用户名: 密码: 验证码:
场地中透镜体对地震动的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震震害和理论研究表明局部场地条件对地震动有显著的影响。在滨海、湖泊、河道等沉积地区,透镜体是一种常见的局部场地。本文采用有限元方法研究透镜体对地震动影响的基本规律,分析透镜体宽度、厚度、埋深、刚度、非线性等因素对地震动的影响,对工程抗震设防具有重要的指导意义。
     研究均匀场地和层状场地中透镜体对地震动的影响问题。比较了含透镜体的均匀场地与不含透镜体的均匀场地(自由场)对地震动影响的差别,着重分析了透镜体宽度、厚度、埋深和刚度、以及地震动频谱等参数对地震响应的影响;比较了含透镜体的层状场地与不含透镜体的层状场地(自由场)对地震动影响的差别,着重分析了层状场地和地震动频谱等参数对地震响应的影响。结果表明,无论均匀场地还是层状场地中透镜体均对地震动有着显著的放大作用,而且层状场地中透镜体比均匀场地中透镜体有着更大的放大作用。
     研究非线性均匀场地和层状场地中透镜体对地震动的影响问题。利用等效线性化方法计算了含透镜体的非线性均匀场地的地震响应,与不含透镜体的非线性均匀场地(自由场)地震响应进行了比较,并着重研究了均匀场地非线性和输入地震波峰值和频谱对地响应的影响;利用等效线性化方法计算了含透镜体的非线性层状场地的地震响应,与不含透镜体的非线性层状场地(自由场)地震响应进行了比较,着重分析了层状场地非线性和输入地震波峰值和频谱对地震响应的影响。研究表明,无论非线性均匀场地还是非线性层状场地中透镜体均对地震动有着显著的放大作用,场地非线性不仅会降低放大作用的峰值,还会显著提高地震响应反应谱的卓越周期,而且层状场地中透镜体比均匀场地中透镜体有着更大的放大作用。
The local site has great effect on the ground motion in earthquake, which is verified by earthquake disaster and theoretical research. The lenticle is one kind of local site in the valley near the sea, lake and river. Finite element method is applied to study the effect of a lenticle on ground motion in this paper, and the influence of different factors such as the width, thickness, depth, material stiffness and material nonlinearity of a lenticle have been analyzed in detail. This research is of great significance for structural earthquake resistance design.
     The difference between the total response and the free field is compared to study the influence of the a lenticle on the ground motion, and the parameter variations of the frequency spectrum of input seismic ground motion and the width, thickness, depth and material stiffness of the lenticle are considered in this paper. Furthermore, the effect of the lenticle is investigated in layered site. The differences of influence rules between the single layered site and multi-layered site is illustrated by typical numerical example,and the soil layer properties is studied emphatically. It is illustrated a lenticle can significantly affect the ground motion both in homogenous site and layered site, and the amplification effect is more obvious in layered site. The seismic response of nonlinear site involving a lenticle is calculated by an equivalent linear method considering the effects of the lenticle. This study is emphasized on the influence rule of the nonlinear properties of soil and the frequency spectrum of input seismic waves by comparing the seismic response between corresponding analyses models. Further more, the seismic response of nonlinear layered site is modeled and computed, to mainly study the influence rules of the properties of soil layer and the amplititude and frequency spectrum of input seismic waves. It is shown that the amplification effect is significant both in layered site and homogenous site. The nonlinearity behavior of site not only decreases the peak of seismic ground motion, but also prolongs the prominent period. The amplification effect is more significant in layered site, which is similar to the case of linear site.
引文
[1] Aki K., Larner K. Surface motion of a layered medium having an irregular interfacedue to incident plane SH waves, J Geophys Res, 1970, 75:933~954
    [2] Bard P Y., Bouchon M. The seismic response of sediment filled valleys PartΙ: The case of incident SH waves, Bull Seism Soc Am, 1980, 70:1263~1286
    [3] Bard P Y., Bouchon M. The seismic response of sediment filled valleys PartΠ: The case of incident P and SV waves, Bull Seism Soc Am, 1980, 70:1921~1941
    [4] Bard P Y. Diffracted waves and displacement field over two-dimensional elevated topographies, Geophys J R Astr Soc, 1982, 71:731~760
    [5] Bouchon M. Effect of topography on surface motion, Bull Seism Soc Am, 1973, 63:615~632
    [6] Bouchon M., Aki K. Discrete wave number representation of seismic wave fields, Bull Seism Soc Am, 1977, 67: 259~277
    [7] Bouchon M. Discrete wave number representation of elastic wave fields in three space dimensions, J Geophys Res, 1979, 84:3609~3614
    [8] Bouchon M. Calculation of complete seismograms for an explosive source m a layered medium, Geophysics, 1980, 45:197~203
    [9] Boore D M. A note on the effect of simple topography on seismic SH waves, Bull Seism Sec Am, 1972, 62:275~284
    [10] Boore D M. The effect of simple topography on seismic waves: Implications for the accelerations recorded at Pacoima Dam, San Fernando Valley, California, Bull Seism Sec Am, 1973, 65:1603~1609
    [11] Boore D M., Harmsen S C., Harding S T. Wave scattering from a step change in surface topography, Bull Seismol Soc Am, 1981, 71:117~125
    [12] Bouckovalas G D., Papadimitriou A G. Numerical evaluation of slope topography effects on seismic ground motion, Soil Dyn Earthq Eng, 2005, 25:547~558
    [13] Bravo M A., Sanchez-Sesma F J., Chavez-Garcia F. Ground motion on stratified alluvial deposits for incident SH waves, Bull Seism Soc Am, 1988, 78:436~450
    [14] Brebbia C A., Telles J C F., Wrobel LC. Boundary Element Techniques -Theoryand Applications in Engineering, Springer-Verlag, Berlin, 1984
    [15] Cao, H., Lee V W. Scattering of plane P waves by circular cylindrical canyons with various depth-to-width Ratio, Soil Dyn Earthq Eng, 1990, 9(3):141~150
    [16] Chen X F. Seismogram synthesis for multi-layered media with irregular interfaces by the global generalized reflection/transmission and matrices method Part I: Theory of 2-D SH case, Bull Seism Soc Am, 1990, 80:1694~1724
    [17] Chen X F. Seismogram synthesis for multi-layered media with irregular interfaces by the global generalized reflection-transmission matrices method-Part II: Theory of 2D P-SV Case, Bull Seism Soc Am, 1996, 86:389~405
    [18] Datta S K., Shah A H. Scattering of SH waves by embedded cavities, Wave Motion, 1982, 4(3): 265~283
    [19] De Barros F C P., Luco J E. Diffraction of obliquely incident waves by a cylindrical cavity embedded in a layered viscoelastic halfspace, Soil Dynam Earthq Engng, 1993, 12:159~171
    [20] De Barros F C P., Luco J E. Amplication of obliquely incident waves by a cylindrical valley embedded in a layered half-space, Soil Dyn Earthquake Engng, 1995, 14:163~175
    [21] Dravinski M. Scattering of SH waves by subsurface topography, J Eng Mech Div, 1982a, 108:1~16
    [22] Dravinski M. Scattering of elastic waves by an alluvial valley, J Eng Mech Div, 1982b, 108:19~31
    [23] Dravinski M. Ground motion amplification due to elastic inclusion in a half-space. Earthq Eng Struct Dynam, 1983a, 11: 313~335
    [24] Dravinski M. Scattering of plane harmonic SH wave by dipping layers or arbitrary shape, Bull Seism Soc Am, 1983b, 73:1303~1319
    [25] Dravinski M., Mossessian T K. Scattering of plane harmonic P, SV, and Rayleigh waves by dipping layers of arbitrary shape, Bull Seism Soc Am, 1987, 77:212~235
    [26] Dravinski M., Wilson M S. Scattering of elastic waves by a general anisotropic basin. Part 1: A 2D model, Earthquake Eng Struct Dyn, 2001, 30:675~689
    [27] Dravinski M, Wilson M S. Scattering of elastic waves by a general anisotropic basin. Part 2: A 3D model, Earthquake Eng Struct Dyn, 2003, 33:673~670
    [28] Dravinski M. Scattering of Waves by a Sedimentary Basin with a Corrugated Interface, Bull Seism Soc Am, 2007, 97:256~264
    [29] Fehler M., Aki K. Numerical study of diffraction of plane elastic waves by a finite crack with application to location of a magma lens. Bull Seism Soc Am, 1978, 68(3):573~598
    [30] Fishman K L., Ahmad S. Seismic response for alluvial valleys subjected to SH, P, and SV waves, Soil Dyn Earthquake Eng, 1995, 14 (4):249~258
    [31] Frankel A., Vidale J. A three-dimensional simulation of seismic waves in the Santa Clara Valley, California, from a Loma Prieta aftershock, Bull Seism Sec Am, 1992, 82:2045~2074
    [32] Frankel A. Three-dimensional simulations of ground motion in the San Bernardino Valley, California, for hypothetical earthquakes on the San Andreas fault, Bull Seism Soc Am, 1993, 83:1020~1041
    [33] Geli L., Bard P Y., Bouchon M. The effect of topography on earthquake ground motion: a review and new results, Bull Seismol Soc Am, 1988, 78:42~63
    [34] Halpern M R., Christiano P. Response of poroelastic halfspace to steady-state harmonic surface tractions, Int J Numer Anal Meth Geomech, 1986, 106: 609~632
    [35] Horike M., Uebayashi H., Takeuchi Y. Seismic response in three-dimensional sedimentary basin due to plan S wave incidence, J Phys Earth,1990,38:261~284
    [36] Kawano M., Matsuda S., Toyoda K., Yamada J. Seismic response of three dimensional alluvial deposit with irregularities for incident wave motion from a point source, Bull Seism Soc Am, 1994, 84:1801~1814
    [37] Kawase H. Time domain response of a semicircular canyon for incident SV, P, and Rayleigh waves calculated by the discrete wave number boundary element method, Bull Seismol Soc Am, 1988, 78(4):1415~1437
    [38] Keshavamurthy R., Dravinski M. Elastic wave scattering by an inclusion in a multilayered medium submerged in fluid. I. plane strain model. Applied Mathematics and Computation, 1995, 65:33~60
    [39] Khair K R., Datta S K., Shah A H. Amplification of obliquely incident seismic waves by cylindrical alluvial valleys of arbitrary cross-sectional shape Part I: Incident P and SV waves, Bull Seismol Soc Am, 1989, 3:610~630
    [40] Khair K R., Datta S K., Shah A H. Amplification of obliquely incident seismic waves by cylindrical alluvial valleys of arbitrary cross-sectional shape Part II: Incident SH and Rayleigh waves, Bull Seismol Soc Am, 1991, 81:346~357
    [41] Kim J., Papageorgiou A. Discrete wavenumber boundary-element method for 3Dscattering problems, J Eng Mech, 1993, 119:603~624
    [42] Lee V W., Trifunac M D. Response of tunnels to incident SH waves, Eng Mech Div, 1979, 21:643~659
    [43] Lee V W., Cao H. Diffraction of SV waves by circular canyons of various depths, J Eng Mech Div, 1989, 115(9):2035~2056
    [44] Lee V W., Karl J. Diffraction of SV waves by underground circular cylindrical cavities, Soil Dyn Earthq Eng, 1992, 11:445~456
    [45] Lee, V W., Karl J. On deformations of near a circular underground cavity subjected to incident plane P waves, European Journal of Earthquake Engineering, 1993, 1: 29~36
    [46] Lee V W., Luo H., Liang J. Antiplane (SH) waves diffraction by a semicircular cylindrical hill revisited: an improved analytic wave series solution, J Eng Mech, 2006, 132:1106~1114
    [47] Lee V W. Three-dimensional diffraction of plane P, SV &SH waves by a hemispherical alluvial valley, Soil Dyn Earthquake Eng, 1984, 3:133~144
    [48] Lin C H., Lee V W., Trifunac M D. The reflection of plane waves in a poroelastic half-space fluid saturated with inviscid fluid, Soil Dyn Earthquake Eng, 2005, 25:205~223
    [49] Liu S W., Datta S K., Bouden M. Scattering of obliquely incident seismic waves by a cylindrical valley in a layered half space, Int J Earthquake Eng Struct Dyn, 1991, 20:859~870
    [50] Luco J E., Wong H L., De Barros F C P. Three dimensional response of a cylindrical canyon in a layered halfspace, Int J Earthquake Eng Struct Dyn, 1990, 19:799~817
    [51] Luco J E., De Barros F C P. Dynamic displacements and stresses in the vicinity of a cylindrical cavity embedded in a half-space, Earthquake Eng Struct Dyn, 1994, 23: 321~340
    [52] Lysmer.etal, FLUSH, A Computer Program for Approximate 3-D Analysis of Soil-Structure Interaction Problems Report. NO. EERC.75-30, Earthquake Engineering Research Center, University of California, Berkeley, 1991.
    [53] Manolis G D., Beskos D E. Boundary Element Methods in Elastodynamics, London: Unwin Hyman, 1988
    [54] Manoogian M., Lee V W. Diffraction of SH-waves by subsurface inclusions of arbitrary shape. J Eng Mech, ASCE, 1996, 122(2): 123~129
    [55] Mossessian T K., Dravinski M. Scattering of elastic waves by a three- dimensional surface topographies, Wave Motion, 1989, 11:579~592
    [56] Mossessian T K., Dravinski M. Amplification of elastic waves by a three dimensional valley, Part 1: steady state response, Earthquake Eng Struct Dyn, 1990, 19:667~680
    [57] Ohminato T., Chouet B A. A free-surface condition for including 3D topography in the finite-difference method, Bull Seism Sec Am, 1997, 87:494~515
    [58] Ohori M., Koketsu K., Minami T. Seismic responses of three-dimensional sediment filled valleys due to incident plane waves, J Phys Earth, 1992, 40:209~222
    [59] Ohtsuki A., Harumi K.Effect of topography and subsurface inhomogeneities on seismic SV waves, Earthquake Eng Struct Dyn, 1983, 11: 441~462
    [60] Pao Y H., Mow C C. Diffraction of Elastic Waves and Dynamic Stress Concenrations, New York: Crane Russak and Company, Inc., 1973
    [61] Papageorgiou A., Pei D. A discrete wave number boundary element method for Study of 3-D response of 2-D Scatterers, Earthq Engng Struct Dyn, 1998, 27(6): 619~638
    [62] Pedersen H., Sanchez-Sesma F J., Campillo M. Three-dimensional scattering by two-dimensional topographies, Bull Seism Soc Am, 1994, 84:1169~1183
    [63] Rial J A., Saltzman N G., Ling H. Earthquake-induced resonance in sedimentary basins, American Scientist, 1992, 80:566~578
    [64] Smith W D. The application of finite element method analysis to body wave propagation problems, Geophys J Res Astr Soc, 1975, 42:747~768
    [65] Sanchez-Sesma F J., Esquivel J A. Ground motion on alluvial valleys under incident plane SH waves, Bull Seismol Soc Am, 1979, 69:1107~1120
    [66] Sanchez-Sesma F J., Herrera I., Avfles J. A boundary method for elastic wave diffraction, Application to scattering of SH waves by surface irregularities, Bull Seism Soc Am, 1982, 72:473~49
    [67] Sanchez-Sesma F J. Diffraction of elastic waves by three-dimensional surface irregularities, Bull Seism Soc Am, 1983, 73:1621~1636
    [68] Sainchez-Sesma F J., Bravo M A., Herrera I. Surface motion of topographical irregularities for incident P, SV, and Rayleigh waves, Bull Seism Soc Am, 1985, 75: 263~269
    [69] Sanchez-Sesma F J., Perez-Rocha L E., Chavez-Perez S. Diffraction of elasticwaves by three-dimensional surface irregularities Part II, Bull Seism Soc Am, 1989, 79: 101~112
    [70] Sainchez-Sesma F J., Campillo M. Diffraction of P, SV, and Rayleigh waves by topographic features: a boundary integral formulation, Bull Seism Soc Am, 1991, 81: 2234~2253
    [71] Sainchez-Sesma F J., Ramos-Martinez J., Campillo M. An indirect boundary element method applied to simulate the seismic response of alluvial valleys for incident P, S and Rayleigh Waves, Earthquake Eng Struct Dyn, 1993, 22: 279~295
    [72] Sanchez-Sesma F J., Luzon F. Seismic response of three-dimensional alluvial valleys for incident P, S and Rayleigh waves, Bull Seism Soc Am, 1995, 85: 269~284
    [73] Stamps A A., Beskos D E. 3-D seismic response analysis of long lined tunnels in half-space, Soil Dyn Earthq. Eng, 1996, 15:111~118
    [74] Toshinawa T., Ohmachi T. Love wave propagation in a three-dimensionai sedimentary basin, Bull Seism Soc Am, 1992, 82:1661~1667
    [75] Trifunac M D. Surface motion of a semi-cylindrical alluvial valley for incident plane SH waves, Bull Seism Soc Am, 1971, 61:1755~1770
    [76] Trifunac M.D. Scattering of plane SH wave by a semi-cylindrical canyon, Earthq Eng Struc Dynam, 1973, 1:267~281
    [77] Valliappan S., Tabatabaie Y J., Zhao C B. Analytical solution for two dimensional dynamic consolidation in frequency domain, Int J Numer Anal Methods Geomech, 1995, 19:663~82
    [78] Vogt R F., Wolf J P., Bachmann H. Wave scattering by a canyon of arbitrary shape in a layered half space, Earthq Eng Struct Dynam, 1988, 16:803~812
    [79] Wolf J P. Dynamic Soil-Structure Interaction, Englewood Cliffs: Prentice-Hall, 1985
    [80] Wong C K., Shah A H., Datta S K. Diffraction of elastic waves in a half-space. II. analytical and numerical solutions. Bull Seism Soc Am, 1985, 75(1): 69~92
    [81] Wong H L., Trifunac MD. Surface motion of semi-elliptical alluvial valley for incident plane SH waves, Bull Seism Soc Am, 1974, 64(1):1389~1408
    [82] Wong H L., Trifunac M D. Scattering of plane SH-waves by a semi-elliptical canyon, Earthq Eng Struc Dynam, 1974, 3:157~169
    [83] Wong H L. Effect of surface topography on the diffraction of P, SV and Rayleighwaves, Bull Seism Soc Am, 1982, 72(4):1167~1183
    [84] Yomogida K., Etgen J T. 3-D wave propagation in the Los Angeles Basin for the Whittier-Narrows earthquake, Bull Seism Soc Am, 1993,83:1325~1344
    [85] Yuan X M., Men F L. Scattering of plane SH waves by a semicylindrical hill, Earthq Eng Struct Dyn, 1992, 21:1091~1098
    [86] Yuan X M., Liao Z P. Scattering of plane SH waves by a cylindrical alluvial valley of circular-arc cross-section, Earthq Eng Struct Dynam, 1995, 24: 1303~1313
    [87] Yuan X M., Liao Z P. Surface motion of a cylindrical hill of circular-arc cross-section for incident plane SH waves, Soil Dyn Earthq Eng, 1996, 15: 189~199
    [88] Zhang L., Chopra A K. Three-dimensional analysis of spatially varying ground motions around a uniform canyon in a homogeneous half-space, Earthq Eng Struct Dyn, 1991, 20:911~926
    [89]巴振宁,层状半空间动力格林函数和局部场地对弹性波的散射:[博士学位论文],天津大学,天津,2008
    [90]董俊,赵成刚,三维半球形凹陷饱和土场地对平面P波散射问题的解析解,地球物理学报,2005,48(3):680~688
    [91]董俊,赵成刚,半球形凹陷饱和土半空间对平面SV波三维散射问题的解析解,地球物理学报,2005,48(6):1412~1421
    [92]杜修力,熊建国,波动问题的级数解边界元法,地震工程与工程振动,1988,8(1):41~51
    [93]杜修力,熊建国,关慧敏,平面SH波散射问题的边界积分方程分析法,地震学报,1993,15(3):311~338
    [94]冯领香,断层场地对弹性波的散射:[博士学位论文],天津大学,天津,2008
    [95]胡聿贤,地震工程学(第二版),北京:地震出版社,2006.
    [96]梁建文,严林隽,Lee V W,圆弧形凹陷地形表面覆盖层对入射平面SV波的影响,地震学报,2001,23(6):622~636
    [97]梁建文,张浩,Lee V W. A series solution for surface motion amplification due to underground twin tunnels: incident SV waves, Earthquake Engineering and Engineering Vibration, 2003, 2(2):289~298
    [96]梁建文,张浩,Lee V W.地下洞室群对地面运动影响问题的级数解答:P波入射,地震学报,2004a,26(3):269~280
    [98]梁建文,尤红兵,Dynamic stiffness matrix of a poroelastic multi-layered site andits Green's functions, 2004b, 3(2):273~282
    [99]梁建文,纪晓东,Vincent W Lee,地下圆形衬砌隧道对沿线地震动的影响(II):数值结果,岩土力学,2005a,26(5):687~692
    [100]梁建文,纪晓东,Vincent W Lee,地下圆形衬砌隧道对沿线地震动的影响(I):级数解,岩土力学,2005b,26(4):520~524.
    [101]梁建文,尤红兵,层状半空间中洞室对入射平面P波的放大作用,地震工程与工程振动,2005c,25(2):16~24
    [102]梁建文,尤红兵,Green's functions for uniformly distributed loads acting on an inclined line in a poroelastic layered site. Earthquake Engineering and Engineering Vibration, 2005d, 4(2):233~241
    [103]梁建文,纪晓东地下衬砌洞室对Rayleigh波的放大作用,地震工程与工程振动,2006a,26(4):24~31.
    [104]梁建文,巴振宁,Lee V W. Diffraction of plane SV waves by a shallow circular-arc canyon in a saturated poroelastic half-space. Soil Dynamics and Earthquake Engineering, 2006b, 26:582~610
    [105]梁建文,尤红兵,Lee V W,Scattering of SV Waves by a canyon in a fluid-saturated, poroelastic layered half-space, modeled using the indirect boundary element method, Soil Dyn Earthq. Eng, 2006c, 26:611~625
    [106]梁建文,巴振宁,Lee V W,平面P波在饱和半空间洞室周围的散射(I):解析解,地震工程与工程振动,2007a,27(1):1~6
    [107]梁建文,巴振宁,Lee V W,平面P波在饱和半空间洞室周围的散射(II):数值结果,地震工程与工程振动,2007b,27(2):1~11
    [108]梁建文,巴振宁,Lee V W. Diffraction of plane SV waves by an underground circular cavity in a saturated poroelastic half-space. ISET Journal of Earthquake Technology, 2007c, 44(2):341~375
    [109]廖振鹏,近场波动有限元解法,地震工程与工程振动,1984,4:1~14
    [110]廖振鹏.工程波动理论导论,科学出版社,北京,2002
    [111]林宏,刘殿魁,半无限空间中圆形洞室周围SH波的散射,地震工程与工程振动,2002,22(2):9~16
    [112]刘殿魁,林宏,浅埋的圆柱形洞室对SH波的散射与地震动,爆炸与冲击,2003,23(1):6~12
    [113]刘晶波,波动的有限元模拟及复杂场地对地震动的影响:[博士学位论文],国家地震局工程力学研究所,哈尔滨,1989
    [114]李小军,局部介质非均匀非线性场地地震反应:[博士学位论文],国家地震局工程力学研究所,哈尔滨,1993
    [115]邱仑,徐植信,地下结构瞬态响应分析的积分方程方法(Π):多层结构及SH波计算,同济大学学报,1988,16:55~64
    [116]邱仑,徐植信,地下结构瞬态响应分析的积分方程方法(Ι):P波和SV波传播,同济大学学报,1987,15:411~42
    [117]孙静,岩土动剪切模量阻尼试验及应用研究:[博士学位论文],哈尔滨,中国地震局工程力学研究所, 2004.
    [118]熊建国,关慧敏,杜修力,波动问题的级数解边界元法,地震工程与工程振动,1991,11(2):20~28
    [119]袁晓铭,孙悦.饱和砂土透镜体液化对建筑物地震反应的影响.地震工程与工程振动,2000,20(1): 68~74
    [120]袁晓铭.地表下圆形夹塞区出平面散射对地面运动的影响.地球物理学报, 1996,39(3): 373~381
    [121]赵成刚,韩铮,半球形饱和土沉积谷场地对入射平面Rayleigh波的三维散射问题的解析解,地球物理学报,2007,50(3):905~914
    [122]尤红兵,梁建文,层状饱和场地中线性分布斜线荷载的动力Green函数,振动工程学报,2005,18(3):335~341
    [123]尤红兵,梁建文,层状半空间中洞室对入射平面SV波的散射,岩土力学,2006,27(3):383~388
    [124]尤红兵,层状饱和半空间中凹陷地形或隧洞对弹性波的散射:[博士学位论文],天津大学,天津,2005
    [125]中华人民共和国国家标准,建筑抗震设计规范(GB50011-2001),北京:中国建筑工业出版社,2001
    [126]周根寿,王志良,韩清宇.场地中软弱夹层对地面地震反应的影响.地基与工业建筑抗震,北京:地震出版社,1984

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700