,Peter C.K.Leung,et al.Regulation of Kruppel-like factor 4,9,and 13 genes and the steroidogenic genes LDLR,STAR,and CYP11A in ovarian granulosa cells[J].Physiol Endocrinol Metab,2008,294:E385-E391.
    [38]Imaoka S,Yamada T,Hiroi T,Hayashi K,Sakaki T,Yabusaki Y,Funae Y.Multiple forms of human P450 expressed in Saccharomyces cerevisiae.Systematic characterization and comparison with those of the rat[J].Biochem Pharmacol.1996,51(8):1041-1050.
    [39]《分子克隆实验指南》[M].第二版,科学出版社
    [40]Yun CH,Yim SK,Kim DH,et al.Functional expression of human cytochrome P450 enzymes in Escherichia coil[J].Curr Drug Metab.2006,7(4):411-29.
    [41]Lee CA,Kadwell SH,Kost TA,et al.CYP3A4 expressed by insect cells infected with a recombinant baculovirus containing both CYP3A4 and human NADPH-cytochrome P450 reductase is catalytically similar to human liver microsomal CYP3A4[J].Arch Biochem Biophys.1995,319(1):157-67.
    [42]Inui H,Maeda A,Ohkawa H.Molecular characterization of specifically active recombinant fused enzymes consisting of CYP3A4,NADPH-cytochrome P450oxidoreductase,and cytochrome b5[J].Biochem,2007,46(35):10213-21.
    [43]Hayashi K,Sakaki T,Kominami S,et al.Coexpression of genetically engineered fused enzyme between yeast NADPH-P450 reductase and human cytochrome P450 3A4 and human cytochrome b5 in yeast[J].Arch Biochem Biophys,2000,381(1):164-70.
    [44]Skaanild MT,Friis C.Characterization of the P450 syTSTem in G(o|¨)ttingen minipigs[J].Pharmacol Toxicol,1997,80(suppl 2):28-33.
    [45]Ekhart C,Doodeman VD,Rodenhuis S,et al.Influence of polymorphisms of drug metabolizing enzymes(CYP2B6,CYP2C9,CYP2C19,CYP3A4,CYP3A5,GSTA1,GSTP 1,ALDH1A1 and ALDH3A1) on the pharmacokinetics of cyclophosphamide and 4-hydroxycyclophosphamide [J].Pharmacogenet Genomics.2008,18:515-523.
    [46]Lamba JK,Lin YS,Schuetz EG,et al.Genetic contribution to variable human CYP3A-mediated metabolism[J].Adv Drug Deliv Rev.2002,54(10):1271-94.
    [47]商海涛.实验用小型猪细胞色素P450家族新基因克隆及其CYP3A29基因多态研究[D].第三军医大学博士论文,2007年5月.
    [48]Omari AA,Murry DJ.Clinical Significance Pharmacogenetics of the Cytochrome P450 Enzyme System:Review of Current Knowledge and Clinical Significance[J].JPP.2007,20(3):206-217.
    [49]Kashuba AD,Park JJ,Persky AM,Brouwer KL.Drug Metabolism,Transport,and the Influence of Hepatic Disease[D].Applied Pharmacokinetics &Pharmacodynamics,Principle of Therapeutic Drug Monitoring[D].Lippincott Williams & Wilkins.2006,p121-158.
    [50]Stuart Purbrick,M Openshaw,G Peake,and K Meecham.Effects of d,l sotalol and verapamil on cardiovascular parameters in the conscious telemetered minipig[J].J Pharmacol Toxicol Methods.2008,58(2):171.
    [51]Yue Cui,Xingguo Cheng,Yi Miao Weaver,et al.tissue distribution, gender-divergent expression, ontogeny and chemical induction of multidrug resistance transporter genes (Mdr1a, Mdr1b, Mdr2) in mice [J].dmd.2009 37:203-210.
    [52] Jiang-Wei Zhang,Guang-Bo Ge,Yong Liu,et al. Taxane's Substituents at C3' Affect Its Regioselective Metabolism: Different in Vitro Metabolism of Cephalomannine and Paclitaxel [J].DMD.2008,36:418-426.
    [53] Sean Ekins, Sergey Andreyev, Andy Ryabov,et al.A combined approach to drug metabolism and toxicity assessment [J].DMD.2006,34:495-503.
    [54] SakumaT,Shimojima T,Miwa K,et al.Cloning CYP2D21 and CYP3A22 cDNAs from liver of mininature pigs [J].Drug Metab. Disp. 2004, 32: 376-378.
    [55] Yoshitomi S, Ikemoto K, Takahashi J,et al.Establishment of the transformants expressing human cytochromeP450 subtypes in HepG2, and their applications on drug metabolismand toxicology [J].Toxicol in Vitro.2001,15(3): 245-256
    [56] Chang TK, Yu L, Goldstein JA, Waxman DJ. Identification of the polymorph hically expressed CYP2C19 and the wild-type CYP2C9-ILE359 allele as low-Km catalysts of cyclophosphamide and ifosfamide activation [J].PharmacogenEtic . 1997,7(3):211-21
    [57] Lim YP, Huang JD. Pregnane X receptor poLymorphism affects CYP3A4 induction via a Ligand-dependent interaction with steroid receptor coactivator-1 [J]. Pharmacogenet Genomics.2007, 17(5):369-82.
    [58] Cerveny L, Svecova L, Anzenbacherova E,et al. VaLproic acid induces CYP3A4 and MDR1 gene expression by activation of constitutive androstane receptor and pregnane X receptor pathways [J].Drug Metab Dispos. 2007, 35(7): 1032-41.
    [59] Jover R, Bort R, Gomez-Lechon M J, et al. Cytochrom e P450 regulation by hepatocyte nuclear factor 4 in human hepatocytes : a study using adenovirus-mediated antisense targeting [J].Hepatology.2001,33(3):668—675.
    [60] Bertrand-Thiebault C, Masson C, Siest G, et aL.Effect of HMGCoA Reductase Inhibitors on Cytochrome P450 Expression in EndothelialCell line [J].J Cardiovasc PharmacoL.2007,49:306-315。
    [61]Bok-Hwan Chun,Won-Gi Bang,Yong-Kuen Park,et al。Stable expression of recombinant human coagulation factor ⅩⅢ in protein-free suspension culture of Chinese hamster ovary cells[J].Cytotech.2001,37:179-187.
    [62]Yong Luo,Da-Lin He,Liang Ning,et al.Over-expression of hypoxia-inducible factor-1α increases the invasive potency of LNCaP cells in vitro[J].BJUI.2006,98(6):1315-1319.
    [63]Niu L,Xu YC,Xie HY,et al.Expression of human insulin gene wrapped with chitosan nanoparticles in NIH3T3 cells and diabetic rats[J].Acta Pharmacologica Sinica.2008,29(11):1342-1349.
    [64]Eichelbaum M,Burk O.CYP3A genetics in drug metabolism[J].Nature Med.2001,7(3):285-287.
    [65]Plant N.The human cytochrome P450 sub-family:transcriptional regulation,inter-individual variation and interaction networks[J].Biochem Biophys Acta.2007,1770(3):478-488.
    [66]Guengerich FP,Martin M V,Beaune PH,et all.Characterization of rat and human liver microsomal cytochrome P-450 forms involved in nifedipine oxidation,a prototy for genetic polymorphism in oxidative drug metabolism [J].J Bio Chem.1986,261(11):5051-5055.
    [67]Kiran C.Patki,Lisa L,Von Moltke.In vitro metabolism of modazolam,triazolam,Nifedipine,and testosterone by human liver microsomes and recombinant cytochrome es p450:roles of CYP3A4 and CYP3A5[J].DMD,2003,31:938-944.
    [68]杨树勤.中国医学百科全书.医学统计学[M].上海:上海科学技术出版社,1985,197-202.
    [69]李健,刘勇,张江伟,等。贵州小型香猪与人五种CYP酶活性的比较[J].中国比较医学杂志.2006年,第16卷第3期。
    [70]Michael Sinz,Gillian Wallace,Jasminder Sahi.Current Industrial Practices in Assessing CYP450 Enzyme Induction:Preclinical and Clinical[J].AAPS.2008, 10(2):391-400.
    [71] McGinnity DF & Riley RJ. Predicting drug pharmacokinetics in humans from in vitro metabolism studies [J]. Biochem Soc Trans. 2001,29:135-9.
    [72] Obach RS, Walsky RL, Venkatakrishnan K, et al.The utility of in vitro cytochrome P450 inhibition data in the prediction of drug-drug interactions [J].J Pharmacol Exp Ther.2006, 316:336-348.
    [73] Ito K., Ogihara K., Kanamitsu S, et al.Prediction of the in vivo interaction between midazolam and macrolides based on in vitro studies using human liver microsomes [J] Drug Metab Dispos.2003, 31:945-954.
    [74] Yuan R, Madani s, Wei x x, et al Evaluation of cytochrome P450probe substrates commonly used by the pharmaceudcal industry to study in vitro drug interactions [J]. Drug Metab Dispos, 2002, 30(12): 1311-9.
    [75] Liu YT,Hao HP,Liu CX,et al. Drugs as CYP3A probes, inducers, and inhibitors [J]. Drug Metab Rev.2007, 39(4):699-721.
    [76] Araki N, Tsuruoka S, Wang N,et al. Human CYP3A4-introduced HepG2 cells: in vitro screening system of new chemicals for the evaluation of CYP3A4-inhibiting activity [J].Xenobiotica. 2008, 38(11): 1355-64.
    [77] Yang W, Otto DP, Liebenberg W,et al. Effect of para-sulfonato-calix arenes on the solubility, chemical stability, and bioavailability of a water insoluble drug nifedipine[J]. Curr Drug Discov Technol. 2008, 5(2): 129-39.
    [78] Shaw PM, Hosea NA, Thompson DV, Lenius JM and Guengerich FP.Reconstitution premixes for assays using purified recombinant human cytochrome [J] Biophys. 1997, 348(l):107-115.
    [79] Rodrigues AD, Mulford DJ, Lee RD, Surber BW, Kukulka MJ, Ferrero JL, ThomasSB, Shet MS and Estabrook RW.In vitro metabolism of terfenadine by a purifiedrecombinant fusion protein containing cytochrome P4503A4 and NADPH-P450 reductase [J].Drug Metab Dispos. 1995; 23(7):765-775
    [80] Ueng YF, Kuwabara T, Chun YJ, Guengerich FP.Cooperativity in oxidations catalyzed by cytochrome P450 3A4 [J].Biochemistry. 1997, 36(2): 370-381.
    [81] Kenworthy KE, Clarke SE, Andrews J,et al. Multisite kinetic modelsfor CYP3A44: Simultaneous activation and inhibition of diazepam and testosteronemetabolism [J].Drug Metab Dispos.2001,29(12): 1644-1651.
    [82] Hayley S. Brown, Michael Griffin, et al. Evaluation of Cryopreserved Human Hepatocytes as an Alternative in Vitro System to Microsomes for the Prediction of Metabolic Clearance [J]. DMD.2007, 35:293-301.
    [83] Tsutomu Shimada,Mayumi Mimura, Kiyoshi Inoue,et al.Cytochrome P450-dependent drug oxidation activitiesin liver microsomes of various animal species including rats,guinea pigs, dogs, monkeys, and humans [J]. Arch Toxicol. 1997, 71(6):401-8.
    [84] Ilia G.Denisov, Bradley J.Baasl,Yelena V. Grinkoval,et al. Cooperativity in P450 CYP3A4: Linkages in Substrate Binding, SpinState,Uncoupling and Product Formation [J].JBC.2007, 282(10): 7066-7076.
    [85] Yury Kapelyukh, Mark J. I. Paine, Jean-Didier Marechal, et al. Multiple Substrate Binding by Cytochrome P450 3A4: Estimation of the Number of Bound Substrate Molecules [J]. DMD. 2008, 36:2136-2144.
    [86] Houston JB, Galetin A .Modeling atypical CYP3A4 kinetics:principles and pragmatism[J]. ArchBiochem Biophys.2005, 4(33):351-360.
    [87] JN Weiss. The Hill equation revisited: uses and misuses [J].FASEB, 1997, 11:835-841.
    [88] Sylvain Goutelle, Michel Maurin,Florent Rougier ,et al.The Hill equation: a review of its capabilities in pharmacological modeling [J]. Fund Clin Pharmacol.2008, 22(6):633-648.
    [89] Stresser DM, Blanchard AP, Turner SD,et al. Substrate-dependent modulation of CYP3A4 catalytic activity: analysis of 27 test compounds with four fluorometric substrates [J].Drug Metab Dispos.2000,28(12): 1440-1448.
    [90] Grimm S W,Martin C. Dyroff, et al. Inhibition of Human Drug Metabolizing Cytochromes P450 by Anastrozole, a Potent and Selective Inhibitor of Aromatase [J].DMD.1997,25(5):598-602.
    [91] Christoph Wandel, Richard B. Kim, F,et al. Mibefradil Is a P-Glycoprotein Substrate and a Potent Inhibitor of Both P-Glycoprotein and CYP3A In Vitro [J].DMD.2000,28( 8), 895-898
    [92] Victoria A Eagling,John F Tjia,David J Back.Differential selectivity of cytochrome P450 inhibitors against probe substrates in human and rat liver microsomes[J].Br J Clin Pharmacol. 1998,45(2): 107-114
    [93] Leahey EB Jr, Reiffel JA, Drusin RE, et al. Interaction between quinidine and digoxin [J]. JAMA. 1978, 240:533-534.
    [94] US Food and Drug Administration.Center for Drug Evaluation and Research. 2002 Report to the Nation improving Public Health Through Human Drugs. http://www.fda.gov/cder/archives/default.htm.2007.
    [95] Richelson E.Pharmacokinetic drug interactions of new antidepressants:a review of the effects on the metabolism of other drugs[J]. J Clin Psychiatry. 1998,59(Suppl 10):22-26.
    [96] Lorusso P, Heath EI, McGreivy J,et al.Effect of coadministration of ketoconazole, a strong CYP3A4 inhibitor, on pharmacokinetics and tolerability of motesanib diphosphate (AMG 706) in patients with advanced solid tumors [J].Invest New Drugs.2008, 26(5):455-62.
    [97] Born SL, Hu JK, Lehman mckeeman LD, et al.O-Hydroxyphenyl acetaldehyde is a hepatotoxic metabolite of coumarin [J] .Drug Metab Dispos.2000, 28(2): 218-223.
    [98] M.F. Paine, P. Schmiedlin-Ren, P.B. Watkins, Cytochrome P-450 1A1 expression in human small bowel: interindividual variation and inhibition by ketoconazole [J].Drug Metab.Dispos. 1999,27:360-364
    [99] Kobayashi K, Urashima K, Shimada N,et al.Selectivities of human cytochrome P450 inhibitors toward rat P450 isoforms: study with cDNA-expressed systems of the rat, Drug Metab. Dispos.2003, 31(7):833-6.
    [100]Bogaards JJ, Bertrand M, Jackson P,et al.Determining the best animal model for human cytochrome P450 activities: a comparison of mouse, rat, rabbit, dog, micropig,monkey and man,Xenobiotica.2000,30(12):1131-52.
    [101]Rendic S,Di Carlo FJ.Human Cytochrome P450 Enzymes:A Status Report Summarizing Their Reactions,Substrates Inducers and Inhibitors[J].Drug Metah Rev.1997,29(4):413-580.
    [102]O'Brien PJ,Chan K,Silber PM.Human and animal hepatocytes in vitro with extrapolation in vivo[J].Chem Biol Interact.2004,150(1):97-114.
    [103]Worek F,Aurbek N,Wetherell J,et al.Inhibition,reactivation and aging kinetics of highly toxic organophosphorus compounds:pig versus minipig acetylcholinesterase[J].Toxicol.2008,244(1):35-41.
    [104]Lu C,Li AP.Species comparison in P450 induction:effects of dexamethasone,omeprazole,and rifampin on P450 isoforms 1A and 3A in primary cultured hepatocytes from man,Sprague-Dawley rat,minipig,and beagle dog[J].Chem Biol Interact.2001,134(3):271-281.
    [105]吴丰春,魏泓,王爱德.巴马小型猪猪群体遗传结构的随机扩增多态DNA分析.中国实验动物学报,2000,8(4):235-240.
    [106]刘中禄,魏泓,曾养志,等.中国三种实验用小型猪线粒体DNA D-loop多态性分析[J].遗传,2001,23(2):123-27.
    [107]Olga Trubetskoy,Bryan Marks,Thomas Zielinski.A Simultaneous Assessment of CYP3A4 Metabolism and Induction in the DPX-2 Cell Line[J].AAPSJ.2005,7(1):E6-13
    [108]Ito K,Houston JB.Prediction of human drug clearance from in vitro and preclinical data using physiologically based and empirical approaches [J].Pharm Res(NY).2005,22(1):103-112.
    [109]Kumar,K Samuel,R Subramanian,et al.Extrapolation of diclofenac clearance from in vitro metabolism data:role of acylglucuronidation and sequential oxidative metabolism of the acyl glucuronide[J].J Pharmacol Exp Ther 303(3):969-978.
    [1] Shimada T, Yamazaki H, Mimura M, et al. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: Studies with liver microsomes of 30 Japanese and 30 Caucasians [J]. J. Pharmacol Exp Ther.1994, 270(1):414-423.
    
    [2] Wrighton S A,Thummel K E. CYP3A in Metabolic Drug Interactions[M] Lippincott Williams & Wilkins, 2000:115-133.
    [3] C.Finta,P.G. Zaphiropoulos.The human cytochrome P450 3A locus.Gene evolution by capture of downstream exons [J].Gene.2000,260:13-23.
    [4] Meletiadis J, Chanock S, Walsh TJ.Human Pharmacogenomic Variations and Their Implications for Antifungal Efficacy [J].Clinc Micro Rev.2006,p763-787.
    [5] JN Roy, JLLynn, S Zijenah,et al.CYP3A5 genetic polymorphisms in different ethnic populations [J].Drug Metab Dispos.2005, 33(7):884-7.
    [6] Mazumder B, Seshadri V, FoxP L. Translational control by the 3'-UTR:the ends specify the means [J].Trends BiochemSci.2000, 28(2):91-98.
    [7] Wojnowski, Leszek.Genetics of the Variable Expression of CYP3A in Humans [J].Ther Drug Monit.2004,26(2): 192-9.
    [8] Yano,J.K.,Wester,M.R.,Schoch, GA.,et al.The Structure of Human Microsomal Cytochrome P450 3A4 Determined by X-ray Crystallography to 2.05-A Resolution [J] JBiolChem.2004,279,38091 -38094.
    [9] Williams PA,Cosme J,Vinkovic DM,et al.Crystal structures of human cytochrome P450 3A4 bound to metyrapone and progesterone [J]. Science,2004, 305(5684):683-6.
    [10] Ekroos, M.Sjogren,T.Structural Basis for Ligand Promiscuity in Cytochrome P450 3A4 [J]. Proc Natl Acad Sci U S A.2006, 103(37): 13682-7.
    
    [11] Patki KC, Von Moltke LL, Greenblatt DJ.In vitro metabolism of midazolam, triazolam, nifedipine, and testosterone by human liver microsomes and recombinant cytochromes p450: role of cyp3a4 and cyp3a5 [J].Drug Metab Dispos.2003, 31:938-944.
    [12] Aoyama T, Yamano S, Guzelian PS et al.Five of 12 forms of vaccinia virus-expressed human hepatic cytochrome P450 metabolically activate aflatoxin B_1 [J]. Proc Natl Acad Sci USA.990, 87(12):4790-4793.
    [13] Hecht SS.DNA adduct formation from tobacco-specific Nnitrosamines [J].Mutat Res, 1999,424:127-142.
    [14] Pelkonen O, Turpeinen M, Hakkola J,et al. Inhibition and induction of human cytochrome P450 enzymes:current status [J]. Arch Toxicol.2008, 82(10):667-715.
    [15] V.Ozdemir, W.Kalow,B.-K.Tang,et al.Evaluation of the genetic component of variability in CYP3A4 activity: a repeated drug administration method [J].Pharmacogenetics.2000,10:373-388.
    [16] Ekhart C, Doodeman VD, Rodenhuis S. Influence of polymorphisms of drug metabolizing enzymes (CYP2B6, CYP2C9, CYP2C19, CYP3A4, CYP3A5, GSTA1,GSTP1, ALDH1A1 and ALDH3A1) on the pharmacokinetics of cyclophosphamide and 4-hydroxycyclophosphamide[J].Pharmacogenetics Genomics.2008, 18:515-523.
    [17] Kuehl P, Zhang J, Lin Y,et al.Sequence diversity in CYP3A p romoters and characterization of the genetic basis of polymorp hic CYP3A5 expression [J ].LN at Genet.2001,27(4):3831
    [18] Fukuen S,Fukuda T,Maune H,et al. Novel detection assay byP CR-RFLP and frequency ofthe CYP3A5 SNPs. CYP3A5*3 and*6, in a Japanese population [J].Pharmacogenetics.2002, 12(11):331-334.
    [19] Krishna DR,Shekar MS. Cytochrome P450 3A: genetic polymorphisms and inter-ethnic differences [J].Methods Find Exp Clin Pharmacol[J].2005, 27(8):559-67.
    [20] Burk O, Tegude H, Koch I, et al. Molecular mechanisms of polymorphic CYP3A7 expression in adult humanliver and intestine [J].J Biol Chem.2002, 277(27):24280-24288.
    [21] Cauffiez C, Lo-Guidice JM,Chevalier D,et al. First Report of a Genetic Polymorphism of the Cytochrome P450 3A43 (CYP3A43) Gene:Identification of a Loss-of-function Variant [J]. Hum Mutat.2004, 23(l):101-109.
    [22] Ulrich M, Zanger, Miia Turpeinen,et al.Functional pharmacogenetics/ genomics of human cytochromes P450 involved in drug biotransformation [J].Anal Bioanal Chem .2008,392:1093-1108.
    [23] Madan A, Usuki E, Burton LA, et al.In vitro approaches for studying the inhibition of drug-metabolizing enzymes responsible for the metabolism of drugs. In: Rodrigues AD (ed) Drug-drug interactions: from basic pharmacokinetic concepts to marketing issues [M].Marcel-Dekker.2002,London.
    [24] Kent UM, Juschyshyn MI, Hollenberg PF.Mechanism-basedinactivators as probes of cytochrome P450 structure and function [J].Curr Drug Metab.2001, 2(3):215-243.
    [25] Granfors MT, Wang JS, Kajosaari LI, et al.Differential inhibition of cytochrome P450 3A4, 3A5 and 3A7 by five human immunodeficiency virus (HIV) protease inhibitors in vitro [J].Basic Clin Pharmacol Toxicol, 2006,98(1 ):79-85.
    [26] A.P.Beresford. CYP1A1: friend or foe? [J].Drug Metab Rev. 1993, 25(4):503-517.
    [27] Hebert MF, Roberts JP, Prueksaritanont T,et al.Bioavailability of cyclosporine with concomitant rifampin administration is markedly less than predicted by hepatic enzyme induction [J].Clin Pharmacol Ther.1992, 52(5):453-457.
    [28] Kyrklund C,Backman JT,Kivisto KT,et al.Rifampin greatly reduces plasma simvastatin and simvastatin acid concentrations [J].Clin Pharmacol Ther.2000, 68(6):592-597.
    [29] Stevens JC.New perspectives on the impact of cytochrome P450 3A expression for pediatric pharmacology [J].Drug Discov Today.2006, 11(9-10):440-445.
    [30] Ekins S, Mirny L,Schuetz EG.A ligand-based approach to understanding selectivity of nuclear hormone receptors PXR,CAR,FXR,LXRα,and LXRβ [J]. Pharm Res.2002, 19(12):1788-1800.
    [31] Wang K,Chen S,Xie W,et al.Retinoids induce cytochrome P450 3A4 through RXR/VDRmediated pathway [J].biochem pharm,2008,75(11):2204-2213.
    [32] Chen J,Raymond K.Roles of rifampicin in drug-drug interactions:underlying molecular mechanisms involving the nuclear pregnane X receptor [J].Ann Clin Microbiol Antimicrob.2006, 5:3.
    
    [33] Handschin C,Meyer UA.Regulatory network of - lipid - sensing nuclear receptors: roles for CAR,PXR,LXR, and FXR [J].Arch Biochem Biophys.2005,433(2): 387-396.
    [34] Yun-Ping LIM,Jin-ding HUANGInterplay of Pregnane X receptor with Other Nuclear Receptors on Gene Regulation[J] Drug Metabolism and Pharmacokinetics.2008,23(1): 14-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700