用户名: 密码: 验证码:
北京平原区地下水源热泵数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下水源热泵空调技术作为一种具有绿色环保、高效节能、运行成本低、可持续利用等特点的新型的采能技术,在国内外已经得到了广泛应用。本文应用FEFLOW5.4有限元模拟软件,针对北京平原区地下水源热泵适宜区,较适宜区及一般适宜区分别建立潜水和承压水两种类型的含水层采能数值模拟模型。研究对井及多井系统下,水文地质参数、井结构参数、抽灌量、回灌温差和地下水天然流场等因素对地温场的影响。
     潜水含水层模拟结果表明:考虑地层与大气热交换能更好的刻画含水层温度在垂向上的分布;考虑大气降雨补给,地下水源热泵系统在制冷期内,含水层温度场随地下水位的上升有上移趋势;由于潜水区内天然地下水流场活跃,热泵回灌水形成的温度场分布形状受天然水动力场影响较大,但天然地下水流场的存在有利于提高系统采能效率。承压含水层模拟结果表明:含水层温度场分布主要受系统抽灌量及回灌温差影响,温度场主要以回灌井为中心呈圆形分布;增加抽灌量和缩小井间距都会导致抽水井温度变幅增大;“小温差,大流量”系统温度影响半径比“大温差,小流量”系统影响半径大;当采用异层回灌时,抽水井温度受影响较小。
     基于对潜水和承压含水层中地下水源热泵系统井间距和温度场影响半径的模拟研究,并与地下水源热泵温度场影响半径经验公式计算结果对比,确定潜水含水层及承压含水层地下水源热泵系统的合理井间距和影响半径。进而,利用地下水量折算法计算利用温差为5℃时,北京平原区埋深100m内浅层地温能的冬季(或夏季)运行120天的可开采资源量为4.47×1010kw。
Groundwater source heat pump (GWHP) air-conditioning technology, as a green, efficient, low costs and sustainable use of new technologies, has been widely used in the recent years. The dissertation set up the confined, unconfined groundwater flow and heat transport coupled models by FEFLOW5.4, a finite element simulation software, for GWHP appropriate areas in the plain area of Beijing. Study on the relationship of hydro-geological parameters, structural parameters of wells, pumping and injecting volume, injecting water temperature and natural groundwater flow with the aquifer geothermal distribution.
     Unconfined aquifer simulation results show that: consider the heat exchange between the atmosphere and aquifer could better characterize the vertical temperature distribution; consider the recharge of atmosphere, in the cooling period of GWHP, the temperature distribution has a rise trend according to water table; due to the high activity of natural groundwater flow in unconfined aquifer area, the shape of temperature distribution was elliptical, but the existence of natural groundwater flow can improve system efficiency. Confined aquifer simulation results show that: the distribution of temperature field in the aquifer system is mainly affected by pumping and injecting capacity and the temperature of injecting water, the shape of temperature field as a circle surrounding injecting well ; increased pumping and injecting capacity and reduce the distance between the pumping and injecting wells would result in pumping well’s temperature variation increases; "little temperature difference, big flow" system has a bigger temperature field radius than "big temperature difference, small flow" system; when the pumping well and injecting well in different layers, the temperature of pumping well has less affected.
     Based on the simulation of unconfined and confined aquifer GWHP system in distance between pumping and injecting wells and the impact radius of temperature field, and compared with the experience formula of the impact radius, the reasonably distance between pumping and injecting wells of GWHP systems and impact radius of temperature field can be determinate. Further, the reserve of shallow geothermal resources in Beijing plaint area within the depth of 100m was 4.47×1010kw, under the condition of extracting 5℃energy and the system running for 120 days respectively in winter or summer.
引文
[1]李元普,柳春凤.中国地源热泵产业迎来第二次发展高潮,供热制冷,2008年11月,22-25
    [2]李世君,刘文臣,辛宝东.北京地区地下水源热泵利用现状及存在问题,城市地质,2006年第一期,16-20
    [3] Kazmann,R.G. Exotic uses of aquifers. Jour, Irrig. Drainage Div., Proc. Amer. Civil Eng., 1971, 97(3):512-522
    [4] Molz, F. J., Melville, J. G., Parr, A. D., King, D. A. and Hopf, M. T., Aquifer thermal energy storage: a well doublet experiment at increased temperature. Water Resources Research, 1983a, Vol. 19, No. 1, 149-160
    [5] Papadopulos, S. S. and Larson, S. P., Aquifer storage of heated water: part II-numerical simulation of field results. Ground Water, 1978, Vol. 16, No. 6, 242-248
    [6] Tsang, C. F., Buscheck, T. and Doughty, C., Aquifer thermal energy storage: a numerical simulation of Auburn University field experiments. Water Resources Research, 1981, Vol. 17, No. 3, 647-658
    [7] Buscheck, T. A., Doughty, C. and Tsang, C. F., Prediction and analysis of a field experiment on a multilayered aquifer thermal energy storage system with strong buoyancy flow. Water Resources Research, 1983, Vol. 19, No. 5, 1307-1315
    [8] Melville, J. G., Molz, F. J. and Guven, O., Field experiments in aquifer thermal energy storage. Journal of Solar Energy Engineering (Transactions of the ASME), 1985, Vol. 107, 322-325
    [9] Mathey, B., Development and resorption of a thermal disturbance in a phreatic aquifer with natural convection. Journal of Hydrology, 1977, No. 34, 315-333
    [10] Werner, D. and Kley, W., Problems of heat storage in aquifers. Journal of Hydrology, 1977, No. 34, 35-43
    [11] Palmer, C. D., Blowes, D. W., Frind, E. O. and Molson, J. W, Thermal energy storage in an unconfined aquifer 1. field injection experiment. Water Resources Research, 1992, Vol. 28, No. 10, 2845-2856
    [12] Gabrielsson, E., Seasonal storage of thermal energy- Swedish experience. Journal of Solar Energy Engineering (Transactions of the ASME), 1988, Vol. 110, 202-207
    [13] Miller, R. T.. Anisotropy in the Ironton and Galeswille Sandstone near a thermal-energy-storage well. St.Paul, Minnesota, Ground Water, 1984, 22(5):532-537
    [14] Hamada, Y., Marutani, K., Nakamura, M., Nagasaka, S., Ochifuji, K., Fuchigami, S. and Yokoyama, S., Study on underground thermal characteristics by using digital national land information, and its application for energy utilization. Renewable energy, 2002, No. 72, 659-675
    [15] Paksoy, H. O., Gurbuz, Z., Turgut, B., Dikici, D. and Evliya, H., Aquifer thermal storage (ATES) for air-conditioning of a supermarket in Turkey. Renewable Energy, 2004, in press
    [16]邬小波,马捷.中国地下含水层储能技术及其发展.能源研究与信息,1999,15(4)8-12.
    [17]薛禹群,谢春红和李勤奋.含水层贮热能研究-上海贮能试验数据模拟,地质学报,1987,No. 1,73-84
    [18]张志辉,薛禹群和吴吉春.地下热水运移中自然对流的研究,水文地质与工程地质,1995,第4期,16-21
    [19]张志辉,吴吉春,薛禹群和谢春红.含水层热量输运中自然热对流和水-岩热交换作用的研究,工程地质学报,1997年,第5卷,第3期,269-275
    [20]何满朝,刘斌,姚磊华等.地下水热水回灌过程中渗透系数研究.吉林大学学报(地球科学版),2002,32(4):374-377
    [21]何满朝,刘斌,姚磊华等.地热单井回灌渗流场理论研究。太阳能学报,2003,23(2):197-200
    [22]何满朝,刘斌,姚磊华等.地热水对井回灌渗流场理论研究。中国矿业大学学报,2004,33(3):245-248
    [23]张昆峰,马芳梅,金六一.井水热泵系统冬季工况运行的数值模拟分析.华中理工大学学报,1998,26(5):1-4
    [24]陈兆祥.承压含水层单井的储冷效果分析[D]. [硕士学位论文],北京:清华大学,1983
    [25]乾增珍.深部地层储能反季节循环利用原理研究及其应用.博士学位论文,北京:中国矿业大学(北京),2005
    [26] Gringarten, A. C. and Sauty, J. P., A theoretical study of heat extraction from aquifers with uniform regional flow. Journal of Geophysical Research, Vol. 80, No.35, 4956-4962
    [27] Wiberg, N. E., Heat storage in aquifer analyzed by the finite element method. Ground Water, 1978, Vol. 21, No. 2, 178-187
    [28] Andrews, C. B., The impact of the use of heat pumps on groundwater temperatures. Ground Water, 1978, Vol. 16, No. 6, 437-443
    [29] Rahman, M., Jones, F. W., Lam, H. L., Hutchence, K. and Vigrass, L. W., Temperature front progression associated with a geothermal well doublet: a numerical study. Geothermics, 1984, Vol. 13, No. 4, 319-331
    [30] Carotenuto A., Casarosa, C., Dellisola, M. and Martorano, L., An aquifer–well thermal and fluid dynamic model for downhole heat exchangers with a natural convection promoter. Int. J. Heat Mass Transfer. 1997, Vol. 40, No. 18, 4461-4472
    [31] Paksoy, H. o., Andersson, O., Abaci, S., Evliya, H. and Turgut, B., Heating and cooling of a hospital using solar energy coupled with seasonal thermal energy storage in an aquifer. Renewable energy, 2000, Vol. 19, 117-122
    [32] Tenma, N., Yasukawa, K., and Zyvoloski, G., Model study of the thermal storage system by FEHM code. Geothermics, 2003, Vol. 32, 603-607
    [33] Allen, A., Milenic, D. and Sikora, P., Shallow gravel aquifers and the urban‘heat island’effect: a source of low enthalpy geothermal energy. Geothermics, 2003, Vol. 32, 569-578
    [34]倪龙,马最良.多层含水层中同井回灌地下水源热泵特性分析.建筑热能通风空调,2005,24(3):10-13
    [35]倪龙,马最良.含水层参数对同井回灌地下水源热泵的影响.天津大学学报,2006,39(2):229-234
    [36]倪龙,马最良.井参数对同井回灌地下水源热泵的影响.流体机械,2006,34(3):65-69
    [37]倪龙,马最良.热弥散对同井回灌地下水源热泵的影响.建筑热能通风空调. 2005,24(4):7-10
    [38]张远东,魏加华,李宇等.地下水源热泵才能的水-热耦合数值模拟.天津大学学报,2006,39(8):907-912
    [39]张远东,魏加华等.井对间距与含水层才能区温度场的演化关系.太阳能学报,2006,27(11):1163-1167
    [40]张远东,魏加华,王光谦.区域流场对含水层才能区地温场的影响.清华大学学报(自然科学版),2006.46(9):1518-1521
    [41] FEFLOW5.3 user’s manual. WASY Software
    [42]张远东.单(多)井抽灌对浅部地温场的影响研究. [博士学位论文].北京:中国科学院,
    [43]倪龙,马最良.含水层参数对同井回灌地下水源热泵的影响.天津大学学报,2006,39(2):229-234
    [44]张远东,魏加华,李宇等.地下水源热泵才能的水-热耦合数值模拟.天津大学学报,2006,39(8):907-912
    [45] Gringarten, A. C. and Sauty, J. P., A theoretical study of heat extraction from aquifers with uniform regional flow. Journal of Geophysical Research, Vol. 80, No.35, 4956-4962
    [46] Andrews, C. B., The impact of the use of heat pumps on groundwater temperatures. Ground Water, 1978, Vol. 16, No. 6, 437-443
    [47] http://www.mdv.com.cn/res/seniorgeo/expand/e_book/013/0000075._025.htm.霍亚贞.北京自然地理
    [48]邵景力,崔亚莉,雷晓东等.北京市平原区地下水流模型及地下水资源潜力分析研究.
    [49] Johan Claesson, Thomas Probert. Simulation models for ATES. See: Aquifer thermal energy storage, USA, 1994:131-134
    [50]徐国辉.北京地区浅层地温能资源评价示范研究. [博士学位论文],北京:中国地质大学(北京),2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700