用户名: 密码: 验证码:
大叶女贞茎直径变化与树干液流速率变化关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以常绿阔叶树种大叶女贞为研究对象,采用树木径向变化记录仪(dendrometer)和热扩散式树干边材液流测定探针(TDP)测定技术,本次研究拟通过对大叶女贞茎直径变化与树干液流变化关系的研究,得出大叶女贞蒸腾特征,以及大叶女贞茎直径变化与树干液流变化的定量关系,为实际灌溉工作提供相应的理论依据。该研究的主要结论如下:
     (1)大叶女贞茎直径在晴天和阴天天气条件下遵循收缩-膨胀-生长的变化规律,茎直径指标能够比较好地反应气象因子的变化。在连续雨天天气条件下,由于树木自身特征导致不同植株对环境响应存在差异,且不同植株间茎直径变化规律不明显,而当降雨量增加时茎直径会急剧减小,说明雨天条件下降水量是影响茎直径变化的主要气象因子。
     (2)大叶女贞茎直径变化在整个生长季的变化规律为慢-快-慢,生长曲线呈现为“S”型。在整个生长季中大叶女贞要经历2个生长旺盛期,分别为6月底和8月中旬,此时应该加强对大叶女贞水分管理,使其更好生长。
     (3)大叶女贞树干液流速率变化规律在晴天和阴天天气条件下呈现为单峰曲线,树干液流速率可以对气象因子变化作出实时响应。在雨天条件下,空气温度、空气湿度和光合有效辐射变化对树干液流影响不大,降水量与树干液流变化存在着一定的关系,当降水开始时树干液流速率会突然降低随后恢复正常。
     (4)大叶女贞树干液流速率年变化总体趋势为逐渐递增。由于大叶女贞是常绿阔叶树种,4月底到5月初过冬树叶掉落,影响树干液流速率,5月树干液流速率低于4月,9月大叶女贞不会迅速停止生长和落叶,树干液流速率还维持在一定的水平,但是树木生长速度明显减慢。
     (5)茎直径和树干液流具有反比关系,都能表现树木的生长状态。茎直径反应植物宏观上的变化,由于树木本身特征对环境变化的响应茎直径不如树干液流迅速,短时间内树干液流速率能够很好的表现树木生长状态。从茎直径和树干液流速率年变化来看得出茎直径的变化可以直观的看出树木在一年生长过程中的变化,而树干液流只能表现树木的生命活动活跃度而并不能直接反应树木生长的快慢。
     (6)在晴好的天气条件下,茎直径和树干液流日变化与各个气象因子明显相关,但阴天条件下树干液流速率能实时反映气象因子的变化。在整个生长季中,茎直径比树干液流速率能更好的反映树木长时间的生长状态,在树木生长前期空气温度为影响生长的主要因素,到了树木生长后期光合有效辐射变成影响树木生长的主要因素。
     (7)大叶女贞主干和各分枝液流的日变化均为单峰曲线。在连续晴天情况下大叶女贞主干与各分枝液流偏相关系数分别为0.837、0.364、0.761。在树木蒸腾过程中,分枝的直径越大得到主干提供的水分越多,因此在修剪树木中应避免损伤直径较大的分枝,以免树木大量失水导致死亡。根据主干和各分枝的平均液流速率以及主干和各分枝的直径来看,分枝1和分枝3的直径比较大,能够较好地反应树木生长规律;分枝2的直径最小,变化规律不明显,说明分枝的直径越小对环境变化的响应能力越低。因此,在安装仪器时应选择直径大的分枝进行安装。
Dendrometer and TDP (Thermal Dissipation Sapwood Flow Velocity Probe) were applied to study the relationgship between stem diameter variation and sap flow fluctuation of Ligustrun lucidum .The main suggestions are showed as follow.
     (1) When the weather was sunny or cloudy, the growth variation of the stem diameter was contraction-expansion– growth, it has relationship between the indexs of the stem diameter and meteorological factors.The rainfull had great influence to the diameter of stem, the diameter dewindles as the rainfull increases.Therefore the rainfull was the main meteorological factor to the variation of the stem diameter.
     (2) The growth curve of stem presents a“s”-type.Between June to August, the plants grows better by controlling the water as the plants needs
     (3) In sunny or cloudy day, the sap flow revealed a single-peak curve.It responds rapidly to the change of the meteorological factors.In rainy day, the sap flow reduces suddenly when the weather begins to rain, and then it goes back normal at last.
     (4) In the growing period, the rates of sap flow increased grandually.The rates of sap flow at April is higher than it was in May, because the leaves bagan to fall.In September, the rates of sap flow keeps the high level for the leaves did not fall in Autunm.
     (5) The stem diameter and the sap flow the relationship were inversely, and related which could all precipitates the status of the plant.The stem diameter showed the growing conditions of plants in a long time, the sap flow showed the activities of vitalmovement of plants immediately.
     (6) In sunny day, the stem diameter and the sap flow respondeds clearly to the change of the meteorological factors.In cloudy day, the sap flow respondeds to the change of the meteorological factors immediately.The stem diameter showed that the air temperature is the main meteorological factor at the early days of the growing period, and the photosynthetically active radiation became the main meteorological factor at the later period of the growing period.
     (7) The diurnal variation of sap flow of each branches revealed a single-peak curve.There existed significant correlations between the stem sap flow of bough and branch #1 ( r = 0.837) , branch #2 ( r = 0.364) , and branch #3 ( r = 0.761).Compare the peak height of each branches, it is known that the peak height of the bough significantly is greater than other branches which is conformed to the actual flow from the bough to branches.The average sap flow rate for branches and the diameter of branches shows that the smaller the diameter of branches is, the weaker the adaptability of environment could be.
引文
[1]潘瑞炽.植物生理学(第四版)[M].北京:高等教育出版社,2001,8-22.
    [2]Kozlowski TT,Pallardy S G .pliysiology of woody plants [M].Us: Academic Press,270-286.
    [3]王沙生,高孚荣,吴贾明.植物生理学[M]第二版.北京:中国林业出版社,1991,1-32.
    [4]Herzog K M,Hasle R,Thum R.Diurnal changes in the radius of a subalpine Norway spruce stem: their relation to the sap flow and their use to estimate transpiration [J].Trees,1995 ,10: 94-101.
    [5]Downes G,Beadle C,Worledge D.Daily stem growth patterns in irrigated Eucalyptus globules and E.nitensin relation to climate [J].Trees,1999,14: 102-111.
    [6]Ghasem A.The impact of soil moisture on stem growth of spruce forest during a 22-year period [J].Forest Ecology and Management,2002 ,166: 17-33.
    [7]Makinen H,SaranpaaP.Seasonal changes in stem radius and production of new tracheids in Norway spruce [J].Tree Physiology,2003,23: 959-968.
    [8]Otieno D.Coordinated tree response to drought-vulnerability and sustainable production: hypotheses on arid ecosystem adjustments to limitation in waterresources [Z].Doctoral Thesis,2004,University Bayreuth,Germany.
    [9]Braeuning A,Burchardt I.Detection of growth dynamics in tree species of a tropical mountain rain forest in southern Ecuador,trace-tree rings in archaeology[J],climatology and ecology.Proceedings of the Dedrosymposium,2005,4: 127-131.
    [10]Edwards W.R.N ,Becker P ,èermak J.A unified nomenclature for sap flow measurements [J].Tree Physiology ,1996 ,17: 65-67.
    [11]Holtta,Vesala,Nikinmaa,etal .Field measurements of ultrasonic acoustic emissions and stem diametervariations.New insight into the relationship between xylem tensions and embolism[J].Tree Physiology,2001,25: 237–243.
    [12]Kathy Steppe,Dirk J.W.De Pauw,Raoul Lemeur,etal.A mathematical model linking tree sap flow dynamics to daily stem diameter fluctuations and radial stem growth [J].Tree Physiology,2005,26:257–273.
    [13]Conejero W,Alaroon J .J ,etal.Daily sap flow and maximum daily trunk shrinkage measurements for diagnosing water stress in early maturing peach trees during the post-harvest period [J].Tree Physiology,2006,27: 81–88.
    [14]Roman Zweifel ,Kathy Steppe,Frank J.Sterck .Stomatal regulation by microclimate and tree water relations: interpreting ecophysiological field data with a hydraulic plant model [J].Journal of Experimental Botany,2007,58(8):2113–2131.
    [15]Annie Deslauriers,Tommaso Anfodillo,Sergio Rossi ,etal.Using simple causal modeling to understand how water and temperature affect daily stem radial variation in trees [J].Tree Physiology,2007,27:1125–1136.
    [16]陈章和,张德明,郭志华.南亚热带气候下三种树木径向生长时期节节律研究[J].生态学报,1999,19(6): 93.
    [17]Remorini D,Massai R.Comparison of water status indicators for young peach trees [J].Irrigation Science,2003,22(1): 39-46.
    [18]Garnier E,Berger A.Testing water potential in peach trees as an indicator of water stress [J].Journal of Horticultural Science,1985 (60) :47-56.
    [19]Goldhamer D A,Fereres E.Irrigation scheduling protocols using continuously recorded trunk diameter measurements [J].Irrig Sci,2001,20 (3) :115-125.
    [20]Intrigliolo D S,Castel J R.Usefulness of diurnal trunk shrinkage as a water stress indicator in plum trees [J].Tree Physiol.2006,26 (3) :303–311.
    [21]Lee Byun-woo,Shin J H.Optimal irrigation management system of greenhouse tomato based on stem diameter and transpiration monitoring [J].Agric Info Tech in Asia and Oceania,1998: 87-90.
    [22]马履一,王华田.油松边材液流时空变化及其影响因子的研究[J].北京林业大学学报,2002,23(4): 23- 37.
    [23]孙慧珍,周晓峰,康绍忠.应用热技术研究树干液流进展[J].应用生态学报,2004,15(6): 1074- 1078.
    [24]Tatarinor,Fyodor a,Kucear Jiri,etal.The analysis of physical background of tree sap flow measurement based on thermal methods [J].Measurement Science and Technology,2005,16:1157-1169.
    [25]王孟本,李洪建,柴宝峰,等.树种蒸腾作用、光合作用和蒸腾效率的比较研究[J].植物生态学报,1999,23(5):401- 410.
    [26]崔兴国.植物蒸腾作用与光合作用的关系[J].衡水师专学报,2002,4(3):55-56.
    [27]Cochard H,Rodol Phe M,Patriek G, Etal.Temperature effects on hydraulic conductance and Wate relations of Quercus robur L[J].J Exp Bot,2000,51(348):1255-1259.
    [28]余克顺,李绍华,孟昭清,等.水分胁迫条件下几种果树茎干直径微变化规律的研究[J].果树科学,1999,16(2):86~91.
    [29]张寄阳,段爱旺,孟兆江,等.不同水分状况下棉花茎直径变化规律研究[J].农业工程学报,2005,21(5):7-11.
    [30]张寄阳,段爱旺,孟兆江,等.基于茎直径微变化的棉花适宜灌溉指标初步研究[J].农业工程学报,2006,22(12):86-89.
    [31]孟兆江,段爱旺,卞新民,等.番茄茎直径变差法诊断水分状况试验[J].干旱地区农业研究,2005,23(3):40-43.
    [32]孟兆江,段爱旺,刘祖贵,等.辣椒植株茎直径微变化与作物体内水分状况的关系[J].中国农村水利水电,2004,2:28-30.
    [33]孟兆江,段爱旺,刘祖贵,等.温室茄子茎直径微变化与作物水分状况的关系[J].生态学报,2006,26(8):2516-2522.
    [34]路兴慧,潘存德.罗布麻茎直径和茎流变化日过程及其与环境因子的关系分析[J].新疆农业科学,2009,46(1):8-12.
    [35]雷水玲,孙忠富,雷廷武.温室内作物茎秆直径变化对基质含水率的响应[J].农业工程学报,2005,21(7):116-119.
    [36]贺军奇,吴普特,汪有科,等.冬季桃树生理生态指标变化规律研究[J].灌溉排水学报,2008,27(3):34- 36.
    [37]何斌,李卫红,陈永金,等.干旱胁迫条件下胡杨茎流与茎直径变化分析———以塔里木河下游英苏断面为例[J].干旱区地理,2007,30(2):224-229.
    [38]江淼,潘存德,李冬梅.尖叶白蜡茎杆直径变化日过程及其与环境因子的关系分析[J].新疆农业大学学报,2007,30(2):45-48.
    [39]管伟,熊伟,王彦辉,等.六盘山北侧华北落叶松树干直径生长变化及其对环境因子的响应[J].林业科学,2007,43(9):1-6.
    [40]石鑫鑫,潘存德,王振锡.塔里木河下游多枝柽柳茎直径生长对水环境时空变化的响应[J].新疆农业大学学报2009,32(2):1-5.
    [41]Sylvain Delzon,Michel Sartore,etal.Radial profiles of sap flow with increasing tree size in maritime pine[J].Tree Physiology ,2004,24:1285–1293.
    [42]Masafumi Ueda ,Ei’ichi Shibata.Diurnal changes in branch diameter as indicator of water status of Hinoki cypress Chamaecyparis obtuse[J].Trees ,2001,15:315–318.
    [43]陆平,Laurent Urban,赵平.Granier的测量树木茎流的TDP方法(热消散探针):理论与实践[J].植物学报,2004,46(6): 631-646.
    [44]Huber B.Beobachtung Messung pflanzlicher Safrstrome[J].Berichteder Deutschen Botanischen Gesellschaft,1935,50:89-109.
    [45]严昌荣,AlecDowney,韩兴国,等.北京山区落叶阔叶林中核桃楸在生长中期的树干液流研究[J].生态学报,1999 ,19(6):793-797.
    [46]Marshall D C.Measurement of sap flow in conifers by heat transport[J].Plant Physiology,1958,33:385-396.
    [47]孙鹏森,马履一,王小平,等.油松树干液流的时空变异性研究[J].北京林业大学学报,2000,22(5):1- 6.
    [48]刘奉觉,郑世锴,巨关升,等.杨树树干液流时空动态研究[J].林业科学研究,1993,6(4):368-372.
    [49]刘奉觉,郑世锴,巨关升,等.用热脉冲速度记录仪测定树干液流[J].植物生理学报,1993,29(2):110- 115.
    [50]刘奉觉,郑世锴.用测定木质部液流速度的方法确定树木的蒸腾耗水量[J].林业科技通讯,1989,30(4):30-32.
    [51]李海涛,陈灵芝.应用热脉冲技术对棘皮桦和五角枫树干液流的研究[J].北京林业大学学报,1998,20(1):1-6.
    [52]Granier A.Evaluation of transpiration in a Douglas fir stand by means of sap flow measurements[J].Tree-Physiology,1987,7(3):309-320.
    [53]Anfodillo T,Sigalotti G B,Tomasi M,et al.Applications of a thermal imaging technique in the study of the ascent of sap in woody species[J].Plant,Cell and Environment,1993,16(8):997-1001.
    [54]Granier A,R.Huc,S.T.Barigah.Transpiration of natural rain forest and its dependence on climactic factors[J].Agricultural and forest Meteorology,1996,78:19-29.
    [55]高岩,刘静.应用热脉冲技术对小美旱杨耗水量的研究[J].内蒙古农业大学学报,2001,22(I):44-48.
    [56]顾振瑜.应用PV技术对元宝枫水分生理特点的研究[J].西北林学院学报,1999,14(4):17-20.
    [57]刘奉觉,Edwardsw:R,郑世楷等.杨树树干液流时空动态研究[J],林业科学研究,1993,6(4):368-372.
    [58]鲁小珍.马尾松、栓皮栋生长盛期树干液流的研究[J].安徽农业大学学报,2001,28(4):401-404.
    [59]马长明.官厅库区小叶杨和刺槐的耗水特性研究.[D].河北农业大学,2004.
    [60]马履一,王华田.油松边材液流时空变化及其影响因子的研究[JJ.北京林业大学学报,2002,23(4):23-37.
    [61]孟平,张劲松,王鹤松,等.苹果树蒸腾规律及其与冠层微气象要素的关系[J1.生态学报,2005, 25(5):1075-1051.
    [62]孙慧珍,周晓峰,赵惠勋.白桦树干液流的动态研究[J].生态学报,2002,22(9):1387-1391.
    [63]孙慧珍,孙龙,王传宽等.东北东部山区主要树种树干液流研究[J].林业科学,2005,41(3):36-42.
    [64]王华田,马履一,孙鹏森.油松、侧柏深秋边材木质部液流变化规律的研究[J].林业科学,2002,38(5):31- 37.
    [65]王瑞辉.北京主要园林树种耗水性及节水灌溉制度研究[D].北京林业大学图书馆,2006.
    [66]吴丽萍,王学东,尉全恩,等.樟子松树干液流的时空变异性研究[J].水土保持研究,2003,10(4):66-68.
    [67]曹文强,韩海荣,马钦彦,等.山西太岳山辽东栋夏季树干液流通量研究[J].林业科学,2004,40(2):174- 177.
    [68]严昌荣,Downey A,韩兴国,等.北京山区落叶阔叶林中核桃揪在生长中期的树干液流研究[J],生态学报,1999,19(6):793-797.
    [69]徐军亮,马履一,王华田.油松人工林sPAC水势梯度的时空变异[J].北京林业大学学报,2003,25(5):l- 5.
    [70]翟洪波,李吉跃, Huang Wending,等.SPAC中油松栓皮栋混交林水分特征与气体交换.北京林业大学学报,2004,26(l):30-34.
    [71]翟洪波,李吉跃,聂立水.油松栓皮栋混交林林地蒸散和水量平衡研究.北京林业大学学报,2004,26(2):48-51.
    [72]翟洪波,李吉跃.元宝枫苗木水力结构特征[J].应用生态学报,2003,14(9):1411-1415.
    [73]翟洪波,李吉跃,姜金璞.干旱胁迫对油松侧柏苗木水力结构特征的影响[J].北京林业大学学报,2002,24(5/6):45-49.
    [74]翟洪波,李吉跃,姜金璞.油松、侧柏苗木水力结构特征的对比研究闭.生态学报,2002, 22(11):1890- 1895.
    [75]翟洪波,李吉跃,姜金璞.元宝枫栓皮栋苗木水力结构特征的对比研究[J].北京林业大学学报,2002,24(4):45-50.
    [76]翟洪波,李吉跃,聂立水.油松的水力结构特征闭.林业科学,2003,39(2):14-20.
    [77]张宁南,徐大平,JimMorris等.雷州半岛尾叶按人工林树液茎流特征的研究[J].林业科学研究,2003,16(6):661-667.
    [78]张小由,龚家栋,周茅先,等.胡杨树干液流的时空变异性研究[J].中国沙漠,2004,24(4):489-492.
    [79]Andreas Stohr,etal.Xylem sap flow and drought stress of Fraxinus excelsior saplings[J].TreePhysiology ,2004,24: 169–180.
    [80]Haruhiko Taneda,etal.A case-study of water transport in co-occurring ring- versus diffuse-porous trees: contrasts in water-status,conducting capacity,cavitation and vessel refilling[J].Tree Physiology ,2008,28: 1641–1651.
    [81]David T.S ,Henriques M.O,Kurz-Besson C,etal.Water-use strategies in two co-occurring Mediterranean evergreen oaks: surviving the summer drought[J].Tree Physiology ,2007,27: 793–803.
    [82]Dugas W.A,Polley H.W,etal.Acclimation of whole-plant Acacia farnesiana transpiration to carbon dioxide concentration[J].Tree Physiology ,2000,21: 771–773.
    [83]Norikazu Eguchi,etal.Changes in petiole hydraulic properties and leaf water flow in birchand oak saplings in a CO2-enriched atmosphere [J].Tree Physiology ,2007,28:287–295.
    [84]Conejero W,etal.Daily sap flow and maximum daily trunk shrinkage measurements for diagnosing water stress in early maturing peach trees during the post-harvest period[J].Tree Physiology ,2006,27: 81–88.
    [85]A.G.West,etal .Differential summer water use by Pinus edulis and Juniperus osteosperma reflects contrasting hydraulic characteristics[J].Tree Physiology,2007,27,1711–1720.
    [86]Breda,etal .Effeets of thinning on soil and tree water relations,transpiration and growth in and oak forest (Quereus Petraea (Matt.) Liebl.)[J].Tree Physiology ,1995,15:295-306.
    [87]Barrett,D.J,etal.Evaluation of the heat pulse veloeity technique for measurement of sapflow in rainforest and euealypt forest species of south- eastern Australia[J].Plant,Cell and Environment,1995,18:463-469.
    [88]Coehard H,etal .Whole tree hydraulie conductance and water loss regulation in Quereus during drought : evidence for stomatal control of embolism[J].Ann.Sei.For.1996,53:197-206.
    [89]Dunin.G M.And Cormor .Analysis of sap flow in mountain ash(Eucalyptus regnans) forests of different age [J].Tree Physiology ,1993,13:321-336.
    [90]Dye,etal .A comparision of the heatpulse method and deuterium traeing method for measuri-ng transpiration for Eucalyptus grandis trees[J].J.ExP.Bot.1992,43:337-343.
    [91]Dye,etal.Estimating transpiration from 6-year-old Eucalyptus grandis trees: development of a canopy conduetance model and comparison with independent sap flow measurements [J].Plant,Cell and Environment,1993,16:45-53.
    [92]Granier A.,etal.Variation of hydraulic conductance of some adult conifers under natural conditions[J].Ann.Sei.For.1989,46(s):357-360.
    [93]Granier A.,etal.Transpiration of natura lrain forest and its dependence on climatic factors[J].Agrie.For.Meteorol.1996,78:19-29.
    [94]Granier A.,T.Anfodillo.Axial and radial water flow in the trunks of oak trees : a quantitative and qualitative analysis[J].Tree Physiology.1994,14:1383一1396.
    [95]Kallaraekal,J.Water use by Euealpytus tereticornis stands of differing density in southern India [J].Tree Phsiology.1997,17:195-203.
    [96]Kalma,S.J.A comparison of heatpulse and deuterium tracing techniques for estimating sap flow in Eucalyptus grandis trees[J].Tree Physiology,1998,18:697-705.
    [97]Medhurst,J.L.M.Battaglia.and C.L.Beadle.Measured and Predicted changes in tree and stand water use following high- intensity thinning of an 8-year-old Euealyptus nitens Plantation[J].Tree Physiology ,2002,22:775-784.
    [98]Gardner W R,C F Ehlig .The influence of soil water on transpiration of plants [J].GeoPhys Res,1963,68:5719-5724.
    [99]Thorburn P J,etal.Combining measurements of transpiration and stable isotopes of water to determine ground water discharge from forests [J].J Hydrol,1993,50:563-587.
    [100]Tognetti,R.,A.Raschi.Comparison of sap flow,cavitation and water status of Quereus Petraea and Quercus cerris trees with special reference to computer tomography [J].Plant,Cell and Environmeni.1996,19:928-938.
    [101]Vertessy R A,etal.Estimating stand water use of large mountain ash trees and transpiration in a young mountain ash forest[J].Tree Physiology,1997,17:747-756.
    [102]张劲松,孟平.苹果-小麦复合系统小麦潜在蒸散模拟模型的研究[J].林业科学研究,2004,17(3):284- 290.
    [104]Garnier E.,Berger A.Effect of water stress on stem diameterchanges of peach trees growing in field [J].Journal of Applied Ecology,1986,23: 193?209.
    [105]Higgs K.H.,Jones H.G.A microcomputer-based system for continuous measurement and recording fruit diameter in relation to environmental factors[J].J.Exp.Bot.,1984,35(11):1646?1655
    [106]Li S.H.,Huguet J.G.,Bussi C.Irrigation scheduling in a mature peach orchard using tensiometers and dendrometers[J].Irrigation and Drainage Systems,1989,3(1): 1?12.
    [107]Goldhamer D.A.,Fereres E.Irrigation scheduling of almond trees with trunk diameter sensors[J].Irrigation Science,2004,23(1): 11?19.
    [108]Huguet J.G.,Li S.H.,Lorendeau J.Y.,et al.Specific micromorphometric reactions of fruit trees to water stress and irrigation scheduling automation[J].J.Hort.Sci.,1992,67(5):631?640.
    [109]李绍华,余克顺,孟昭清,等.植物器官体积变化连续测微法指导果树自动化灌溉合理指标的研究[J].果树科学,1999,16(3): 165?170.
    [110]李绍华,Huguet J.G.植物器官体积微变化与果树自动化灌溉[J].果树科学,1993,10(增刊): 15?19.
    [111]余克顺,李绍华,孟昭清,等.水分胁迫条件下几种果树茎干直径微变化规律的研究[J].果树科学,1999,16(2):86?91.
    [112]Granier A,Huc R,Barigah S.Transpiration of natural rain forest and its dependence on climatic factors[J].Agricultural and Forest Meteorology,1996,78:19- 29.
    [113]Lu P,Lauren U,Zhao P.Granier’s Thermal Dissipation Probe(TDP) method for measuring sap flow in trees:theory and practice[J].Acta.Botanica.Sinica,2004,46(6):631- 646.
    [114]高岩,张汝民,刘静.应用热脉冲技术对小美旱杨树干液流的研究[J].西北植物学报,2001, 21(4):644-649.
    [115]刘尉.改进型TDP的研制及性能分析[D].北京:中国农业大学,2007.
    [116]湛景武,汪有科,张陆军,等.桃树茎直径微变化与土壤水势及气象因子的关系[J].中国生态农业学报,2009,17(3): 489?494.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700