用户名: 密码: 验证码:
德州市深层地下水动态变化与模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文是在山东省自然科学基金《开采条件下黄河下游冲积平原地下淡水成化演化研究》的基础上完成的。针对近年来德州市由于持续超量开采深层地下水而引起降落漏斗快速扩展这一重大环境地质问题,论文系统分析了德州市地下水的动念变化,应用Visual MODFLOW模型模拟了地下水水动力场和深层降落漏斗在时、空两方面的演化、发展。研究提出了不使降落漏斗进一步扩展的地下水开采方案。研究成果可为合理开发利用德州市深层地下水资源和控制地面沉降提供科学依据。
     论文首先分析了德州市环境地质及水文地质条件,分析了深层地下水的开发利用现状、地下水水位动念变化及降落漏斗的分布特征,研究了深层地下水降落漏斗的扩展规律。在现状开采条件下,区内地下水降落漏斗中心水位标高为-108.00m,边界水位标高为-50.00m,等水位线平均以344.40m/a的速度向外扩展。纵向上,漏斗中心水位平均也以3.16m/a的速度下降。随着深层地下水的持续、超量开采,降落漏斗不断在纵向与横向上扩展。
     在对研究区水文地质条件概化的基础上,利用Visual MODFLOW软件建立了地下水水流的数值模型,模拟了地下水的渗流场。利用所建模型预报了现状开采量和不同设计开采量条件下地下水降落漏斗扩展及地下水水位的变化。通过对计算结果的对比分析,论证了不同开采方案下的地下水降深及其变化。
     现状开采量条件下的预测结果表明,现状2047×10~4m~3/a开采量条件下,随着持续开采,地下水水位降深愈来愈大。t=5年(2011年)时,水位降深s为4.81~22.65m,年降速为0.96~4.53m/a。t=10年(2016年)时,水位降深s为14.32~32.87m,年降速为1.43~3.29m/a,漏斗中心水位标高平均为-118.06m;不同设计开采量条件下的预测结果表明,保持目前2047×10~4m~3/a的开采水平下,地下水位将持续下降,到2010年时,漏斗中心地下水位埋深为144.95m。开采量削减至1950×10~4m~3/a水平时,地下水位仍将持续下降,到2010年时,漏斗中心地下水位埋深为133.90m。只有当开采量进一步削减至1750×10~4m~3/a水平时,到2009年以后,地下水位将不再下降,此后开始逐渐回升,到2010年时,漏斗中心地下水位埋深可回升至120.25m。
     根据地下水水流模型模拟和水均衡分析结果,区内第Ⅲ含水层组允许开采量为1750×10~4m~3/a。保护本区深层地下水资源的关键措施就是要科学规划、调整深层地下水的开采,保证开采量不大于补给量,以使深层地下水资源达到采、补平衡的良性循环状念。
This paper is accomplished on the basis of Natural Science Foundation of Shandong Province of China under project, the research on freshwater salinization evolution under exploitation conditions in alluvial plain of the Low Yellow River. In view of this major environmental geology problem in Dezhou City that the rapidly-expansion of groundwater drop funnel has been caused by continuous overexploiting of deep groundwater in recent years, the dynamic change of deep groundwater in Dezhou City was systematically analyzed as well as the evolution and development of hydrodynamic field and deep drawdown cone in temporal and spatial variation was simulated by the application of the Visual MODFLOW Model. The exploitation project was proposed that the drawdown cone would not further expand. The study findings can provide a scientific basis for rational development and utilization of deep groundwater resources and controlling land subsidence in Dezhou City.
     The environmental geology and hydrogeological conditions in Dezhou City were analyzed as well as exploitation and utilization situation of deep groundwater, the dynamic variation of the groundwater level and distribution characteristics of the depression cone. The extended discipline of depression cones of deep groundwater was discussed. Under the exploitation situation, the elevation of central water level of groundwater drop funnel in this region was -108.00m, the elevation of boundary water level was -50.00m. The equivalent water level was expending at the average velocity of 344.40m/a. The elevation of central water level of groundwater drop funnel was deepening at the average velocity of 3.16m/a in vertical dimension. The drop funnel was gradually expending in horizontal and vertical dimension with continuous and excessive exploitation of deep groundwater.
     On the basis of hydrogeological conditions generalized in this region, Visual MODFLOW software was applied to build mathematical model of groundwater and stimulate the seepage field of groundwater. It predicted the expansion of groundwater drop funnel and the change of underground water level under the conditions of exploitation situation and different designed exploiting volume by the model built. The depth reduction and variation of groundwater under different design schemes for pumping rate were argued by contrast analysis of the calculated results.
     The forecasting result under the current situation of groundwater exploitation indicated that the drawdown of water level would increase more with the continuous exploitation when the exploiting volume of current situation was 2047×10~4m~3/a. When t (time) was equal to 5a (2011), s (the decline depth of groundwater) was at 4.81-22.65m and the annual deceleration was at 0.96-4.53m/a. When t was equal to 10a(2016), s was at 14.32-32.87m as well as the annual deceleration was at 1.43-3.29m/a, and then the average elevation of central water level of funnel was -118.06m. The forecasting results under different design schemes for exploiting volume showed that the groundwater level would continuously decrease if the present exploiting quantity was still kept at 2047×10~4m~3/a, which the depth of central groundwater level of funnel was 144.95m in 2010. While exploiting quantity cut down to 1950×104m~3/a, the groundwater level still constantly decreased, which the depth of central groundwater level of funnel was 133.90m in 2010. Only when exploiting quantity further cut down to 1750×104m~3/a, the groundwater level would never descend after 2009, and then it would begin ascending, which the depth of central groundwater level of funnel was 120.25m in 2010.
     According to the model stimulation of groundwater flow and the results of water balance analysis, the allowable exploiting volume of III aquifers in this region is 1750×10~4m~3/a. The key measure to protect deep groundwater resources in this region is scientific planning of underground water, adjusting exploiting volume of underground water, and ensuring that exploiting quantity do not surpass supply quantity in order that it can reach a benign circle with the balance of exploitation and supplementation.
引文
1 赵全升,刘贳群,彭泽州等.利用算子分裂迎风均衡格式解对流为主溶质运移问题[J].吉林大学学报(地球科学版),2004,34(1):97-101
    2 赵全升,李悦,谢新民等.环境系统分析原理[M1.北京:地质出版社,2005
    3 李铎,武强,代锋刚等.菲力浦多目标单纯形法住地下水资源管理模型中的应用[J].水文地质工程地质,2006,(4):72-75
    4 王金生,王澎,刘文臣等.划分地下水源地保护区的数值模拟方法[J].水文地质工程地质,2004,(4):83-86
    5 黄敬军,陆华.江苏沿海地区深层地下水开发利用现状及环境地质问题[J].水文地质工程地质,2004,(6):64-68
    6 陈喜,刘传杰,胡忠明等.泉域地下水数值模拟及泉流量动态变化预测[J].水文地质工程地质,2006,(2):36-40
    7 陈喜,陈洵洪.美国Sand Hillst地区地下水数值模拟及水量平衡分析[J].水科学进展,2004,(15):94-99
    8 薛禹群,吴吉春.地下水数值模拟住我国-回顾与展望[J].水文地质工程地质,1997,24(4):21-24
    9 薛禹群,吴吉春.面临21世纪的中国地下水模拟问题[J].水文地质工程地质,1999,26(5):1-3
    10 周念清,朱蓉,朱学愚.MODFLOW在宿迁市地下水资源评价中的应用[J].水文地质工程地质,2000,27(6):9-13
    11 Zhang Q,Schaeffer J,Bradley J,Varma S,Kern A.A 3D groundwater flow model for the collie basin[A].International Groundwater Conference,Balancing theGroundwater Budget[C],Darwin,Australia,May 12-17,2002
    12 冯娟,赵全升,牟晓燕.小城镇建设可持续发展评价指标体系研究-以山尔省晏城镇环境优美镇建没为例[J].环境保护,2007,379(9A)
    13 冯娟,赵全升,谢文霞等.省公顷”在小城镇生态足迹分忻中的应用研究-以山东省晏城镇生态建设为例[J].地理科学,2008,(2)
    14 张奇.数值模型在地下水管理中的应用[J].水文地质工程地质,2003,(6):72-88
    15 杨青春,卢文喜,马洪云等.Visual Modflow在吉林省西部地下水数值模拟中的应用[J].水文地质工程地质,2005,(3):67-69
    16 姜蓓蕾,吴吉春,杨仪等.常州市滆湖典型地块浅层地下水数值模拟[J].水文地质工程地质,2004,(6):29-32
    17 王彦俊,刘桂仪.德州深层地下水降落漏斗相关模型建立及其应用[J].山东地质,1998,14(2):38-45
    18 刘桂仪.鲁北平原深层地下水基本特征与水环境问题[J].山东地质,2001,17(5):43-47
    19 Evers S,Lerner D N.How uncertain is our estimate of a wellhead protection zone[J].Groundwater,1998,36(1):49-57
    20 Kailash Bhatt.Uncertainty in wellhead protection area delineation due to uncertainty in aquifer parameter values[J].Journal of Hydrology,1993,149:1-8
    21 李建新.生活饮用水地下水源保护区的划定方法[J].地理科学进展,1999,18(2):153-157
    22 冯康.基于变分原理的差分格式[J].应用数学与计算数学,1965,2(4):238-262
    23 Environment Modeling System Inc.(EMS21).Groundwater Modeling System(GMS2510)[R].USA.Uta State.2004
    24 Bear J.Hydraulics of Groundwater[M].New York:McGraw-Hill Book Company,1979
    25 林学钰,侯印伟,邹立芝等.地下水水量水质模拟及管理程序集[M].吉林:吉林科学技术出版社.1988
    26 孙讷正.地下水流的数学模型和数值方法[M].北京:地质出版社,1981
    27 李俊亭.地下水流数值模拟[M].北京:地质出版社,1989
    28 李建新.德国饮用水水源保护区的建立与保护[J].地理科学进展,1998,17(4):88-97
    29 李力争.划分地下水水源地保护区的研究[J].中国环境科学,1995,15(5):338-341
    30 何杉.Modflow软件在地下水污染防治中的应用[J].水资源保护,1999,3:16-18
    31 王澎.地下水保护区的划分[D].北京:北京师范大学硕士学位论文,2003
    32 陈雨孙.地下水运动与资源评价[M].北京:中国建筑工业出版社,1986
    33 张蔚棒.地下水非稳定流计算和地下水资源评价[M].北京:科学出版社,1983
    34 万伟锋,李云峰.陕西扶风县城地下水源地开采方案设计[J].地下水,2005,27(1):34-38
    35 薛禹群主编.地下水动力学[M].北京:地质出版社,1997
    36 吴剑峰,朱学愚.由Modflow浅谈地下水流数值模拟软件的发展趋势[J].工程勘察,2002,(2):12-15
    37 武强,董东林等.水资源评价的可视化专业软件(Visual Modflow)与应用潜力[J].水文地质工程地质,1999,(5):21-23
    38 魏林宏,束龙仓等.地下水数值模拟的研究现状和发展趋势[J].重庆大学学报(自然科学版), 2000,23(10):50-53
    39 何杉.Processing Modflow软件住地下水污染防治中的应用[J].水资源保护,1999,57(3):16-18
    40 潘国营.地下水数值模拟模型拟合效果的评价[J].焦作矿业学院学报,1994,13(2):52-56
    40 尚守忠,田世义编著.水资源及其开发利用[M].北京:科学普及出版社,1993
    41 卢京,张饮.数值模拟在银川市地下水资源开采评价中的应用[J].河北师范人学学报(自然乖学版),2000,24(4):536-539
    42 许光泉,潘晓如.长垣西部地区不同开采方案地下水数值模拟[J].淮南工业学院学报,2001,21(3):4-7
    43 吴吉春,薛禹群.山西柳林泉域地下水流数值模拟[J].水文地质工程地质,2002(2):18-20
    44 贾金生,刘吕明.华北平原地下水动态及其对不同开采量响应的计算-以河北省栾城县为例[J].地理学报,2002,57(2):201-209
    45 杜汉学,常国纯,张乔生.利用地下水库蓄水的初步认识[J].水科学进展,2002,13(5):618-622
    46 魏林宏,束龙仓,郝振纯.地下水流数值模拟的研究现状和发展趋势[J].重庆大学学报(自然科学版),2000,1(23):50-52
    47 刘建立,朱学愚,陈余道.山尔淄博市地下水资源评价及其合理开发利用研究[J].高校地质学报,1999,5(2):211-220
    48 刘少玉.冲洪积扇含水层地下水可开采量数值模拟-以文峪河冲洪积扇为例[J].水文地质与工程地质,1998,1:38-41
    49 林国庆.大沽河地下水库水资源可持续利用研究[D].青岛:中国海洋大学,2003
    50 张宏仁,李俊亭.有限筹分法与有限单元法在渗流问题中的对比[J].水文地质工程地质,1979(2):42-45
    51 徐军祥,康风新主编.山东省地下水资源可持续开发利用研究[M].北京:海洋山版社,2001
    52 Feter C W.Contaminant Hydrogeology.New York:Macmillan Publishing Company,1993,1-111
    53 Waterloo Hydorgeologic Inc.User's Manual for Visual Modflow,1999
    54 Waterloo Hydorgeologic Inc.Visual Modflow Tutorial,2000
    55 McDonald M C,Harbaugh A W.A Modular Three-dimensional Finite-difeernce Ground-water Flow Model:U.S.Geological Survey Techniques of Water-Resources Investigations,book6,chapA1,1998,586
    56 Bennet, G.D., A.L. Kontis, and S.P.Larson, 1982, Representation of multiaquifer well effects in three-demensional groundwater flow simulation[J]. Ground Water, 20 (3): 334~344
    57 Hill, M.C., Solving groundwater flow problems by conjugate-gradient methods and the strongly implicit procedure[J]. Water Resources Research, 1990b, 26(9): 1961-1969
    58 Halford, K.J.. Effects of steady-state assumption on hydraulic conductivity and recharge estimates in a surficial aquifer system[J]. Ground Water, 1999, 37 (1): 70-79
    59 Adams, J.J., D.N. Graham, P. J. Martin and N. Guiger, Evaluating the WHS Solver-new Bi-CGSTAB solver for MODFLOW, MODFLOW 1998 Conference , Denver, Colorado, 1998
    60 Ahmad, Rafi, N.Lal, and P.K.Sharma. A fission-track age for the Above Rocks Granodiorite[J]. Jamaica: Caribbean Jounral of Science, 1987, 23: 450—453
    61 Anderson, Mary P. and William Woessner. Applied Ground-water Modeling: Simulation of flow and advectivetr ansport, New York, 1992, 480p
    62 Ahmad, Rafi, N. Lal, and P.K. Sharma. A fission-track age of ignimbrite from Summerfied Formation[J]. Jamaica: Caribbean Jounral of Science, 1987, 23: 444—449
    63 Brahana, J. V., J.Thrailkill, T.Freeman, W.C.Ward, Carbonate rocks, in The Geology of North America, eds., B. William, J.S.Rosenshein, and P.R.Seaber, Geological Society of America, Boulder, Colorado, 1988, (O-2): 333-352
    64 Botbol, M.. Lower Rio Cobre Limestone Aquifer Hydrogeology, Unpublished Report, Water Resources Division. no.1/2, 1982, 51-56
    65 Bonacci, D.. Karst springs hydrographs as indicators of karst aquifers[J]. Journal of Hydrological Sciences, 1993, 38
    66 Basayanake, S.B.. Hydrogeological studies of the Lower Rio Cobre Basin Alluvial Aquifer, Unpublished Report: Underground Water Authority, Govenrment of Jamaica, 1988
    67 Donovan, S.K., Geological excursion guide: Jamaica[J].Geology Today, 1993, 9(1): 30—34
    68 Hydrogeological problems of the Kingston area, Jamaica. Transactions of the Caribbean Geological Conference, v.5, 235
    69 Karlinger, M .R. and J .A.Sk rivan. Kriging analysis of mean annual precipitation, Powder River, Basin, Montana and Wyoming. U.S. Geological Survey Water Resoucres Investigations 80-50, 1980, 25
    70 Underground Water Authority Final Report, 1990. Water Resources Development Master Plan, Main Volume, Govenrment of Jamaica
    71 Vogel,K.L. and A.GReif, Geohydrology and simulation of ground-water flow In the Red Clay Creek Basin, Chester County Pennsylvania, and Newcastle County Delawaer: US Geological Survey Water Respource Investigations Report, 1993, 93—4055. 111
    72 White, Michael N.. Saline intrusion of the karstic limestone aquifer in the Lower Rio Cobre Basin. Jamaica: Journal of the Geological Society of Jamaica, 1980, 19: 25—34
    73 Poeter, E.P, and M.C. Hill. Inverse models: a necessary next step in groundwater modeling[J]. Ground Water, 1997, 35 (2): 250-260
    74 Srivastava,K., S.N. Rai, and R.N. Singh. Water-table variation in a sloping aquifer due to random recharge[J]. Water Resources Management, 1996, 10(3): 241 — 250
    75 Shafer J M. Reverse Pathline Calculation of Time2relatedCapture Zones in Nonuniform Flow [J]. Groundwater, 1987, 25 (3): 283-289

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700