用户名: 密码: 验证码:
扇贝多肽抑制UVB诱导的小鼠胸腺淋巴细胞辐射损伤的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的建立紫外线B(UVB)对体外培养的小鼠胸腺淋巴细胞凋亡的病理模型,探讨在UVB辐射下,扇贝多肽(PCF)抑制UVB诱导的小鼠胸腺淋巴细胞辐射损伤的作用机制。方法采用正交实验设计,以流式细胞仪PI染色法测定细胞凋亡率,采用45 mJ/cm2的UVB辐射体外培养的小鼠胸腺淋巴细胞,确立凋亡的病理模型,实验分为六组:正常对照组、UVB模型组、UVB + 5.69 mM PCF组,UVB + 2.84 mM PCF组,UVB + 1.42 mM PCF组和UVB + 5.69 mM VitC组。首先研究PCF对UVB辐射小鼠胸腺淋巴细胞后氧化还原状态的影响,UVB辐射后测定细胞抗羟自由基、抗超氧阴离子的水平、黄嘌啉氧化酶(XOD)和NADPH氧化酶活力;以2,7-二氯氢化荧光素二酯(DCFH-DA)为荧光探针,检测PCF对UVB照射后细胞内ROS生成的影响。其次,研究PCF对UVB诱导小鼠胸腺淋巴细胞凋亡的线粒体通路和表面受体通路的影响,分别用Rhodamine 123和Fluo-3-AM荧光染色测定线粒体膜电位和细胞内游离钙的变化;免疫细胞化学检测细胞Bcl-xl和Bid基因蛋白的表达;流式细胞仪检测caspase-3的活性;western-blot检测线粒体细胞色素C(cytochrome c)的释放、FADD和caspase-8基因蛋白的表达;电镜分析PCF和caspase-8抑制剂(z-IETD-fmk)对UVB诱导的胸腺淋巴细胞凋亡的影响;RT-PCR检测Fas(CD95)mRNA的表达。最后,使用基因芯片技术分析PCF对UVB辐射后小鼠胸腺淋巴细胞基因谱的差异表达影响。Western-blot检测硫氧还蛋白(Trx)、蛋白质丝氨酸苏氨酸激酶(Akt/PKB)的活性,预先加入或不加入PI3K/Akt通路特异性抑制剂LY294002检测细胞凋亡信号调节激酶Ⅰ(apoptosis signal regulating kinase-1,ASK1)、JNK的活性、DNA ladder和线粒体膜电位(?ψМ);免疫细胞化学检测细胞p53基因蛋白的表达;原位杂交检测细胞p38 mRNA、p21 mRNA的表达;RT-PCR检测c-fos mRNA和c-jun mRNA的表达;结果正交实验结果表明,45 mJ/cm2的UVB辐射小鼠胸腺淋巴细胞后2 h为最佳凋亡模型;在1.42 mM~5.69 mM浓度范围内,PCF能提高抗羟自由基和抗超氧阴离子的水平,降低胸腺淋巴细胞中黄嘌啉氧化酶、NADPH氧化酶的活力和ROS的含量。PCF可调节线粒体通路和表面受体通路上凋亡相关分子的表达,稳定线粒体的膜电位,降低淋巴细胞内游离钙离子,使Bcl-xl蛋白表达升高而Bid蛋白表达降低;PCF抑制线粒体cytochrome c的释放,使caspase-3的活性降低;PCF可抑制表面受体通路上Fas mRNA、FADD和caspase-8基因蛋白的表达;当预先给予caspase-8抑制剂和PCF能够减轻UVB对细胞超微结构的损害。基因芯片结果显示,与模型组相比,PCF组有功能差异表达的基因共104个,其中上调基因56个,下调基因48个;western-blot结果提示,PCF能够提高小鼠胸腺淋巴细胞硫氧还蛋白的表达,激活AKT的活性,抑制ASK1-JNK/p38凋亡通路的活化。预先使用PI3K/Akt通路特异性抑制剂LY294002,DNA ladder片段增多,线粒体膜电位降低;此外,PCF可提高细胞周期相关基因p53蛋白的表达和p21 mRNA的表达;降低转录因子c-fos mRNA和c-jun mRNA的表达。结论:PCF能够改善由UVB辐射诱导的细胞氧化损伤,从根本上降低活性氧自由基的产生,是较好的海洋类抗氧化剂;PCF能够抑制线粒体凋亡信号通路和膜表面受体凋亡信号通路;提高抗氧化蛋白、细胞生存相关基因,抑制ASK1-JNK/p38凋亡通路的活化,抑制转录因子的表达,PCF通过调节细胞氧化还原、凋亡、信号转导、细胞周期、转录调节等众多基因的表达,起到抗氧化、抗凋亡、抑制UVB对小鼠胸腺淋巴细胞辐射损伤的作用。上述结果表明,PCF是海洋类抑制UVB辐射的优质防护剂。
AIM The study establishs the apoptotic models of thymocytes caused by UVB radiation in vitro to investigate the inhibit effects and mechanism of PCF (polypeptides from Chlamys farreri) on thymocytes from the mouse damaged by UVB radiation. MATHODS Using 45mJ/cm2 UVB to radiate mouse thymocytes, UVB-induced apoptotic model of thymocytes is established by orthogonal design and apoptotic rate is determined by flow cytometry PI staining. Cells are divided into six groups: control group, UVB model group, UVB+5.69 mM PCF group, UVB+2.84 mM PCF group, UVB+1.42 mM PCF group, UVB+5.69 mM Vitamine C group. First, the study investigates the effect of PCF on redox state in mouse thymocytes after UVB radiation. The anti-hydroxy radical, anti-superoxide anion level, activity of xanthine oxidase(XOD)and NADPH oxidase in thymocytes is detected after UVB radiation. Effect of PCF on UVB-induced production of ROS is detected by 2’, 7’-Dichlorofluorescin diacetate (DCFH-DA). Second, the study investigates the effect of PCF on apoptosis signal transduction pathway from mitochondria and cell surface receptor in mouse thymocytes induced by UVB radiation.The mitochondria membrane potential and the free calcium variation on thymocytes are tested using Rhodamine 123 and Fluo-3-AM fluorescein stain respectively. Bcl-xl and Bid proteins are examined by immunocytochemical technica. The caspase-3 activity is measured by Flow Cytometry (FCM). Western blot analysis is performed to determine the release of cytochrome c, expressing levels of FADD and caspase-8. The effects of PCF and caspase-8 inhibitor z-IETD-fmk on UVB-induced apoptosis of thymocytes are investigated by electron microscope. Expressing levels of Fas mRNA are detected by RT-PCR. And last, the effect of PCF on the different of gene expression profile in thymocytes after UVB radiation are studied by gene chip technique. The activation of thioredoxin (Trx) and protein kinase B (Akt/PKB) is investigated by western-blot. ASK1, JNK activation, DNA ladder and Mitochondria memberine potential are also investigated after pretreatment with or without PI3K/Akt pathway inhibitor LY294002. P53 protein is examined by immunocytochemical technica. The p38mRNA and P21 mRNA expressions are detected through the technique of in situ hybridiation. The expression of c-fos and c-jun is observed by RT-PCR. RESULTS Results of orthogonal experiment suggest that 45mJ/cm2 UVB and 2 h incubation after radiation make up the best apoptotic model. 1.42~5.69 mM PCF increases the anti-hydroxy radical and anti-superoxide anion level, decreases the activity of xanthine oxidase(XOD), NADPH oxidase and the ROS accumulation in thymocytes. PCF can modulate the expression of molecular that related to apoptosis signal transduction pathway from mitochondria and cell surface receptor. PCF can stabilize the mitochondria membrane potential, decrease free calcium, increase the expression of Bcl-xl, reduces the expression of Bid and the releasing of cytochrome c and caspase-3 activity. PCF can inhibit the expression levels of FADD and caspase-8 that related to apoptosis signal tranduction pathway from cell surface receptor. The ultrastructural of thymocytes is less damaged by UVB when pretreatment with the caspase-8 inhibitor z-IETD-fmk and PCF. The ruslts of genechip indicate that 104 genes which have identified functions show a differential expression in PCF group, with 56 genes up-regulated and 48 genes down-regulated when compared with model group. Western-blot shows that PCF can active Trx and Akt, inhibit the activation of the ASK1-JNK/p38 apoptosis pathway. When pretreatment with PI3K/Akt pathway inhibitor LY294002 with PCF, the fragment of DNA ladder is increased while the mitochondria memberine potential is decreased. PCF can elevate the expression of p53 protein, p21 mRNA which related to cell cycle, cut down the expression of transcription factors c-fos and c-jun mRNA. CONCLUSION PCF can reverse the cell damage radiated by UVB. PCF fundamentally depresses active oxygen free radical product, function as a good antioxidant reagent from ocean. PCF can inhibit apoptosis signal transduction pathway from mitochondria and cell surface receptor, increase antioxygen protein and genes which related to survival, inhibit the activation of the ASK1-JNK/p38 apoptosis pathway, cut down the expression of transcription factors. PCF exerts its antioxidation, anti-apoptosis and anti-UVB radiative damage by modulate the expression of numerous genes that related to cellular oxidoreduction, apoptosis, signal transduction, cell cycle and transcription regulation. These results show that PCF is a good preventive regimen from ocean against UVB radiation.
引文
[1] Cadet J, Sage E, Douki T. Ultraviolet radiation-mediated damage to cellular DNA. Mutat Res. 2005 1, 571(1-2): 3~ 17.
    [2] Fariss MW, Chan CB, Patel M, Van Houten B, Orrenius S. Role of mitochondria in toxic oxidative stress.Mol Interv. 2005, 5(2): 94~ 111.
    [3] Fujisawa T, Takeda K, Ichijo H. ASK family proteins in stress response and disease. Mol Biotechnol. 2007, 37(1): 13~ 18.
    [4] Genestra M. Oxyl radicals, redox-sensitive signalling cascades and antioxidants. Cell Signal. 2007, (9): 1807~ 1819.
    [5] Hosseinimehr SJ. Trends in the development of radioprotective agents. Drug Discov Today. 2007,12(19-20): 794~ 805.
    [6] Radford IR. Iriation of ionizing radiation-induced apoptosis: DNA damage-mediated or does cemmide have a role? Int J Radiat Biol, 1999, 75: 521~528.
    [7] Martin Kühne, Enriqueta Riballo, Nicole Rief, et al. A Double-Strand Break Repair Defect in ATM-Deficient Cells Contributes to Radiosensitivity Cancer Res. 2004, 64: 500– 508
    [8] Ayene IS, Bernhard EJ, McKenna WG. DNA as an important target in radiation-induced apoptosis of MYC and MYC plus RAS transfected rat embryo fibroblasts. Int J Radiat Biol. 2000, 76 (3): 343~354
    [9] Snopov SA, de Gruijl FR, Roza L, et al. Immunochemical study of DNA modifications in the nuclei of UV-damaged lymphocytes. Photochem. Photobiol. Sci 2004, 3: 85~90.
    [10] Staniforth V, Chiu LT, Yang NS. Caffeic acid suppresses UVB radiation-induced expression of interleukin-10 and activation of mitogen-activated protein kinases in mouse. Carcinogenesis. 2006, 27 (9): 1803~1811.
    [11] Enomoto R, Suzuki C, Koshiba C, et al. Wogonin prevents immunosuppressive action but not anti-inflammatory effect.induced by glucocorticoid. Ann N Y Acad Sci. 2007, 1095: 412-417.
    [12]朱平,王伟,程克棣.药用植物功能基因.中国生物工程杂志.2004, 2: 3~8
    [13]卞俊.国内外海洋药物研究进展和展望,海军医学杂志2007, 28(1): 84~87
    [14] D'Autréaux B, Toledano MB. ROS as signalling molecules: mechanisms that generatespecificity in ROS homeostasis. Nat Rev Mol Cell Biol. 2007, 8(10): 813~824.
    [15] Bucci B, Misiti S, Cannizzaro A, et al. Fractionated ionizing radiation exposure induces apoptosis through caspase-3 activation and reactive oxygen species generation. Anticancer Res. 2006, 26 (6B): 4549~4557.
    [16] Hiramatsu R, Hara T, Akimoto H, et al. Cinnabarinic acid generated from 3-hydroxyanthranilic acid strongly induces apoptosis in thymocytes through the generation of reactive oxygen species and the induction of caspase. J Cell Biochem. 2008 1, 103(1): 42~53.
    [17] Hansen T, Seidel A, Borlak J. The environmental carcinogen 3-nitrobenzanthrone and its main metabolite 3-aminobenzanthrone enhance formation of reactive oxygen intermediates in human A549 lung epithelial cells. Toxicol Appl Pharmacol. 2007 1, 221(2): 222~234.
    [18] Wang X, Wang Y, Kim HP, et al. FLIP inhibits endothelial cell apoptosis during hyperoxia by suppressing Bax. Free Radic Biol Med. 2007, 42 (10): 1599~1609.
    [19] Svobodova A, Walterova D, Vostalova J. Ultraviolet light induced alteration to the skin. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2006, 150 (1): 25~38.
    [20] Dinarello CA. The paradox of pro-inflammatory cytokines in cancer. Cancer Metastasis Rev. 2006, 25 (3): 307~313.
    [21] De Stefano D, Maiuri MC, Simeon V, et al. Lycopene, quercetin and tyrosol prevent macrophage activation induced by gliadin and IFN-gamma. Eur J Pharmacol. 2007, 566(1-3): 192~199.
    [22] Yao K, Tan J, Gu WZ, et al. Reactive oxygen species mediates the apoptosis induced by transforming growth factor beta (2) in human lens epithelial cells. Biochem Biophys Res Commun. 2007, 354 (1): 278~283.
    [23] Koike N, Takamura T, Kaneko S. Induction of reactive oxygen species from isolated rat glomeruli by protein kinase C activation and TNF-alpha stimulation, and effects of a phosphodiesterase inhibitor. Life Sci. 2007, 80 (18): 1721~1728.
    [24] Felty Q and Roy D. Estrogen-induced ROS signaling molecules and their role in brain cancer. AACR Meeting Abstracts, 2006, 2006: 835 ~ 836.
    [25] Chernyak BV, Izyumov DS, Lyamzaev KG, et al. Production of reactive oxygen species inmitochondria of HeLa cells under oxidative stress. Biochim Biophys Acta. 2006; 1757 (5-6): 525~534.
    [26] Rezvani HR, Cario-Andre M, Pain C, et al. Protection of normal human reconstructed epidermis from UV by catalase overexpression. Cancer Gene Ther. 2007, 14 (2): 174~186.
    [27] Rezvani HR, Mazurier F, Cario-Andre M, et al. Protective effects of catalase overexpression on UVB-induced apoptosis in normal human keratinocytes. J Biol Chem. 2006, 281 (26): 17999~18007.
    [28] Brigelius-Flohe R, Banning A, Kny M, et al. Redox events in interleukin-1 signaling. Arch Biochem Biophys. 2004, 423 (1): 66~73.
    [29] Monteiro HP, Rocha Oliveira CJ, Curcio MF, et al. Tyrosine phosphorylation in nitric oxide-mediated signaling events. Methods Enzymol. 2005, 396:350~358.
    [30] Valerie K, Yacoub A, Hagan MP, et al. Radiation-induced cell signaling: inside-out and outside-in. Mol Cancer Ther. 2007, 6 (3): 789~801.
    [31] Bonello MR, Bobryshev YV, Khachigian LM. Peroxide-inducible Ets-1 mediates platelet-derived growth factor receptor-alpha gene transcription in vascular smooth muscle cells. Am J Pathol. 2005, 167 (4): 1149~1159.
    [32] Kappert K, Sparwel J, Sandin A, et al. Antioxidants relieve phosphatase inhibition and reduce PDGF signaling in cultured VSMCs and in restenosis. Arterioscler Thromb Vasc Biol. 2006, 26 (12): 2644~2651.
    [33] Goldkorn T, Ravid T, Khan EM. Life and death decisions: ceramide generation and EGF receptor trafficking are modulated by oxidative stress. Antioxid Redox Signal. 2005, 7 (1-2): 119~128.
    [34] Beck KF, Guder G, Schaefer L, et al. J Nitric oxide upregulates induction of PDGF receptor-alpha expression in rat renal mesangial cells and in anti-Thy-1 glomerulonephritis. J Am Soc Nephrol. 2005,16(7): 1948~1957.
    [35] Pleskova M, Beck KF, Behrens MH, et al. Nitric oxide down-regulates the expression of the catalytic NADPH oxidase subunit Nox1 in rat renal mesangial cells. FASEB J. 2006; 20(1): 139~141.
    [36] Ohtsu H, Dempsey PJ, Eguchi S. ADAMs as mediators of EGF receptor transactivation by G protein-coupled receptors. Am J Physiol Cell Physiol. 2006, 291 (1): C1~10.
    [37] Maziere C, Floret S, Santus R, et al. Impairment of the EGF signaling pathway by the oxidative stress generated with UVA. Free Radic Biol Med. 2003, 34 (6): 629~636.
    [38] Dittmann K, Mayer C, Fehrenbacher B, et al. Radiation-induced epidermal growth factor receptor nuclear import is linked to activation of DNA-dependent protein kinase. J Biol Chem. 2005, 280 (35): 31182~31189.
    [39] Baregamian N, Song J, Jeschke MG, et al. IGF-1 protects intestinal epithelial cells from oxidative stress-induced apoptosis. J Surg Res. 2006, 136 (1): 31~37.
    [40] Gu Y, Wang C, Cohen A. Effect of IGF-1 on the balance between autophagy of dysfunctional mitochondria and apoptosis. FEBS Lett. 2004, 577 (3): 357~360.
    [41] Reeves A, Zagurovskaya M, Gupta S, et al. Inhibition of Transforming Growth Factor-beta Signaling in Normal Lung Epithelial Cells Confers Resistance to Ionizing Radiation. Int J Radiat Oncol Biol Phys. 2007, 68 (1): 187~195.
    [42] Han Y, Son SJ, Akhalaia M, et al. Modulation of radiation-induced disturbances of antioxidant defense systems by ginsan. Evid Based Complement Alternat Med. 2005, 2 (4): 529~536.
    [43] Jobling MF, Mott JD, Finnegan MT, et al. Isoform-specific activation of latent transforming growth factor beta (LTGF-beta) by reactive oxygen species. Radiat Res. 2006, 166 (6): 839~848.
    [44] Wang H, Kochevar IE. Involvement of UVB-induced reactive oxygen species in TGF-beta biosynthesis and activation in keratinocytes. Free Radic Biol Med. 2005, 38 (7): 890~897.
    [45] Shen HM, Pervaiz S. TNF receptor superfamily-induced cell death: redox-dependent execution. FASEB J. 2006, 20 (10): 1589~1598.
    [46] Gauss KA, Nelson-Overton LK, Siemsen DW, et al. Role of NF-kappaB in transcriptional regulation of the phagocyte NADPH oxidase by tumor necrosis factor-{alpha} J Leukoc Biol. 2007
    [47] Hayden MS, Ghosh S. Signaling to NF-kappaB. Genes Dev. 2000, 18 (18): 2195~2224.
    [48] Simoncini S, Sapet C, Camoin-Jau L, et al. Role of reactive oxygen species and p38 MAPK in the induction of the pro-adhesive endothelial state mediated by IgG from patients with anti-phospholipid syndrome. 2005, 17 (4): 489~500.
    [49] Khullar M, Singh RD, Smriti M, et al. Anaerobiosis-induced virulence of Salmonellaenterica subsp. enterica serovar Typhimurium: role of phospholipase Cgamma signalling cascade. J Med Microbiol. 2003, 52 (Pt 9): 741~745.
    [50] Flamand N, Lefebvre J, Lapointe G, et al. Inhibition of platelet-activating factor biosynthesis by adenosine and histamine in human neutrophils: involvement of cPLA2alpha and reversal by lyso-PAF. J Leukoc Biol. 2006, 79 (5): 1043~1051.
    [51] Chien EJ, Chen CC, Chien CH, et al. Activation and up-regulation of phospholipase D expression by lipopolysaccharide in human peripheral T cells. Chin J Physiol. 2004, 47 (4): 203~209.
    [52] Banno Y, Ohguchi K, Matsumoto N, et al. Implication of phospholipase D2 in oxidant-induced phosphoinositide 3-kinase signaling via Pyk2 activation in PC12 cells. J Biol Chem. 2005, 280 (16): 16319~16324.
    [53] Lassegue B, Clempus RE. Vascular NAD(P)H oxidases: specific features, expression, and regulation. Am J Physiol Regul Integr Comp Physiol. 2003, 285 (2): R277~297.
    [54] Belleudi F, Leone L, Aimati L, et al. Endocytic pathways and biological effects induced by UVB-dependent or ligand-dependent activation of the keratinocyte growth factor receptor. FASEB J. 2006, 20 (2): 395~397.
    [55] Mehdi MZ, Azar ZM, Srivastava AK. Role of Receptor and Nonreceptor Protein Tyrosine Kinases in H2O2-Induced PKB and ERK1/2 Signaling. Cell Biochem Biophys. 2007, 47 (1): 1~10.
    [56] Machida K, Mayer BJ. The SH2 domain: versatile signaling module and pharmaceutical target. Biochim Biophys Acta. 2005, 1747 (1): 1~25.
    [57] Venge P, Moberg L, Bjornsson E, et al. Mechanisms of basal and cytokine-induced uptake of glucose in normal human eosinophils: relation to apoptosis. Respir Med. 2003, 97 (10): 1109~1119.
    [58] Choi JC, Holtz R, Petroff MG, et al. Dampening of IFN~gamma-inducible gene expression in human choriocarcinoma cells is due to phosphatase-mediated inhibition of the JAK/STAT-1 pathway. J Immunol. 2007; 178 (3): 1598~1607.
    [59] Wicovsky A, Muller N, Daryab N, et al. Sustained JNK activation in response to tumor necrosis factor is mediated by caspases in a cell type-specific manner. J Biol Chem. 2007, 282 (4): 2174~2183.
    [60] Von Montfort C, Fernau NS, Beier JI, et al. Extracellular generation of hydrogen peroxide is responsible for activation of EGF receptor by ultraviolet A radiation. Free Radic Biol Med. 2006, 41 (9): 1478~1487.
    [61] Lee ER, Kim JH, Kang YJ, et al.The anti-apoptotic and anti-oxidant effect of eriodictyol on UV-induced apoptosis in keratinocytes. Biol Pharm Bull. 2007, 30 (1): 32~37.
    [62] Kamath R, Jiang Z, Sun G, et al. c-Abl kinase regulates curcumin-induced cell death through activation of c-Jun N-terminal kinase. Mol Pharmacol. 2007, 71 (1): 61~72.
    [63] Simon AR, Takahashi S, Severgnini M, et al. Role of the JAK-STAT pathway in PDGF-stimulated proliferation of human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2002, 282 (6): L1296~1304.
    [64] Esposito F, Chirico G, Montesano Gesualdi N, et al. Protein kinase B activation by reactive oxygen species is independent of tyrosine kinase receptor phosphorylation and requires SRC activity. J Biol Chem. 2003, 278 (23): 20828~20834.
    [65] Lyle AN, Griendling KK. Modulation of vascular smooth muscle signaling by reactive oxygen species. Physiology (Bethesda). 2006, 21: 269~280.
    [66] Lee YJ, Lee JH, Han HJ. Extracellular adenosine triphosphate protects oxidative stress-induced increase of p21(WAF1/Cip1) and p27(Kip1) expression in primary cultured renal proximal tubule cells: role of PI3K and Akt signaling. J Cell Physiol. 2006, 209 (3): 802~810.
    [67] Kaminski M, Kiessling M, Suss D, et al. Novel Role for Mitochondria: Protein Kinase C{theta}-Dependent Oxidative Signaling Organelles in Activation-Induced T-Cell Death. Mol Cell Biol. 2007, 27 (10): 3625~3639.
    [68] Kim CH, Han SI, Lee SY, et al. Protein kinase C-ERK1/2 signal pathway switches glucose depletion-induced necrosis to apoptosis by regulating superoxide dismutases and suppressing reactive oxygen species production in A549 lung cancer cells. J Cell Physiol. 2007, 211 (2): 371~385.
    [69] Zhou Y, Wang Q, Evers BM, et al. Signal transduction pathways involved in oxidative stress-induced intestinal epithelial cell apoptosis. Pediatr Res. 2005, 58 (6): 1192-1197.
    [70] Lee YJ, Lee DH, Cho CK, et al. HSP25 inhibits radiation-induced apoptosis through reduction of PKCdelta-mediated ROS production. Oncogene. 2005, 24 (23): 3715~3725.
    [71] Navarro R, Busnadiego I, Ruiz-Larrea MB, et al. Superoxide anions are involved in doxorubicin-induced ERK activation in hepatocyte cultures. Ann N Y Acad Sci. 2006, 1090: 419~428.
    [72] Probin V, Wang Y, Zhou D. Busulfan-induced senescence is dependent on ROS production upstream of the MAPK pathway. Free Radic Biol Med. 2007, 42 (12): 1858~1865.
    [73] Antherieu S, Ledirac N, Luzy AP, et al. Endosulfan decreases cell growth and apoptosis in human HaCaT keratinocytes: Partial ROS-dependent ERK1/2 mechanism. J Cell Physiol. 2007, 213(1): 177~186.
    [74] Suzaki Y, Yoshizumi M, Kagami S, et al. Hydrogen peroxide stimulates c-Src-mediated big mitogen-activated protein kinase 1 (BMK1) and the MEF2C signaling pathway in PC12 cells: potential role in cell survival following oxidative insults. J Biol Chem. 2002, 277 (11): 9614~9621.
    [75] Van Laethem A, Nys K, Van Kelst S, et al. Apoptosis signal regulating kinase-1 connects reactive oxygen species to p38 MAPK-induced mitochondrial apoptosis in UVB-irradiated human keratinocytes. Free Radic Biol Med. 2006, 41 (9): 1361~1371.
    [76] Wu WB, Chiang HS, Fang JY, et al. (+)-Catechin prevents ultraviolet B-induced human keratinocyte death via inhibition of JNK phosphorylation. Life Sci. 2006, 79 (8): 801~807.
    [77] Zhan M, Han ZC. Phosphatidylinositide 3-kinase/AKT in radiation responses. Histol Histopathol. 2004, 19 (3): 915-923.
    [78] Boonstra J, Post JA. Molecular events associated with reactive oxygen species and cell cycle progression in mammalian cells. Gene. 2004, 337: 1~13.
    [79] Chen YC, Chang MY, Shiau AL, et al. Mitochondrial ribosomal protein S36 delays cell cycle progression in association with p53 modification and p21(WAF1/CIP1) expression. J Cell Biochem. 2007; 100 (4): 981~990.
    [80] Seomun Y, Kim JT, Kim HS, et al. Induction of p21Cip1-mediated G2/M arrest in H2O2-treated lens epithelial cells. Mol Vis. 2005, 11: 764~774.
    [81] Sakurai T, Kanayama M, Shibata T, et al. Ebselen, a seleno-organic antioxidant, as an electrophile. Chem Res Toxicol. 2006, 19 (9): 1196~1204.
    [82] Yang PM, Chen HC, Tsai JS, et al. Cadmium induces Ca2+-dependent necrotic cell death through calpain-triggered mitochondrial depolarization and reactive oxygenspecies-mediated inhibition of nuclear factor-kappaB activity. Chem Res Toxicol. 2007, 20 (3): 406-415.
    [83] Chen F, Lu Y, Castranova V, et al. Loss of Ikkbeta promotes migration and proliferation of mouse embryo fibroblast cells. J Biol Chem. 2006, 281 (48): 37142~37149.
    [84] Gloire G, Legrand-Poels S, Piette J. NF-kappaB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol. 2006, 72 (11): 1493~1505.
    [85] Ji LL. Antioxidant signaling in skeletal muscle: A brief review. Exp Gerontol. 2007, 42(7): 582~593.
    [86] Wullaert A, Heyninck K, Beyaert R. Mechanisms of crosstalk between TNF-induced NF-kappaB and JNK activation in hepatocytes. Biochem Pharmacol. 2006, 72 (9): 1090~1101.
    [87] Reinehr R, Becker S, Eberle A, et al. Involvement of NADPH oxidase isoforms and Src family kinases in CD95-dependent hepatocyte apoptosis. J Biol Chem. 2005, 280 (29): 27179~27194.
    [88] Velez-Pardo C, Del Rio MJ. Avoidance of Abeta[(25-35)]/(H2O2) -induced apoptosis in lymphocytes by the cannabinoid agonists CP55,940 and JWH-015 via receptor-independent and PI3K-dependent mechanisms: role of NF-kappaB and p53. Med Chem. 2006, 2 (5): 471~479.
    [89] Herman-Antosiewicz A, Xiao H, Lew KL, et al. Induction of p21 protein protects against sulforaphane-induced mitotic arrest in LNCaP human prostate cancer cell line. Mol Cancer Ther. 2007, 6 (5): 1673~1681.
    [90] Li CR, Zhou Z, Lin RX, et al. beta-sitosterol decreases irradiation-induced thymocyte early damage by regulation of the intracellular redox balance and maintenance of mitochondrial membrane stability. J Cell Biochem. 2007, 102(3):748~758
    [91] Chen J, Mehta JL. Angiotensin II-mediated oxidative stress and procollagen-1 expression in cardiac fibroblasts: blockade by pravastatin and pioglitazone. Am J Physiol Heart Circ Physiol. 2006, 291 (4): H1738~1745.
    [92] Singh RP, Dhanalakshmi S, Mohan S, et al. Silibinin inhibits UVB- and epidermal growth factor-induced mitogenic and cell survival signaling involving activator protein-1 and nuclear factor-kappaB in mouse epidermal JB6 cells. Mol Cancer Ther. 2006, 5 (5):1145~1153.
    [93] Sanders CM, Sizov D, Seavers PR, et al. Transcription activator structure reveals redox control of a replication initiation reaction. Nucleic Acids Res. 2007 May 3, 2007, 35(10): 3504~3515.
    [94] Marnett LJ, Riggins JN, West JD. Endogenous generation of reactive oxidants and electrophiles and their reactions with DNA and protein. J Clin Invest. 2003, 111 (5): 583~593.
    [95] Droge W. Free Radicals in the Physiological Control of Cell Function. Physiol Rev, 2002, 82: 47.
    [96] Khomenko T, Deng X, Jadus MR, et al. Effect of cysteamine on redox-sensitive thiol-containing proteins in the duodenal mucosa. Biochem Biophys Res Commun. 2003, 309 (4): 910~916.
    [97] Hanson S, Kim E, Deppert W. Redox factor 1 (Ref-1) enhances specific DNA binding of p53 by promoting p53 tetramerization. Oncogene. 2005, 24 (9): 1641~1647.
    [98] Hong H, Cao H, Wang Y, et al. Identification and quantification of a guanine-thymine intrastrand cross-link lesion induced by Cu(II)/H2O2/ascorbate. Chem Res Toxicol. 2006, 19 (5): 614~621.
    [99] Ito K, Takubo K, Arai F, et al. Regulation of reactive oxygen species by Atm is essential for proper response to DNA double-strand breaks in lymphocytes. J Immunol. 2007, 178 (1): 103~110.
    [100] Cipriani G, Rapizzi E, Vannacci A, et al. Nuclear Poly(ADP-ribose) Polymerase-1 Rapidly Triggers Mitochondrial Dysfunction. J. Biol. Chem., 2005, 280: 17227 ~ 17234.
    [101] Bakondi E, Bai P, Erdelyi K, et al. Cytoprotective effect of gallotannin in oxidatively stressed HaCaT. keratinocytes: the role of poly(ADP-ribose) metabolism. Exp Dermatol. 2004; 13 (3): 170~178.
    [102] Aneja R, Ghaleb AM, Zhou J, et al. p53 and p21 determine the sensitivity of noscapine-induced apoptosis in colon cancer cells. Cancer Res. 2007, 67 (8): 3862~3870.
    [103] An JH, Seong JS. Proteomics analysis of apoptosis-regulating proteins in tissues with different radiosensitivity. J Radiat Res (Tokyo). 2006, 47 (2): 147~155.
    [104] Cao C, Healey S, Amaral A, et al. ATP-sensitive potassium channel: A novel target forprotection against UV-induced human skin cell damage. J Cell Physiol. 2007, 212 (1): 252~263
    [105] Sharma D, Kumar SS, Sainis KB. Antiapoptotic and immunomodulatory effects of chlorophyllin. Mol Immunol. 2007, 44 (4): 347~359.
    [106] Shao C, Lyng FM, Folkard M, et al. Calcium fluxes modulate the radiation-induced bystander responses in targeted glioma and fibroblast cells. Radiat Res. 2006, 166 (3): 479~487.
    [107] Brookes PS, Yoon Y, Robotham JL, et al. Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol. 2004, 287 (4): C817~833.
    [108] Armstrong JS. Mitochondria: a target for cancer therapy. Br J Pharmacol. 2006, 147 (3): 239~248.
    [109] Radovits T, Lin LN, Zotkina J, et al. Poly(ADP-ribose) polymerase inhibition improves endothelial dysfunction induced by reactive oxidant hydrogen peroxide in vitro. Eur J Pharmacol. 2007, 564(1-3): 158~166.
    [110] Fariss MW, Chan CB, Patel M, et al. Role of mitochondria in toxic oxidative stress. Mol Interv. 2005, 5 (2): 94~111.
    [111] Kim I, Rodriguez-Enriquez S, Lemasters JJ. Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys. 2007, 462(2): 245-253
    [112] Lee HC, Wei YH. Oxidative stress, mitochondrial DNA mutation, and apoptosis in aging. Exp Biol Med (Maywood). 2007, 232 (5): 592~606.
    [113] Gradzka I. Mechanisms and regulation of the programmed cell death. Postepy Biochem. 2006, 52 (2): 157~165.
    [114] Counis MF, Torriglia A. Acid DNases and their interest among apoptotic endonucleases. Biochimie. 2006, 88 (12): 1851~1858.
    [115] Santamaria G, Martinez-Diez M, Fabregat I, et al. Efficient execution of cell death in non-glycolytic cells requires the generation of ROS controlled by the activity of mitochondrial H+-ATP synthase. Carcinogenesis. 2006, 27 (5): 925~935.
    [116] Svobodova A, Zdarilova A, Maliskova J, et al. Attenuation of UVA-induced damage to human keratinocytes by silymarin. J Dermatol Sci. 2007, 46 (1): 21~30.
    [117] Svobodova A, Psotova J, Walterova D. Natural phenolics in the prevention of UV-inducedskin damage. A review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2003, 147 (2): 137~145.
    [118] Wiseman A. p53 protein or BID protein select the route to either apoptosis (programmed cell death) or to cell cycle arrest opposing carcinogenesis after DNA damage by ROS. Med Hypotheses. 2006, 67 (2): 296~299.
    [119] Sancho P, Fernandez C, Yuste VJ, et al. Regulation of apoptosis/necrosis execution in cadmium-treated human promonocytic cells under different forms of oxidative stress. Apoptosis. 2006, 11 (5): 673~686.
    [120] Ryter SW, Kim HP, Hoetzel A, et al. Mechanisms of cell death in oxidative stress. Antioxid Redox Signal. 2007, 9 (1): 49~89.
    [121] Festjens N, Vanden Berghe T, Vandenabeele P. Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response. Biochim Biophys Acta. 2006, 1757(9-10): 1371~1387.
    [122] Heinen A, Camara AK, Aldakkak M, et al. Mitochondrial Ca2+-induced K+ influx increases respiration and enhances ROS production while maintaining membrane potential. Am J Physiol Cell Physiol. 2007, 292 (1): C148-156.
    [123] Balasubramanian K, Mirnikjoo B, Schroit AJ. Regulated externalization of phosphatidylserine at the cell surface: Implications for apoptosis. J Biol Chem. 2007, 282(25): 18357~18364.
    [124] French JP, Quindry JC, Falk DJ, et al. Ischemia-reperfusion-induced calpain activation and SERCA2a degradation are attenuated by exercise training and calpain inhibition. Am J Physiol Heart Circ Physiol. 2006, 290 (1): H128-136.
    [125] Yamaguchi H, Wang HG. Tissue transglutaminase serves as an inhibitor of apoptosis by cross-linking caspase 3 in thapsigargin-treated cells. Mol Cell Biol. 2006, 26 (2): 569~579.
    [126] Rivera A, Maxwell SA. The p53-induced gene-6 (proline oxidase) mediates apoptosis through a calcineurin-dependent pathway. Biol Chem. 2005, 280 (32): 29346~29354.
    [127] Yang PM, Chen HC, Tsai JS, et al. Cadmium induces Ca2+-dependent necrotic cell death through calpain-triggered mitochondrial depolarization and reactive oxygen species-mediated inhibition of nuclear factor-kappaB activity. Chem Res Toxicol. 2007,20 (3): 406~415.
    [128] Hajnoczky G, Csordas G, Das S, et al. Mitochondrial calcium signalling and cell death: approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis. Cell Calcium. 2006, 40 (5-6): 553~560.
    [129] Donovan M, Doonan F, Cotter TG. Decreased expression of pro-apoptotic Bcl-2 family members during retinal development and differential sensitivity to cell death. Dev Biol. 2006, 291(1): 154~169.
    [130] Hao JH, Yu M, Liu FT, et al. Bcl-2 inhibitors sensitize tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by uncoupling of mitochondrial respiration in human leukemic CEM cells. Cancer Res. 2004, 64 (10): 3607~3616.
    [131] Weir CP, Robaire B. Spermatozoa have decreased antioxidant enzymatic capacity and increased reactive oxygen species production during aging in the Brown Norway rat. J Androl. 2007, 28 (2): 229~240.
    [132] Li HY, Shi N, Dai ZH, et al. Effects of deltamethrin on gene expression of some antioxidase, gamma glutamylcysteine synthetase and NFE2 related factor 2 (Nrf2) in brain tissue. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi. 2006, 24 (5): 273~277.
    [133] Maher P. Redox control of neural function: background, mechanisms, and significance. Redox Signal. 2006, 8 (11-12): 1941~1970.
    [134] Kang HJ, Hong SM, Kim BC, et al. Effects of heterologous expression of thioredoxin reductase on the level of reactive oxygen species in COS-7 cells. Mol Cells. 2006, 22 (1): 113~118.
    [135] Watson WH, Yang X, Choi YE, et al. Thioredoxin and its role in toxicology. Toxicol Sci. 2004, 78 (1): 3~14.
    [136] Jones DP. Redefining oxidative stress. Antioxid Redox Signal. 2006, 8 (9-10): 1865~1879.
    [137] Jones DP. Extracellular redox state: refining the definition of oxidative stress in aging. Rejuvenation Res. 2006,9 (2): 169~181.
    [138] Matthews GM, Howarth GS, Butler RN. Nutrient and antioxidant modulation of apoptosis in gastric and colon cancer cells. Cancer Biol Ther. 2006, 5 (6): 569~572.
    [139] Schweikl H, Spagnuolo G, Schmalz G. Genetic and cellular toxicology of dental resin monomers. J Dent Res. 2006, 85 (10): 870~877.
    [140] Won JS, Singh I. Sphingolipid signaling and redox regulation. Free Radic Biol Med. 2006, 40 (11): 1875~1888.
    [141] Haddad JJ, Harb HL. L-gamma-Glutamyl-L-cysteinyl-glycine (glutathione, GSH) and GSH-related enzymes in the regulation of pro- and anti-inflammatory cytokines: a signaling transcriptional scenario for redox(y) immunologic sensor(s)? Mol Immunol. 2005, 42 (9): 987~1014.
    [142] Berndt C, Lillig CH, Holmgren A. Thiol-based mechanisms of the thioredoxin and glutaredoxin systems: implications for diseases in the cardiovascular system. Am J Physiol Heart Circ Physiol. 2007, 292 (3): H1227~1236.
    [143] Hsieh CC, Papaconstantinou J. Thioredoxin-ASK1 complex levels regulate ROS-mediated p38 MAPK pathway activity in livers of aged and long-lived Snell dwarf mice. FASEB J. 2006, 20 (2): 259~268.
    [144] Liu H, Nishitoh H, Ichijo H, et al. Activation of apoptosis signal-regulating kinase 1 (ASK1) by tumor necrosis factor receptor-associated factor 2 requires prior dissociation of the ASK1inhibitor thioredoxin. Mol Cell Biol. 2000, 20 (6): 2198~2208.
    [145] Watson WH, Yang X, Choi YE, et al. Thioredoxin and its role in toxicology. Toxicol Sci. 2004, 78 (1): 3~14.
    [146] Nguyen C, Teo JL, Matsuda A, et al. Chemogenomic identification of Ref-1/AP-1 as a therapeutic target for asthma. Proc Natl Acad Sci U S A. 2003, 100 (3): 1169~1173.
    [147] Ravi D, Muniyappa H, Das KC. Endogenous thioredoxin is required for redox cycling of anthracyclines and p53-dependent apoptosis in cancer cells. J Biol Chem. 2005, 280 (48): 40084~40096.
    [148] England K, Cotter TG. Direct oxidative modifications of signalling proteins in mammalian cells and their effects on apoptosis. Redox Rep. 2005, 10(5): 237~245.
    [149] Thannickal VJ.and Fanburg BL. Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol, Dec 2000, 279: 1005~1028.
    [150] Gracanin M, Davies MJ. hydroperoxides: potential modulation of cell signaling by protein oxidation products. Inhibition of protein tyrosine phosphatases by amino acid, peptide, and protein. Free Radic Biol Med. 2007, 42 (10): 1543~1551.
    [151] Martinez-Ruiz A, Lamas S. Signalling by NO-induced protein S-nitrosylation andS-glutathionylation: Convergences and divergences. Cardiovasc Res. 2007, 75(2): 220~228.
    [152] Klatt P, Lamas S. c-Jun regulation by S-glutathionylation.Methods Enzymol. 2002, 348: 157~174
    [153] Schmitt TL, Hotz-Wagenblatt A, Klein H, et al. Interdependent regulation of insulin receptor kinase activity by ADP and hydrogen peroxide. J Biol Chem. 2005, 280 (5): 3795~3801.
    [154] Biswas S, Chida AS, Rahman I. Redox modifications of protein-thiols: emerging roles in cell signaling. Biochem Pharmacol. 2006, 71 (5): 551~564.
    [155] Karimpour S, Lou J, Lin LL, et al. Thioredoxin reductase regulates AP-1 activity as well as thioredoxin nuclear localization via active cysteines in response to ionizing radiation. Oncogene. 2002, 21 (41): 6317~6327.
    [156] Gopalakrishna R, Jaken S. Protein kinase C signaling and oxidative stress. Free Radic Biol Med. 2000, 28 (9): 1349~1361.
    [157] Outten FW. Iron-sulfur clusters as oxygen-responsive molecular switches. Nat Chem Biol. 2007, 3 (4): 206~207.
    [158] Navarro A, Boveris A. The mitochondrial energy transduction system and the aging process. Am J Physiol Cell Physiol. 2007, 292(2): C670~686.
    [159] Wiswedel I, Keilhoff G, D?rner L, et al. UVB irradiation-induced impairment of keratinocytes and adaptive responses to oxidative stress. Free Radic Res. 2007, 41(9): 1017~1027.
    [160] Ichihashi M.UV-induced skin damage and photo-allergic disease. Arerugi. 2007, 56(7): 670~678.
    [161] Grant WB. Hypothesis-Ultraviolet-B Irradiance and Vitamin D Reduce the Risk of Viral Infections and thus Their Sequelae, Including Autoimmune Diseases and some Cancers. Photochem Photobiol. 2008, 84(2): 356~365.
    [162] Thal DR, Ghebremedhin E, Haass C, et al. UV light-induced autofluorescence of full-length Abeta-protein deposits in the human brain. Clin Neuropathol. 2002, 21(1): 35~40.
    [163] Lavy A, Neeman Y, Fuhrman B. The antioxidative effect of the bacteria Dienococcusradiophilus against LDL lipid peroxidation. Eur J Nutr. 2005, 44(5):281~284.
    [164] Newkirk KM, Chandler HL, Parent AE, et al. Ultraviolet radiation-induced corneal degeneration in 129 mice. Toxicol Pathol. 2007, 35(6): 819~826.
    [165] Makrantonaki E, Zouboulis CC. Molecular mechanisms of skin aging: state of the art. Ann N Y Acad Sci. 2007, 1119: 40~50.
    [166]吴红星,杨剑婷抗辐射剂的研究现状.放射免疫学杂志2005, 1: 58~59
    [167]彭德翔,丁卓平。抗衰老活性肽的研究进展。现代食品科技,2005, 22(2): 1007~2764.
    [168] Sladi? D, Gasi? MJ. Reactivity and biological activity of the marine sesquiterpene hydroquinone avarol and related compounds from sponges of the order Dictyoceratida. Molecules. 2006, 11(1): 1~33.
    [169] Tou JC, Jaczynski J, Chen YC. Krill for human consumption: nutritional value and potential health benefits. Nutr Rev. 2007, 65(2): 63~77.
    [170] Modzelewska A, Sur S, Kumar SK, Khan SR. Sesquiterpenes: natural products that decrease cancer growth. Curr Med Chem Anticancer Agents. 2005, 5(5): 477~499.
    [171] Grynberg A. Hypertension prevention: from nutrients to (fortified) foods to dietary patterns. Focus on fatty acids. J Hum Hypertens. 2005, 19 Suppl 3: S25~33.
    [172] Yuan G, Wahlqvist ML, He G, Yang M, Li D. Natural products and anti-inflammatory activity. Asia Pac J Clin Nutr. 2006, 15(2): 143~152.
    [173] Prommer E. Ziconotide: a new option for refractory pain. Drugs Today (Barc). 2006, 42(6): 369~378.
    [174]于荣敏,严春艳,曲红艳,姚新生。近年来海洋生物活性多肽的研究概况与展望。海洋通报, 2004, 23(3): 1001~6392.
    [175]姚丹,谢成国。正交设计法优选壬苯醇醚膜剂的制备工艺。数理医药学杂志, 2007, 6: 1004-4337
    [176] Thomas-Ahner JM, Wulff BC, Tober KL, et al. Gender differences in UVB-induced skin carcinogenesis, inflammation, and DNA damage. Cancer Res. 2007, 67 (7): 3468~3474.
    [177] Heck DE, Vetrano AM, Mariano TM, et al. UVB light stimulates production of reactive oxygen species: unexpected role for catalase. J Biol Chem. 2003, 278 (25): 22432~22436.
    [178] Afaq F, Syed DN, Malik A, et al. Delphinidin, an anthocyanidin in pigmented fruits and vegetables, protects human HaCaT keratinocytes and mouse skin against UVB-mediatedoxidative stress and apoptosis. J Invest Dermatol. 2007, 127 (1): 222~232.
    [179] Singh RP, Dhanalakshmi S, Mohan S, et al. Silibinin inhibits UVB and epidermal growth factor-induced mitogenic and cell survival signaling involving activator protein-1 and nuclear factor-kappaB in mouse epidermal JB6 cells. Mol Cancer Ther. 2006, 5 (5): 1145~1153.
    [180] Chirico F, Fumelli C, Marconi A, et al. Carboxyfullerenes localize within mitochondria and prevent the UVB-induced intrinsic apoptotic pathway. Exp Dermatol. 2007, 16 (5): 429~436.
    [181] Dhanalakshmi S, Mallikarjuna GU, Singh RP, Agarwal R. Dual efficacy of silibinin in protecting or enhancing ultraviolet B radiation-caused apoptosis in HaCaT human immortalized keratinocytes. Carcinogenesis. 2004, 25(1): 99~106.
    [182] Lu YP, Lou YR, Liao J, et al. Conney AH. Administration of green tea or caffeine enhances the disappearance of UVB-induced patches of mutant p53 positive epidermal cells in SKH-1 mice. Carcinogenesis. 2005, 26(8): 1465~1472.
    [183] Yasuhara S, Zhu Y, Matsui T, et al. Comparison of comet assay, electron microscopy, and flow cytometry for detection of apoptosis. J Histochem Cytochem. 2003, 51 (7): 873~885.
    [184]邵大伟,冯立国,刘从利,等。不同玫瑰品种鲜花蕾抗氧化能力及抗氧化物质含量的研究。山东林业科技,2007, 3: 28~29
    [185] Shin MH, Moon YJ, Seo JE, et al. Reactive oxygen species produced by NADPH oxidase, xanthine oxidase, and mitochondrial electron transport system mediate heat shock-induced MMP-1 and MMP-9 expression. Free Radic Biol Med. 2008, 44(4): 635~645.
    [186] Ushio-Fukai M. VEGF signaling through NADPH oxidase-derived ROS. Antioxid Redox Signal. 2007, 9(6): 731~739.
    [187] Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 2007, 87 (1): 245~313.
    [188] Tsai-Turton M, Luong BT, Tan Y, et al. Cyclophosphamide-induced apoptosis in COV434 human granulosa cells involves oxidative stress and glutathione depletion. Toxicol Sci. 2007, 98 (1): 216~230.
    [189]刘扬,金光辉,刘树铮。流式细胞术在紫外线照射后细胞内活性氧检测中的应用。吉林大学学报,2004, 30(6): 975~977
    [190] Cho SG, Choi EJ. Apoptotic signaling pathways: caspases and stress-activated protein kinases. J Biochem Mol Biol. 2002, 35 (1): 24~27.
    [191] Gong Y, Han XD. Nonylphenol-induced oxidative stress and cytotoxicity in testicular Sertolicells. Reprod Toxicol. 2006, 22 (4): 623~630.
    [192] Jankowska-Steifer E, Jó?wiak J, Grzela T, et al. Vacuolization of HeLa cells by a partially purified Clostridium histolyticum cytotoxin. FEMS Immunol Med Microbiol. 2006, 46 (3): 360~366
    [193] Wu B, Ootani A, Iwakiri R, et al. Ischemic preconditioning attenuates ischemia-reperfusion-induced mucosal apoptosis by inhibiting the mitochondria-dependent pathway in rat small intestine. Am J Physiol Gastrointest Liver Physiol 2004, 286:G580~587.
    [194] Carracedo J, Ramirez R, Soriano S, et al. Caspase-3-dependent pathway mediates apoptosis of human mononuclear cells induced by cellulosic haemodialysis membranes. Nephrol Dial Transplant. 2002, 17: 1971~1977
    [195] Tong L, Chen Z, De Paiva CS, etal. Transglutaminase participates in UVB-induced cell death pathways in human corneal epithelial cells. Invest Ophthalmol Vis Sci. 2006, 47(10): 4295~4301.
    [196] Novak Z, Bonis B, Baltas E, et al. Xenon chloride ultraviolet B laser is more effective in treating psoriasis and in inducing T cell apoptosis than narrow-band ultraviolet B. J. Photochem. Photobiol. B, Biol 2002, 67: 32–38.
    [197] Rezvani HR, Mazurier F, Cario-AndréM, et al. Protective effects of catalase overexpression on UVB-induced apoptosis in normal human keratinocytes. J Biol Chem. 2006, 281 (26): 17999~8007.
    [198] Ma XD, Qiao DF, Tian XM, et al. Mechanism of opening of mitochondrial permeability transition pore induced by arsenic trioxide Ai Zheng. 2006, 25 (1): 17~21.
    [199] Barlow CA, Shukla A, Mossman BT, et al. Oxidant-mediated cAMP response element binding protein activation: calcium regulation and role in apoptosis of lung epithelial cells. Am J Respir Cell Mol Biol. 2006, 34 (1): 7~14.
    [200] Dong Z, Saikumar P, Weinberg JM, et al. Calcium in cell injury and death. Annu Rev Pathol. 2006, 1: 405-434.
    [201] Gniadecki R, Christoffersen N, Wulf HC. Cholesterol-rich plasma membrane domains (lipid rafts) in keratinocytes:importance in the baseline and UVA-induced generation of reactive oxygen species.J Invest Dermatol. 2002, 118 (4): 582~588.
    [202] Qin Yuhong, Shen Hong, Cai Lirong, et al. Naloxone delays the collapse of mitochondrial membrane potential in cultured myocardial cell induced by hypoxia/reoxygenation. International Journal of Emergency and Critical Care Medicine. 2004, 1: 38~42
    [203] García N, Chávez E. Mitochondrial DNA fragments released through the permeability transition pore correspond to specific gene size.Life Sci. 2007, 81 (14): 1160~1166.
    [204] Zhu QX, Ma T, Shen T, et al. Cytotoxicity of trichloroethylene in keratinocytes involving alterations of mitochondrial function and ultrastructure Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi. 2007, 25 (5): 263~266.
    [205] Gonzalez-Garcia M, Perez-Ballestero R, Ding L, et al. bcl-XL is the major&n bsp;bcl-X mRNA form expressed during murine development and its product localizes to mitochondria .Development,1994,120(10):3033~3042
    [206] Sedlak T W,o1tvai Z N. Yang E, et al. Multiple Bcl-2 family members demonstrate selective dimerizations with Bax. Proc Natl Acad Sci USA,1995,92(17):7834~7838
    [207] Culmsee C, Plesnila N. Targeting bid to prevent programmed cell death in neurons. B iochem Soc Trans, 2006, 34 (Pt 6): 1334~1340.
    [208] Jemmerson R, Dubinsky JM,Brustovetsky N, et al. Cytochrome C release from CNS mitochondria and potential for clinical intervention in apoptosis-mediated CNS diseases. Antioxid Redox Signal, 2005, 7(9-10): 1158~1172.
    [209] Ness JM, Harvey CA, StrasserA, et al. Selective involvement of BH3-only Bcl-2 family members Bim and Bad in neonatal hypoxia-ischemia [ J ]. Brain Res, 2006, 1099 (1): 150~159.
    [210] Webster KA, Graham RM, Thomp son JW, et al. Redox stress and the contributions of BH3-only proteins to infarction. Antioxid Redox Signal, 2006, 8 (9-10): 1667~1676.
    [211] Belizário JE, Alves J, Occhiucci JM, et al. A mechanistic view of mitochondrial death decision pores. Braz J Med Biol Res. 2007, 40 (8): 1011~1024.
    [212] Gustafsson AB, Gottlieb RA. Bcl-2 family members and apoptosis, taken to heart. Am J Physiol Cell Physiol. 2007; 292 (1): C45~51.
    [213] Zhang D, Mott JL, Chang SW, et al. Mitochondrial DNA mutations activate programmed cell survival in the mouse heart. Am J Physiol Heart Circ Physiol. 2005, 288 (5): H2476~2483.
    [214] Smolewski P, Grabarek J, Halicka H D, et al. Assay of caspase activation in situ combined with probing plasma membrane integrity to detect three distinct stages of apoptosis .J Immunol Methods, 2002, 265: 111~121 .
    [215] Li LH, Wu LJ, Tashiro S, et al. Silibinin Prevents UV-Induced HaCaT Cell Apoptosis Partly through Inhibition of Caspase-8 Pathway. Biol Pharm Bull. 2006, 29 (6): 1096~1101.
    [216] Carrington PE, Sandu C, Wei Y, et al. The structure of FADD and its mode of interaction with procaspase-8. Mol Cell. 2006, 22 (5): 599~610.
    [217] Sohn D, Schulze-Osthoff K, J?nicke RU. Caspase-8 can be activated by interchain proteolysis without receptor-triggered dimerization during drug-induced apoptosis. J Biol Chem. 2005, 280 (7): 5267~5273.
    [218] Clément V, Dunand-Sauthier I, Wiznerowicz M, et al. UV-induced apoptosis in XPG-deficient fibroblasts involves activation of CD95 and caspases but not p53.DNA Repair (Amst). 2007, 6 (5): 602~614.
    [219] CB Wang, BX Ding, SB Guo, et al. Protective effect of polypeptide from Chlamys farreri on mitochondria in human dermal fibroblasts by ultraviolet B. Acta pharmacologica Sinica. 2003, 24(7): 692~696.
    [220] Sylvester PW. Vitamin E and apoptosis. Vitam Horm. 2007, 76: 329~356.
    [221] Takao J, Ariizumi K, Dougherty II, et al. Genomic scale analysis of the human keratinocyte response to broad-band ultraviolet-B irradiation. Photodermatol Photoimmunol Photomed. 2002, 18 (1): 5~13.
    [222] Ragoussis J, Elvidge G. Affymetrix GeneChip system: moving from research to the clinic. Expert Rev Mol Diagn. 2006, 6 (2): 145~152.
    [223] Oktyabrsky ON, Smirnova GV. Redox regulation of cellular functions. Biochemistry (Mosc). 2007, 72 (2): 132~145.
    [224] Pan MH, Lin CC, Lin JK, et al. Tea polyphenol (-)-epigallocatechin 3-gallate suppresses heregulin-beta1-induced fatty acid synthase expression in human breast cancer cells byinhibiting phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase cascade signaling. J Agric Food Chem, 2007, 55 (13): 5030~5037.
    [225] Wang Q, Zhang QG, Wu DN, et al. Neuroprotection of selenite against ischemic brain injury through negatively regulating early activation of ASK1/JNK cascade via activation of PI3K/AKT pathway. Acta Pharmacol Sin, 2007, 28 (1): 19~27.
    [226] Zhao R, Holmgren A. Ebselen is a dehydroascorbate reductase mimic, facilitating the recycling of ascorbate via mammalian thioredoxin systems. Antioxid Redox Signal. 2004, 6 (1): 99~104.
    [227] Zhang H, Go YM, Jones DP. Mitochondrial thioredoxin-2/peroxiredoxin-3 system functions in parallel with mitochondrial GSH system in protection against oxidative stress. Arch Biochem Biophys. 2007, 465 (1): 119~126.
    [228] Tang WX, Chen XP, Zhao YY, et al. Preparation and identification of monoclonal antibodies against recombinant human thioredoxins.Hybridoma (Larchmt). 2007, 26 (5): 338~341.
    [229]陈海英,战松梅,初晓,等。扇贝多肽对UVB辐射小鼠胸腺淋巴细胞的保护作用.中国海洋药物, 2005, 24 (2): 18~21
    [230] Didier C, Kerblat I, Drouet C, et al. Induction of thioredoxin by ultraviolet-A radiation prevents oxidative-mediated cell death in human skin fibroblasts. Free Radic Biol Med. 2001, 31(5): 585~598.
    [231] Schallreuter KU, Wood JM. Thioredoxin reductase - its role in epidermal redox status. J Photochem Photobiol B. 2001, 64(2-3): 179~184.
    [232] Walter H. Watson, Xianmei Yang and Young Eun Choi, et al. Thioredoxin and Its Role in Toxicology. Toxicol. Sci., 2004, 78: 3~14.
    [233] Kim SD, Moon CK, Eun SY, et al. Identification of ASK1, MKK4, JNK, c-Jun, and caspase-3 as a signaling cascade involved in cadmium-induced neuronal cell apoptosis [J]. Biochem Biophys Res Commun, 2005, 328 (1): 326~334.
    [234] Luyendyk JP, Piper JD, Tencati M, et al. A novel class of antioxidants inhibit LPS induction of tissue factor by selective inhibition of the activation of ASK1 and MAP kinases [J]. Arterioscler. Thromb. Vasc. Biol, 2007, 27 (8): 1857~1863.
    [235] Nadeau PJ, Charette SJ, Toledano MB, et al. Disulfide Bond-mediated multimerization ofAsk1 and its reduction by thioredoxin-1 regulate H2O2-induced c-Jun NH(2)-terminal kinase activation and apoptosis. Mol Biol Cell. 2007, 18(10): 3903~3913.
    [236] Van Laethem A, Nys K, Van Kelst S, et al. Apoptosis signal regulating kinase-1 connects reactive oxygen species to p38 MAPK-induced mitochondrial apoptosis in UVB-irradiated human keratinocytes. Free Radic Biol Med. 2006, 41 (9): 1361~1371.
    [237] Aikin R, Maysinger D, Rosenberg L. Cross-talk between phosphatidylinositol 3-kinase/AKT and c-jun NH2-terminal kinase mediates survival of isolated human islets. Endocrinology. 2004, 145 (10): 4522~4531.
    [238] Song JJ, Lee YJ. Dissociation of Akt1 from its negative regulator JIP1 is mediated through the ASK1-MEK-JNK signal transduction pathway during metabolic oxidative stress: a negative feedback loop. J. Cell Biol. 2005, 170 (1): 61~72.
    [239] Belizario JE, Alves J, Occhiucci JM, et al. A mechanistic view of mitochondrial death decision pores. Braz J Med Biol Res. 2007, 40(8): 1011~1024.
    [240] Yan W, Chen X. Targeted repression of bone morphogenetic protein 7, a novel target of the p53family, triggers proliferative defect in p53-deficient breast cancer cells.Cancer Res. 2007 Oct 1,67(19):9117~9124.
    [241] Ide T. Mechanism of cell proliferation--cell cycle, oncogenes, and senescence Yakugaku Zasshi. 2006, 126(11):1087~1115.
    [242] Lindsay KJ, Coates PJ, Lorimore SA, et al. The genetic basis of tissue responses to ionizing radiation. Br J Radiol. 2007, 80 Spec No 1:S2~6.
    [243] Blattner C, Kannouche P, Litfin M. UV-Induced Stabilization of c-fos and Other Short-Lived mRNAs. Mol Cell Biol 2000, 20: 3616~3625.
    [244] Silvers AL, Bachelor MA, Bowden GT. The role of JNK and p38 MAPK activities in UVA-induced signaling pathways leading to AP-1 activation and c-fos expression. Neoplasia 2003, 5: 319~329
    [245] Li T, Dai W, Lu L. Ultraviolet-induced junD activation and apoptosis in myeloblastic leukemia ML-1 cells. J Biol Chem 2002, 277: 32668~33676.
    [246] Kawasaki H, Komai K, Ouyang Z, et al. c-fos/activator protein-1 transactivates wee1 kinase at G1/S to inhibit premature mitosis in antigen-specific Th1 cells. EMBO J 2001, 20: 4618~4627.
    [247] Wagner EF, Matsuo K. Signalling in osteoclasts and the role of Fos/AP1 proteins. Ann Rheum Dis 2003, 62: 83 ~ 85.
    [248] Huang Y, Keen JC, Hager E, et al. Regulation of Polyamine Analogue Cytotoxicity by c-Jun in Human MDA-MB-435. Mol Cancer Res 2004, 2: 81~88
    [249] Lo PK, Huang SZ, Chen HC, et al. The prosurvival activity of p53 protects cells from UV-induced apoptosis by inhibiting c-Jun NH2-terminal kinase activity and mitochondrial death signaling. Cancer Res 2004, 64: 8736~8745
    [250] Kutuk O, Poli G, Basaga H. Resveratrol Protects Against 4-Hydroxynonenal-Induced Apoptosis by Blocking JNK and c-JUN/AP-1 Signaling. Toxicol Sci 2006, 90: 120~32.
    [251] Saraste A, Pulkki K. Morphologic and biochemical hallmarks of apoptosis. Cardiovasc Res 2000, 45: 528–537.
    [252] Li Y, Arita Y, Koo HC, Davis JM, Kazzaz JA. Related Articles. Inhibition of c-Jun N-terminal kinase pathway improves cell viability in response to oxidant injury. Am J Respir Cell Mol Biol 2003, 29:779~83
    [253] Sethi G, Sodhi A. Activation of c-Jun N-terminal kinase is required for ultraviolet B-induced apoptosis of murine peritoneal macrophages in vitro. J Photochem Photobiol B 2004, 73:133~140
    [254] Bhojani MS, Hamstra DA, Chang DC, et al. Rehemtulla A. Imaging of proteolytic activity using a conditional cell surface receptor. Mol Imaging. 2006, 5: 129~137.
    [255] Fernandez M., Pirondi S, Antonelli T, et al. Role of c-Fos Protein on Glutamate Toxicity in Primary Neural Hippocampal Cells. Journal of Neuroscience Research 2005, 82: 115–125
    [256] Rieger KE, Chu G. Portrait of transcriptional responses to ultraviolet and ionizing radiation in human cells. Nucleic Acids Res 2004, 32: 4786~4803.
    [257] Nilsson M, Dahlman-Wright K, Karelmo C, et al. Elk1 and SRF transcription factors convey basal transcription and mediate glucose response via their binding sites in the human LXRB gene promoter. Nucleic Acids Res. 2007, 35(14): 4858~4868.
    [258] Buchwalter G, Gross C, Wasylyk B. Ets ternary complex transcription factors. Gene, 2004, 324: 1 ~ 14.
    [259] Sharrocks AD. Complexities in ETS-domain transcription factor function and regulation: lessons from the TCF (ternary complex factor) subfamily. The Colworth Medal Lecture.[J]. Biochem Soc Trans 2002, 30:1~9.
    [260] Ibánez A, Sarrias MR, Farnós M, et al. Mitogen-activated protein kinase pathway activation by the CD6 lymphocyte surface receptor. J Immunol. 2006, 177(2):1152~1159.
    [261] Wang T, Zhang X, Li JJ. The role of NF-kappaB in the regulation of cell stress responses. Int Immunopharmacol. 2002, 2(11):1509~1520.
    [262] Ueno H, Kajihara H, Nakamura H, Yodoi J, Nakamuro K. Contribution of thioredoxin reductase to T-cell mitogenesis and NF-kappaB DNA-binding promoted by selenite. Antioxid Redox Signal. 2007, 9(1):115~121.
    [263] Malik G, Gorbounov N, Das S, Gurusamy N, Otani H, Maulik N, Goswami S, Das DK. Ischemic preconditioning triggers nuclear translocation of thioredoxin and its interaction with Ref-1 potentiating a survival signal through the PI-3-kinase-Akt pathway. Antioxid Redox Signal. 2006, 8(11-12):2101~2109.
    [264] Yin J, Huang Z, Wu B, Shi Y, et al. Lornoxicam protects mouse cornea from UVB-induced damage via inhibition of NF-{kappa}B activation. Br J Ophthalmol. 2008, 92(4):562~568.
    [265] Cooper SJ, Bowden GT. Ultraviolet B regulation of transcription factor families: roles of nuclear factor-kappa B (NF-kappaB) and activator protein-1 (AP-1) in UVB-induced skin carcinogenesis. Curr Cancer Drug Targets. 2007, 7(4):325~334.
    [266] Wang P, Song XZ, Bi ZG, Xu AE, Cui YG. Cross-talk between nuclear factor-kappaB and P53 signal pathway in keratinocytes after ultraviolet B irradiation Zhonghua Yi Xue Za Zhi. 2007, 87(43):3088~3091.
    [267] Yamaguchi T, Miki Y, Yoshida K. Protein kinase C delta activates IkappaB-kinase alpha to induce the p53 tumor suppressor in response to oxidative stress. Cell Signal. 2007, 19(10):2088~2097.
    [268] Nakajima T. Signaling cascades in radiation-induced apoptosis: roles of protein kinase C in the apoptosis regulation. Med Sci Monit. 2006, 12(10):RA220~ 224.
    [269] Sodhi A, Sethi G. Role of protein kinase Cdelta in UV-B-induced apoptosis of macrophages in vitro. Cell Signal. 2005, 17(3):377~ 383.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700