用户名: 密码: 验证码:
四维变分同化关键技术研究与并行计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于初始场在数值天气预报中的重要性以及被精确确定的困难性,先进的气象资料同化方法已经成为提高数值天气预报效果的核心技术之一。本文以解决四维变分同化(4D-Var)业务化关键技术为目标,综合运用大气科学、计算数学和计算机应用技术等方面的知识,对制约四维变分同化效果和计算性能的关键算法和并行计算技术进行了研究,并实现了一个基于增量公式的多分辨率四维变分同化试验系统YH4DVAR。论文完成的主要工作和创新成果如下:
     一、研究了四维变分同化基本原理和实现技术,对四维变分同化算法进行了理论推导和分析。针对增量方法中内循环最优化计算量大,容易丢失中小尺度信息等缺点,提出了多分辨率多增量四维变分同化实现方法。多增量方法可以加快内循环最优化迭代的收敛速度,减少计算量,同时保留不同尺度的大气信息,从而能够获得更高分辨率的分析增量和更准确的分析场。针对一般控制变量变换中背景误差协方差水平和垂直相关相分离的简化处理,构造了基于球面小波变换的控制变量转换新算子,通过小波尺度实现了水平和垂直相关的依赖。
     二、对背景误差协方差的统计方法进行了研究。针对传统的NMC统计方法只能估计出气候意义上的或静止的背景误差统计的不足,提出了基于集合预报的NMC方法,实现了具有流依赖(flow-dependent)特征的背景误差协方差统计。针对谱方法估计背景误差统计量的缺点,提出了基于球面小波的全球背景误差协方差模拟方法。理论研究和试验结果表明,基于球面小波的背景误差协方差模型能够模拟出既依赖于不同尺度又依赖于地理空间位置的局地垂直相关矩阵,这对于提高全球范围的中尺度预报效果具有重要意义。
     三、针对非高斯型的观测误差导致非二次型目标函数的问题,将变分原理应用于观测资料质量控制过程中,设计了基于多分辨率迭代的变分质量控制算法。实现了观测资料质量控制和四维变分同化分析过程相结合的技术,其中考虑了显著误差的非高斯性质,在迭代中对目标函数的观测项作了修正。变分质量控制改善了资料的利用情况,对于前一次迭代中被拒绝的观测资料,如果周围的观测与之相一致,则可以在下一次迭代中被重新评估和利用,并最终影响分析场。试验结果表明,通过变分质量控制,资料的利用率和同化效果得到了明显改进。
     四、研究了大规模最优化算法原理和实现技术。为了加快四维变分同化最优化计算迭代收敛速度,在分析共轭梯度方法和有限存储LBFGS方法的基础上,基于预条件和混合迭代步思想,并考虑目标函数的局部特性,提出了迭代时利用线性共轭梯度法进行预条件的改进LBFGS方法。与传统LBFGS方法比较,该方法能够保证更快地收敛。数值实验表明,当目标函数不是严格的二次型时,计算性能的提升更加明显,这对于采用复杂处理而导致目标函数非严格二次型的四维变分同化具有很好的应用前景。
     五、针对四维变分同化系统的计算性能瓶颈,研究了高分辨率谱模式和变分同化框架的大规模可扩展并行算法。针对谱模式的两类空间计算(格点空间和谱空间)和两类变换(傅立叶变换和勒让德变换)算法特点,提出了格点空间的二维非规则区域分解算法,解决了一维数据划分导致的计算负载不平衡和通讯效率低的问题。针对四维变分同化的计算特点,提出了基于类型的观测资料混合数据划分算法,有效地解决了由于观测资料的随机分布导致的观测空间计算负载不平衡。实现了基于二维数据剖分和三维数据转置的谱模式并行计算和四维变分同化框架的多阶段并行。实际分析场数据的预报试验表明,谱模式512个进程并行计算能够在15分钟以内完成5天预报,完全满足业务预报的时效性要求。
     六、研究了四维变分系统设计和实现技术。针对四维变分同化多任务、复杂数据流、计算量大的特点,基于多分辨率多增量算法设计了四维变分同化计算流程,建立了业务时序图。针对四维变分同化分析效果和计算性能瓶颈问题,采用论文提出的基于球面小波的背景误差协方差模型、变分质量控制、基于小波的控制变量变换、迭代时预条件LBFGS算法,和高分辨率谱模式、变分同化框架的并行计算技术实现了一个四维变分同化试验系统YH4DVAR。通过在我军某气象中心的试运行表明,YH4DVAR四维变分同化系统可以同化12小时时间窗口的气象观测资料,得到与模式协调一致的分析场,与模式一起组成的同化预报系统可以取得较好的预报效果。
Because of the importance of initial fields to the numerical weather prediction (NWP) and the difficulty of them being precisely determined, the advanced data assimilation techniques have become one of the most pivotal technologies to improve the quality of NWP. This thesis concentrates on the goal to resolve the key technologies to establish an operational four-dimensional variational assimilation (4D-Var) system. With the comprehensive utilization of various knowledge from meteorology, computational mathematics and computer application technology, this thesis researches the key algorithms and the parallel computing techniques which are crucial to improve assimilation effect and computing efficiency, and an experimental multi-resolutional 4D-Var system YH4DVAR based on incremental formulation is implemented. The main contents and innovations are as follows:
     (1) The basic principle and implementation technologies of 4D-Var are systematically investigated and the algorithms of it are theoretically deduced and analyzed as well. Against the defects of large computing cost and the information loss of medium and small scales in the inner loop optimization, a multi-resolutional and multi-incremental implementation of 4D-Var is proposed. The multi-incremental method can speed up the convergence of inner loop optimization iteration, reduce the computation cost and maintain the meteoric information of various scales. Therefore, we can obtain the incremental analysis with higher resolution and the analysis fields with more accuracy. Aimed at the simplification of which vertical and horizontal background error covariances are computed separately in the procedure of control variable transformation, a new control variable transformation operator is constructed based on the spherical wavelet transformation. The dependence between horizontal and vertical covariances is managed in the wavelet scale.
     (2) The statistical methods of background error covariances are investigated. The traditional NMC methods only estimate the background error theoretically or statically, so a NMC method based on the collective forecast is proposed, which can estimate the background error statistics flow-dependently. Against the defects while estimating the background error statistics with spectral method, a new method for simulating the global background error covariances is proposed basing on the spherical wavelet. It is proved theoretically and experimentally that the background error covariances model based on the spherical wavelet can get the local vertical matrix which depends on various scales and positions in the geographic space, which is quite important to improve the quality of global mesoscale forecast.
     (3) Considering the situation that the non-Gaussian observation error makes the cost function non-quadratic, a variational quality control algorithm based on the multi-resolutional iteration is proposed, in which the variation principle is applied to the quality control of observations. The quality control of observations and the procedure of 4D-Var are implemented integratedly and the observation term of cost function is modified in the iteration. The non-Gaussian property of obvious errors is also taken into consideration. The variational quality control can improve the utilization of various data. The observations, which are refused in the latest iteration, can be estimated and used again in the next iteration if they are consistent with the observations around. Therefore, they can affect the analysis fields all the same. It is indicated from the experiment results that the utilization of observations and quality of data assimilation make a significant improvement by the variational quality control.
     (4) The principle and implementation methods of massive optimal algorithms are investigated. In order to speed up the convergence of optimization iteration in the 4D-Var, based on the analysis of the conjugate gradient method and the LBFGS method, a new preconditioned LBFGS method is proposed, which uses the linear conjugate gradient method to perform the preconditioning. The new method builds upon the preconditioning and hybrid iteration step theories and takes the locality of cost function into consideration as well. Compared to the traditional LBFGS method, the new method has a sooner convergence. Numerical experiments show that the performance improvement is even more dramatic when the cost function is not strictly quadric. Therefore, the new method is quite adaptive to the 4D-Var of which the cost function is usually not strictly quadric because of the complex processing.
     (5) Against the computational bottlenecks of 4D-Var system, the massive scalable parallel algorithm for the spectral model with high resolution and variation framework is investigated. Considering the properties of the two space computation (grid space and spectrum space) algorithms and the two transformation (Fourier transformation and Legendre transformation) algorithms, a two-dimensional irregular domain decomposition algorithm is proposed, which eliminates the load imbalance and the low communication efficiency problems appearing in the one-dimensional data partition mode. Considering the computational properties of 4D-Var, an observation hybrid data partition algorithm is proposed according to the observation types, which effectively solves the load imbalance while calculating the observation space resulting from the randomly-distributed observations. This thesis parallelizes the spectrum model and 4D-Var framework according to the two-dimensional data partition and three-dimensional data transform. The forecasting experiment with real analysis fields indicates that it can dramatically satisfy the real-time requirements of the operational forecast, since the five days' forecast can be done in fifteen minutes by spectrum model with 512 processes.
     (6) The design and implementation of 4D-Var system is investigated. As 4D-Var system has the features of multitasking, complex data flow and huge computation, the computing flow is carefully designed and the operational time sequence is set up for the 4D-Var system based on the multi-resolutional multi-incremental algorithm. Considering the analysis effect and computational bottleneck, an experimental 4D-Var system YH4DVAR is implemented to which many new technologies above are applied, including background error covariance model based on the spherical wavelet, variational quality control, control variables transformation based on the wavelet, LBFGS algorithm with iteration preconditioning and the parallel computing of spectrum model with high resolution and the variational data assimilation framework. Being experimentally deployed in one of the PLA weather forecasting center, YH4DVAR can assimilate the observations within 12-hour assimilation window and get the analysis fields consistent with the model. YH4DVAR can achieve wonderful forecasting quality when it is combined with the model.
引文
[1]Panofsky,H.A.Objective weather map analysis,J Meteor,1949(6):386-392
    [2]Bergthorsson P and Doos B.Numerical weather map analysis,Tellus,1955(7):329-340
    [3]Gandin L.Objective Analysis of Meteorological Field,English translation (Jerusalem:Israel Program for Scientific Translation),1963.
    [4]Kruger H.A statistical-dynamical objective analysis scheme,Canadian Meteorological Memories,1964(18):47-64
    [5]Eddy A.The objective analysis of horizontal wind divergence fields,Quart J Roy Meteor Soc,1964(90):424-440
    [6]Daley R.Atmospheric Data Analysis,New York:Cambridge University Press,1991
    [7]Fisher,M.,and Andersson E.Developments in 4D-Var and Kalman filtering,ECMWF Tech.Memo.347,2001:1-38
    [8]顾震潮.作为初值问题的天气形式预报与由地面天气历史演变作预报的等值性,气象学报,1985(2):10-15
    [9]丑纪范.天气数值预报中使用过去资料的问题,中国科学,1974(6):635-644
    [10]Morel,P.,Lefever,G.and Rabreau,G.On initialization and non-synoptic data assimilation,Tellus,1971(23):197-206
    [11]Talagrand,O.On the mathematics of data assimilation,Tellus,1981(33):321-339
    [12]Le Dimet and Talagrand O.Variational algorithms for analysis and assimilation of meteorological observations:Theoretical aspects,Tellus,1986(38A):97-110
    [13]D.C.Liu and J.Nocedal On the limited memory BFGS method for large scale optimization,Math.Prog,1989(45):503-528
    [14]Courtier,J Derber,RM Errico,J-F Louis and T Vukicevic Review of the use of adjoint,variational methods and Kalman filters in meteorology,Tellus,1993(45A):343-357
    [15]Rabier,F.and Courtier,P.Four-dimensional assimilation in the presence of baroclinic instability,Q J R Meteor Soc,1992(118):118,649-118,672
    [16]Zupanski M.Regional four-dimensional variational data assimilation in a quasi-operational forecasting environment,Mon Wea Rev,1993(21):2396-2408
    [17]Courtier,P.,Thepaut J.N.and Hollingsworth A.A strategy for operational implemtntation of 4D-Var,using an incremental approach,Quart J Roy Meteor Soc,1994(120):1367-1387
    [18]Talagrand,O.and Courtier,P.Variation assimilation of meteorological observations with the adjoint and vorticity equation.Part Ⅰ:Theory,Q J R Meteorol Soc,1987(113):1311-1328
    [19]Zupanski,D.A general weak constraint applicable to operational 4D-Var data assimilation systems,Mon Wea Rev,1997(125):2274-2292
    [20]Courtier,P.Dual formulation of four dimensional variational assimilation,Q J R Meteorol Soc,1997(123):2449-2461
    [21]Kalman R E.A new approach to linear filtering and prediction problems,Transaction of the ASME,Journal of Basic Engineering,1960(82 D):34-45
    [22]Mitchell H L.and Houtekamer P L.An adaptive ensemble Kalman filter,Mort Wea Rev,2000(128):416-433
    [23]Hamill T M,Whitaker J S.and Snyder C.Distance-dependent filtering of backgrand error covariance estimates in an ensemble Kalman filter,Mort Wea Rev,2001(129):2776-2790
    [24]Enderson J L.An ensemble adjustment Kalman filter for data assimilation,Mon Wea Rev,2001(129):2884-2903
    [25]Bishop C H.Etherton B J.and Majumdar S.Adaptive sampling with the ensemble transform Kalman filter,part Ⅰ,Mon Wea Rev,2001(129):420-436
    [26]L.Isaksen,M.Hamrud.ECMWF operational forecasting on a distributed memory platform:Analysis.The 7th ECMWF Workshop on the Use of Parallel Processors in Meteorology,Shinfield Park,Reading,England,1996
    [27]J.Rantakokko.Strategies for parallel variational data assimilation,Parallel Computing,1997(23):2017-2039
    [28]P.White,et al.IFS documentation,Part Ⅵ:Technical and computational procedures,http://www.ecmwf.int/ifsdocs/Technical/index.html,2000-02-29
    [29]D.Barker,W.Huang,Runguo Y.A three-dimensional(3DVAR) data assimilation system for use with MM5:Implementation and initial results,Mon Wea Rev,2004(132):897-914
    [30]张卫民、朱小谦、赵军,三维变分同化的多阶段区域分解算法,计算机研究与发展,2005,42(6):1059-1064
    [31]Xiaoqian Zhu,Weimin Zhang,Junqiang Song,Parallel Computing of GRAPES 3D-Variational Data Assimilation System,the 7th international conference on parallel processing and applied mathematics(PPAM 2007),Poland,2007.9
    [32]黄思训、伍荣生编著.大气科学中的数学物理问题,气象出版社,2001年3月.
    [33]庄世宇、薛纪善等.GRAPES全球三维变分同化系统:基本设计方案与理想试验,大气科学,2005,29(6):908-918
    [34]S.R.H.Rizvi,Recent Developments in Data Assimilation at NCAR,National Center For Atmospheric Research,NCAR/MMM,Bolder,CO-80307,USA, 2004
    [35]薛纪善、庄世宇、朱国富、张华.GRAPES 3DVAR系统的科学设计方案,中国气象科学研究院气象数值预报研究中心,2003
    [36]Courtier,P.and Talagrand O.Variational assimilation of meteorological observations with the direct and adjoint vorticity equation.Part Ⅱ:Numerical results,Q J R Meteorol Soc,1987(113):1329-1368
    [37]Courtier,P.and Talagrand O.Variational assimilation of meteorological observations with the direct and adjoint shallow water equations,Tellus,1990(42A):531-549
    [38]Courtier,P.,Derber J.,Errico RM,Louis J-F and Vukicevic T.Review of the use of adjoint,variational methods and Kalman filtersin meteorology,Tellus,1993(45A):343-357
    [39]Ralf G.and Thomas K.Recipes for Adjoint Code Construction.ACM Trans On Math.Software,1998,24(4):437-474
    [40]Ralf Giering and Thomas Kaminski,Using tamc to generate efficient adjoint code:Comparison of hand written and automatically generated code for evaluation of first and second derivatives.In C.Faure,editor,Automatic differentiation for adjoint code generation,pages 31-37.INRIA,Rapport de recherche 3555,November 1998
    [41]Courtier,P.,Thepaut J.N.and Hollingsworth A.A strategy for operational implemtntation of 4DVAR,using an incremental approach,Quart J Roy Meteor Soc,1994(120):1367-1387
    [42]Saunders R.W.and Matricardi M.A fast forward model for ATOVS,Tech.Proc.9th International TOVS Study Conf.,Igls,Austria,20-26 February,1997
    [43]王寅虎,孙龙祥.应用ATOVS资料反演大气温湿廓线,气象科学,2001(3):348-354
    [44]Hersbach,H.Isaksen,L.Leidner,S.M.and Janssen P.A.E.M.The impact of Sea Winds scatterometer data in the ECMWF 4D-Var assimilation system,2004.personal communication
    [45]廖洞贤,王两铭.数值天气预报中的若干新技术。北京:气象出版社。1995,121-126
    [46]王跃山.客观分析和四维同化——站在新世纪的回望(Ⅱ)客观分析的主要方法(1),气象科技,2001(1):1-9
    [47]王跃山.客观分析和四维同化——站在新世纪的回望(Ⅱ)客观分析的主要方法(2),气象科技,2001(3):1-11
    [48]潘宁,董超华,张文建.变分同化及卫星资料同化,气象科技,2001(2):29-36
    [49] Lindskog M., K. Salonen, H. Jarvinen, and Michelson D.B. Doppler radar wind data assimilation with HIRLAM 3DVAR, Mon Wea Rev, 2004(132): 1081-1092
    [50] Zhang F., C. Synder and Sun J. Impacts of initial estimate and observations on the convective-scale data assimilation with an ensemble Kalman filter, Mon Wea Rev, 2004(132): 1238-1253
    [51] Sun, J. and Crook N.A. Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments, J Atmos Sci, 1997(54): 1642-1661
    [52] Sun, J. and Crook N.A. Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint .Part II: Retrieval experiments of an observed Florida convective storm, J Atmos Sci, 1998(55): 835-852
    [53] 王东晓,朱江.伴随方法在海洋数值模式中的应用, 地球物理研究, 1997(1): 98-107
    
    [54] Li,Z. J., Navon,I. M. and Zhu,Y. Q. Performance of 4DVAR with different strategies for the use of adjoint physics with the FSU global spectral model, Mon Wea Rev, 2000(118): 669-688
    [55] Le Dimet and Talagrand O. Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects, Tellus, 1986(38A): 97-110
    [56] Lorenc A. C. A global three-dimensional multivariate statistical interpolation scheme, Mon Wea Rev, 1981(109): 709-721
    [57] Lorenc A. C. Analysis methods for numerical weather prediction, Q J R Meteorol Soc, 1986(112): 1177-1194
    [58] Lorenc A. C. Optimal nonlinear objective analysis, Q J R Meteorol Soc, 1988(114): 205-240
    [59] Bouttier,F. and Coutier,P. Data assimilation and Concepts and methods, ECMWF train notes, march 1999
    
    [60] Veese F. Multiple-truncation incremental approach for four-dimensional variational data assimilation, Q J R Mereorol Soc, 1998(124):1889-1908
    [61] Zupanski M. A preconditioning algorithm for large-scale minimization programs, Tellus, 1993(45A): 478-492
    [62] Fenelon M.C. Preconditioned conjugate-gradient-type methods for large-scale unconstrained optimization, Ph.D. Dissertation, Stanford University
    [63] Lions J. L. Optimal control of systems governed by partial differential equations, Spring-Verlag, Berlin, 1971
    [64] Cardinali,C.,Pezzulli,S. and Anderson,E. Influence-matrix diagnostic of a data assimilation system, Q J R Meteorol Soc, 2004(130): 2767-2786
    [65] Bouttier, F., and Coauthors The ECMWF implementation of three dimensional variational assimilation (3D-Var). Part I: Formulation, Quart J Roy Meteor Soc, 1998(124): 1783-1808
    [66] Bouttier, F., Derber, J. and Fisher, M. The 1997 revision of the Jb term in 3D/4D-Var, ECMWF Tech.Memo. 238, 1997
    [67] Houtekamer, P. L. and Mitchell H. L. Data assimilation using an ensemble Kalman filter technique, Mon Wea Rev, 1998(126): 796-811
    [68] Houtekamer, P.L. and Mitchell,H.L. A sequential ensemble Kalman filter for Atmospheric Data Assimilation, Mon Wea Rev, 2001(129): 123-137
    [69] Fisher, M. and Andersson E. Developments in 4D-Var and Kalman filtering, ECMWF Tech. Memo. 347, 2001: 38 pp
    [70] Fisher, M. Background error covariance modelling. Proc. Of ECMWF Seminar on Recent Developments in Data Assimilation for Atmosphere and Ocean, Reading, 8-12 September 2003,2004:45-64
    [71] Bouttier F., Courtier P. Data assimilation concepts and methods, Meteorological Training Course Lecture Series, ECMWF, 1999
    [72] Drozdov O. and Shepelevskii A. The theory of interpolation in a stochastic field of meteorological elements and its application to meteorological map and network rationalization problems, Trudy Niu Gugms Series, 1946: 1-13
    [73] Rutherford I. Data assimilation by statistical interpolation of forecast error fields, JAtmos Sci, 1972(29): 9-15
    [74] Hollingsworth, A. and Lonnberg, P. The statistical structure of short-range forecast errors as determined from radiosonde data. Part I: The wind field, Tellus, 1986(38A): 111-136
    [75] Lonnberg, P. and Hollingsworth, A. The statistical structure of short-range forecast errors as determined from radiosonde data. Part II: The covariance of height and wind errors, Tellus, 1986(38A): 137-161
    [76] Ghil M., Cohn S., Tavantzis J., Bube K., Issacson E. Applications of estimation theory to numerical weather prediction. In Dynamic meteorology: data assimilation methods, Bengtsson L. , Ghil M. , Kallen E. New York:Springerverlag, 1981: 139-224
    [77] Dee, D. and Gaspari G. Development of anisotropic correlation models for atmospheric data assimilation, Preprint volume, 11th Conf. on Numerical Weather Prediction, August 19-23, 1996, Norfolk, VA, 1996: 249-251
    [78] Balgovind, R. A stochastic-dynamic model for the spectral structure of forecast errors, Mon Wea Rev, 1983(111): 701-721
    [79] Xu Qin, Li Wei, Andrew Van Tuyl, Barker Edward H. Estimation of three-dimensional error covariances. Part I: Analysis of height innovation vectors, Mon Wea Rev, 2001(129): 2126-2135
    [80] Xu Qin, Wei L. Estimation of three-dimensional error covariances. Part II: Analysis of wind innovation vectors, Mon Wea Rev, 2001(129): 2939-2954
    [81] Parrish D. F., and J. C. Derber. The National Meteorological Center's Spectral Statistical Interpolation analysis system, Mon Wea Rev, 1992(120): 1747-1763
    [82] Rabier, F., A. McNally, E. Anderson, P. Courtier, P. Unden, J. Eyre, A. Hollingsworth, and Bouttier F. The ECMWF implementation of three-dimensional variational assimilation (3DVar). II: Structure functions, Quart J Roy Meteor Soc, 1998(124): 1809-1829
    [83] Rabier, F., Jarvinen, H.,Klinker, E., Mahfouf, J.F. and Simmons, A. The ECMWF operational implementation of four dimensional variational assimilation. I: Experimental results with simplified physics, Q J R Meteorol Soc, 2000(126): 1148-1170
    [84] Ingleby, B. The statistical structure of forecast errors and its representation in the Met. Office Global 3-D variational data assimilation scheme, Q J R Meteorol Soc, 2001(127): 209-231
    [85] Dee. D. P. Maximum-likelihood estimation of forecast and observation error covariance parameters. Part I: Methodology, Mon Wea Rev, 1999(127): 1822-1834
    [86] Dee. D. P. Maximum-likelihood estimation of forecast and observation error covariance parameters. Part II: Applications, Mon Wea Rev, 1998(127): 1835-1849
    [87] Buehner, M. Ensemble-derived stationary and flow-dependent background error covariances: Evaluation in a quasi-operational NWP setting. Q J R Meteorol Soc, 2005(131): 1013-1044
    [88] Buehner, M., P. Gauthier and Liu Z. Evaluation of new estimates of background and observation error covariances for variational assimilation, Q J R Meteorol Soc, 2006(131): 3373-3383
    
    [89] Yaglom A. Stationary random functions, English edition, New York:Dover, 1973
    [90] Buell C. Correlation functions for wind and geopotential on isobaric surfaces, J Appl Meteor, 1972(11): 51-59
    [91] Julian P., Thiebaux H.J. On some properties of correlation functions used in optimum interpolation schemes, Mon Wea Rev, 1975(103): 605-616
    [92] Kistler R, E Kalnay, W Collins, S Saha and G White. The NCEP/NCAR 50-Year reanalysis: monthly means CD-ROM and documentation, Bull Amer Meteor Soc, 2001(82): 247-268
    [93] Miller R N, M Ghil and F Gauthiez. Advanced data assimilation in strongly nonlinear dynamical systems, J Atmos Sci, 1994(51): 1037-1056
    [94] Hamill, T. M., J. S. Whitaker and Snyder, C. Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter,Mon Wea Rev,2001(129):2776-2790
    [95]Lorenc,A.C.Modelling of error covariances by four-dimensional variational data assimilation,Quart J Roy Met Soc,2003(129):3167-3182
    [96]Bouttier,F.and Coauthors.The ECMWF implementation of three dimensional variational assimilation(3D-Var).Part Ⅰ:Formulation,Quart J Roy Meteor Soc,1998(124):1783-1808
    [97]Barker,D,M.A General Formulation for 3DVAR Control Variables,NCAR Technical Note,1999:1-22
    [98]Desroziers,G.A coordinate change for data assimilation in spherical geometry of frontal surfaces,Mon Wea Rev,1997(125):3030-3038
    [99]Benjamin,S.G.An isentropic Mesoscale analysis system and its sensitivity to aircraft and surface observations,Mon Wea Rev,1989(117):1586-1603
    [100]Derber,J.and Bouttier,F.A reformulation of the background error covariance in the ECMWF global data assimilation system,Tellus,1999(51A):195-221
    [101]Courtier,P.and Coauthors.The ECMWF implementation of three-dimensional variational assimilation(3D-Var).Ⅰ:Formulation,Quart J Roy Meteor Soc,1998(124):1783-1807
    [102]Purser,R.,W.-S.Wu,Parrish D.Numerical aspects of the application of recursive filters to variational statistical analysis.Part Ⅰ:Spatially homogeneous and isotropic gaussian covariances,Mon Wea Rev,2003(131):1524-1535
    [103]Purser,R.,W.-S.Wu,Parrish,D.Numerical aspects of the application of recursive filters to variational statistical analysis.Part Ⅱ:Spatially inhomogeneous and anisotropic general covariances,Mon Wea Rev,2003(131):1535-1548
    [104]Weaver,A.and Courtier,P.Correlation modelling on the sphere using a generalized diffusion equation.Quart J Roy Meteor Soc,2001(127):1815-1840
    [105]Berre,L.Estimation of synoptic and mesoscale forecast error covariances in a limited area model.Mort Wea Rev,2000(128):644-667
    [106]成礼智、王红霞,小波的理论与应用,北京:科学出版社,2004,420pp.
    [107]Alex Deckmyn and Loik Berre.A Wavelet Approach to Representing Background Error Covariances in a Limited-Area Model.Mon Wea Rev,2005(133):1279-1294
    [108]Kaiser G.Quantum physics,relativity and complex spacetime,North-Holland Mathematics Studies,vol.163,North-Holland,Amsterdam,1990,ISBN 0-444-88465-3
    [109]Duffin R.J.and A.C.Schaeffer.A class of nonharmonic Fourier series.Trans Amer Math Soc 1952(72):341-366
    [110]Daubechies,I.Ten lectures on wavelets,CBMS-NSF Series on Applied Mathematics.Philadelphia,PA:SIAM.,1992,343
    [111]Davis P.J.Interpolation and Approximation.Blaisdell Publishing Company.1963
    [112]Fu Weiwei,Zhou Guangqing and WangHuijun.Ocean Data Assimilation with Background Error Covariance Derived from OGCM Outputs.Adv Atmos Sci,2004,21(2):181-192
    [113]庄照荣,薛纪善,庄世宇,朱国富.资料同化中背景场位势高度误差统计分析的研究.大气科学,2006,30(3):533-544
    [114]庄照荣.背景场误差的结构特征及其对三维变分同化影响的研究.硕士学位论文,中国气象科学研究院,2004.87页
    [115]朱立娟.背景场误差协方差估计技术的应用研究.硕士学位论文.南京信息工程大学,2005.60页
    [116]Purser R.J.A new approach to the optimal assimilation of meteorological data by iterative Bayesian analysis.10th Conf.on Weather Forecasting and Analysis,American Meteororlogical Society,1984:102-105
    [117]Lorenc A.C.Analysis methods for the quality control of observation.Proc.ECMWF workshop on "The use and quality control of meteorological observation for numerical prediction",6-9 Nov.1984:397-428
    [118]Dharssi I.,Lorenc A.C.and Ingleby N.B.Treatment of gross errors using maximum probability theory.Q J R Meteorol Soc,1992(118):1017-1036[
    119]Ingleby N.B.and Lorenc A.C.Bayesian quality control using multivariate normal distributions.Q J R Meteorol Soc,1993(119):1195-1225
    [120]Lorenc A.C.A global three-dimensional multivariate statistical interpolation scheme.Mon Wea Rev,1981(109):701-721
    [121]Andersson E.and J(a|¨)rvinen H.Variational quality control.Q J R Meteorol Soc,1999(125):697-722
    [122]Lorenc A.C.and Hammon P.Objective quality control of observation using Bayesian methods:Theory and a practical implementation.Q J R Meteorol Soc,1988(114):515-543
    [123]Lorenc A.C.Analysis methods for numerical weather prediction.Q J R Meteorol Soc,1986(112):1177-1194
    [124]Andersson E.and J(a|¨)rvinen H.Variational quality control.ECMWF Tech.Memo.250,2002
    [125]Sarukhanian E.I.Data quality control.ECMWF workshop on "Data quality control procedures",Reading,6-10 March.1989:13-24
    [126]Gandin L.S.Complex quality control of meteorological observations.Mon Wea Rev,1988(116):1137-1156
    [127]Collins W.G.and Gandin L.S.Comprehensive hydrostatic quality control at the National Meteorological Centre. Mon Wea Rev, 1995(18): 2754-2767
    [128] Atkins M.J. Quality control, selection and processing of observations in the Meteorological Office's operational forecast system. ECMWF workshop on "The Use and Quality Control of Meteorological Observations", Reading, 6-9 November 1984,1984: 255-290
    [129] Jarvinen H. and Unden P. Observation screening and first guess quality control in the ECMWF 3D-Var data assimilation system. ECMWF Tech.Memo.236, 1997
    [130] Hollingsworth A. The role of real-time four-dimensional data assimilation in the quality control, interpretation, and synthesis of climate date. Oceanic Circulation Models: Combining data and dynamics Ed. D. L. T. Anderson and J. Willebrand. Kluwer Academic Publishers, 1989
    [131] Fletcher R., An overview of unconstrained optimization. Tech. Report NA/149, Dept. of Mathematics and Computer Science, University of Dundee, 1993
    [132] Gould N.I.M. and Toint Ph.L. How mature is nonlinear optimization. Acta Numerica, 2005: 299-361
    [133] Nocedal J. Theory of algorithms for unconstrained optimization. Acta Numerica, 1992: 199-242
    [134] Sartenaer A. Some recent developments in nonlinear optimization algorithms. ESAIM: PROCEEDINGS, 2003(13): 41-64
    [135] Fenelon M.C. Preconditioned conjugate-gradient-type methods for large-scale unconstrained optimization. Ph.D. Dissertation, Stanford University
    [136] Han J., Liu G. and Sun D.,et al. Relaxing sufficient descent condition for nonlinear conjugate gradient methods, Tech. Report, Institute of Applied Mathematics, Academia Sinica, China, 1996
    [137] Byrd R.H., Nocedal J. and Zhu C. Towards a discrete Newton method with memory for large scale optimization, Nonlinear Optimization and Applications, 1996: 1-12
    [138] Liu D.C and Nocedal J. On the limited memory BFGS method for large scale optimization. Math. Prog., 1989(45): 503-528
    [139] Morles J.L. and Nocedal J., Enriched methods for large-scale unconstrained optimization, Computational Optimization and Applications, 2002(21): 143~ 154
    [140] Daescu N.D. and Navon L.M. An analysis of a hybrid optimization method for variational data assimilation. International Journal of Computational Fluid Dynamics, 2003(17): 299-306
    [141] Das B., Meirovitch H. and Navon I.M. Performance of hybrid methods for large scale unconstrained optimization as applied to models of proteins, J.Comput.Chem., 2003(24): 1222-1231
    
    [142] 袁亚湘, 孙文瑜著, 最优化理论与方法, 北京: 科学出版社, 1997
    [143]Fletcher R.著,游兆永,徐成贤,吴振国,胡月梅译,实用最优化方法,天津:天津科技翻译出版公司,1990
    [144]Gilbert J.C.and Nocedal J.Global convergence properties of conjugate gradient methods for optimization.SIAM Journal on Optimization,1992,2(1):21-42
    [145]Nash S.G.A survey of truncated-Newton methods,Journal of Computational and Applied Mathematics,2000(124):45-49
    [146]Nocedal J.Large Scale Unconstrained Optimization,The State of the Art in Numerical Analysis,Ed.A Watson and I.Duff,Oxford University Press,1996
    [147]李晓梅、任兵、宋君强,并行计算与偏微分方程数值解,长沙:国防科技大学出版社,1990
    [148]Thomas J.W.Numerical partial differential equations-finite-difference methods.Springer Verlag,New York,1997
    [149]Lloyd N.T.Finite difference and spectral methods for ordinary and partial differential equation,1996
    [150]Girault V.,Raviart P.A.Finite element approximation of the Navier-Stokes equations.Lecture notes in mathematics,1979(794),Spring-Verla,NewYork
    [151]Canuto C.,Hussaini M.Y.etc.Spectral methods in fluid dynamics.Springer-Verlag,New York,1988
    [152]向新民,谱方法的数值分析,北京:科学出版社,2000
    [153]Orszag S.A.Transform method for calculation of vector coupled sums:Application to the spectral form of the vorticity equation.Journal of atmosphere and science.1970(27):890-895
    [154]Kreiss H.O.,Oliger J.Comparison of accurate methods for the interation of hyperbolic equations.Tellus,1972(24):199-215
    [155]Orszag S.A.,Comparison of pseudo spectral and spectral approximations.Study and application of math.,1972(51):253-259
    [156]D.W.Dent,Parallelzation of the IFS Model.ECMWF Workshop on the Use of Parallel Processors in Meteorology,ECMWF,November 1996,73-87
    [157]Saulo R.M.Barros,Tuomo Kauranne.On the Parallelization of Global Spectral Weather Models.Parallel Computing 1994(20):1335-1356
    [158]John Drake,Ian Foster.Introduction to the Special Issue on Parallel Computing in Climate and Weather Modeling.Parallel Computing,1995(21):1539-1544
    [159]Richardson L F,Weather Prediction by Numerical Process,Cambridge University Press,1922,reprinted by Dover.New York.1965
    [160]TOP500 Description,http://www.top500.org/project/top500_description,November 2007
    [161]Ritchie,H.Application of the semi-Lagrangian method to a spectral model of the shallow water equations.Mon.Wea.Rev.1988(116):1587-1598,
    [162]Ritchie,H.Application of the semi-Lagrangian method to a multilevel spectral primitive-equations model.Q.J.R.Meteorol.Soc.,1991(117):91-106
    [163]Simmons,A.J.and Burridge,D.M.An energy and angular momentum conserving vertical finite difference scheme and hybrid vertical coordinates.Mon.Wea.Rev.,1981(109):758-766
    [164]资料同化和中期数值预报,国家气象中心编译,北京:气象出版社,1991
    [165]McDonald,A.A semi-Lagrangian and semi-implicit two time level integration scheme.Mon.Wea.Rev.,1986(114):824-830
    [166]McDonald,A.and Bates,J.R.Semi-Lagrangian integration of a gridpoint shallow-water model on the sphere.Mon.Wea.Rev.,1989(117):130-137
    [167]Purser,R.J.and Leslie,L.M.A semi-implicit semi-Lagrangian finite-difference scheme using high-order spatial differencing on a nonstaggered grid.Mon.Wea.Rev.,1988(116):2069-2080
    [168]Hortal,M.and Simmons,A.J.Use of reduced Gaussian grids in spectral models.Mon.Wea.Rev.,1991(119):1057-1074

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700