用户名: 密码: 验证码:
结构—空腔声固耦合声品质基础理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空腔内部噪声问题是一个具有极强实际意义的问题,其应用对象包括汽车驾驶室、飞机和舰船的船舱。虽然随着技术的发展,空腔内部的噪声水平已有了很大的改善,但依然有很多负面评价,这种反映就涉及到空腔声品质问题。声品质是用户(乘客)对封闭空腔系统内声场噪声接受度的心理感觉反映。它包括响度、粗糙度、波动度等一系列参数,并以不同的感受影响着人类的听觉心理。空腔声品质设计研究对低噪声空腔设计具有重要的理论意义和使用价值,对解决其他工程问题也有广阔的应用前景。
     本文运用以解析为主、结合数值计算的方法,对简谐力激励下多弹性板边界耦合的结构-声学空腔内部声场及声品质特性进行了研究。基于阻抗-导纳逼近理论,建立了边界条件均为简支的力激励时的结构-声学耦合空腔内的声场模型;结合Zwicker响度模型,建立了结构-声学耦合系统内声场响度预测模型,利用数值计算的结果分析了空腔中三个不同位置点的响度分布规律,通过计入人类听觉对频率的选择性接收特性,分析了空间位置对声强级、声强密度以及特征频带声强级的影响,为声固耦合空腔内声响度预测和设计提供了解析模型;并推导了空腔中含有吸声材料的声学边界条件声场模型。
     对于空腔内声场内的声音,用0-20Hz调制音对其调制时,会产生独立处理的声品质参数:波动度。运用Green函数法建立了多激励力多弹性面响应的声场模型,并利用修正的声波动度模型,建立了结构-声学耦合系统的波动度的解析计算模型,并揭示了调制频率、阻尼率以及耦合板模态密度等对声波动度的影响规律,为耦合空腔内声波动度设计提供了预测方法。
     当调制音频率增大到20-300Hz时,会产生另外一个可独立处理的声品质参数:粗糙度。利用有限元法和修正后的声粗糙度模型,给出了复杂形状腔体结构-声学耦合系统内声场的粗糙度模型。揭示了调制音频率、调制音声压级以及耦合板刚度对声粗糙度的影响规律,为复杂形状结构-声学耦合系统内声场的粗糙度的预测和控制提供了方法。
     本文还对声品质主观评价方法进行了研究。针对评价者在使用语义细分法评价时,对其评价结果优劣的判断需要凭经验的问题,将灰色区间的概念引入语义细分法,提出了自己的判断准则。针对成对比较法耗时耗力,并容易导致评价者疲劳而使评价失效的情况,提出了一种新的关于声品质多维度属性的主观评价方法——与标准比较法。组织10人评价组对某9个声样本进行了评价试验,利用多元线性回归分析,建立用以心理声学客观参数量化描述主观评价结果的声品质数学模型,并进行了检验。
     利用一个矩形结构-声学耦合系统,通过试验对耦合腔体内的响度预测方法进行了验证。
It is very practical and meaningful to study the noise problem inside a cavity, whose application objects include driving cabs of automobile, passenger compartments of a plane and cabins of a ship. With the development of technology, although the noise level in cavity has been improved, many negative reactions still exist, which are caused by the problem of "sound quality in cavity". Sound quality includes a series of parameters, such as loudness, fluctuation strength and roughness, etc. These parameters influence the human hearing sensation in different ways. The research on sound quality in cavity has theoretical meaning and good use value for low noise and high performance cavity design. This study also has wide application prospect on other engineering problems.
     Analytical method is the main method used in this dissertation. Integrated with numerical method, this dissertation makes a profound research on the characteristics of interior acoustic field and sound quality in structural-acoustic coupled cavity under different boundary conditions. Based on the theory of impedance and mobility, the interior acoustic field model is established for the structural-acoustic coupled system under simply supported conditions, and combined with the Zwicker's loudness model, a model of interior acoustic field sound loudness, which is also in the structural-acoustic coupled system, is established for forecasting. and the model of the cavity interior acoustic field whose acoustic boundary condition contains sound absorption material is derived. The sound loudness distribution of three different location points in the cavity is analyzed by using the numerical calculation results. The effect of spatial position on sound intensity level, sound intensity density and critical-band level is also studied throuth taking the frequency selectivity of human hearing system into account. And the research results provide analytical method for forecasting and designing sound loudness in the structural-acoustic coupling cavity.
     An independent parameter-sound fluctuation strength appears when the interior sound of structural-acoustic coupling cavity is modulated by other sounds whose frequency is between 0 to 20 Hz. Using Green Function Method and modified fluctuation strength model, a new calculation model of fluctuation strength in the structural-acoustic coupling cavity is established. The effects of modulation frequency, damping ratio and the coupling plate modal density on the sound fluctuation strength are revealed. The numerical results are presented to provide forecasting method for fluctuation strength design in structural-acoustic coupled cavity.
     Another independent parameter-sound roughness appears when the sound is modulated by other sounds whose frequency is between 20-300 Hz. Using finite element method and modified sound roughness model, the model of sound roughness in complexly-shaped structural-acoustic coupling cavity is established. The effects of modulation frequency, modulated sound pressure level and the coupling plate stiffness on the sound roughness are revealed. The method for forecasting and controlling the acoustic roughness in the complexly-shaped cavity is presented.
     Subjective evaluation method of sound quality is also studied in this dissertation. Aiming at the problem that when the jury evaluates by using semantic differential method, the judgment of the evaluation results usually depend on experience, the application of grey interval is introduced to semantic differential method, and a new judgment criterion is put forward. Compared with the time-consuming paired comparison method which would lead to failure of the evaluation, a new subjective evaluation method-comparison method with criteria, which can reflect multidimensional attributions of sound quality, is established. An experiment to evaluate nine acoustic samples participated by a 10-person jury is held. A mathematic model of sound quality is established and tested to describe subjective evaluation result in quantity with psychoacoustic parameters by using multiple linear regression method.
     The proposed prediction model of loudness of structural-acoustic coupled cavity is examined by a rectangle cavity samples.
引文
[1]R.M.Lyon. Power flow between linearly coupled oscillators. The Journal of Acoustical Society of America,1962,34:623-639.
    [2]P.W.Smith. Response and radiation of structural modes excited by sound. The Journal of Acoustical Society of America,1962,34:761-779.
    [3]P.W.Smith. Coupling of sound and panel vibration below the critical frequency. The Journal of Acoustical Society of America,1964,36:1516-1520.
    [4]Lyon. R. H, Scharton. T. D. Vibrational-energy transmission in a three-element structure. Journal of the Acoustical Society of America.1965,38(2):253-261.
    [5]Lyon. R. H, Eichler E. Random vibration of connected structures. Journal of the Acoustical Society of America.1964,36(7):1344-1354.
    [6]Grosveld. Prediction of interior noise due to random acoustic or turbulent boundary layer excitation using statistical energy analysis. AIAA 13th aero-acoustics Conference, Tallahassee,1990,237-246.
    [7]Jessen J. Calculation of structure-borne noise in ships using the statistical-energy analysis approach. Proceeding of the International Symposium on Shipboard Acoustics. Amsterdam, Elsevier.1976.
    [8]Irie Y, Takagi S. Structure-borne noise transmission in steel structure like a ship. Proceedings of Inter-Noise 78,1978.
    [9]Fukuzawa K, Yasuda C. Studies on Structure-borne sound in ship. Proceedings of Inter-Noise 78,1978.
    [10]Yoshika T, ed. Prediction of noise level on board ship using statistical energy analysis. Proceedings of Inter-Noise 81,1981.
    [11]Tratch J. Vibration transmission through machinery foundation and ship bottom structure:[D]. USA:Massachusetts Institute of Technology,1985:45-60.
    [12]Lyon R. H. In-plane contribution to structural noise transmission. Noise Control Engineering Journal.1986,26(1):22-27.
    [13]McCollum M. D, Cuschieri J M. Bending and in-plane wave transmission in thick connected plates using energy analysis. Journal of Acoustical Society of America. 1980,88(12):1480-1485.
    [14]Lion K, Honda I. Total noise prediction system for a passenger cruise ship. Proceedings of the 5th International symposium on Practical Design of Ship and Mobile Units,1992. London:Elsvier Applied Science,1648-1661.
    [15]Hynnae P, ed. Prediction of Structure-borne sound transmission in large welded ship structures using SEA. Journal of Sound and Vibration.1995,180(4):583-670.
    [16]王彦琴,盛美萍,孙进才.统计能量分析预测飞机壁板隔声量及舱室内声场分布.声学技术,2003,22(4):219-222.
    [17]Radcliffe, C.J., Huang, X.L. Putting statistics into the statistical energy analysis of automotive vehicles. Journal of Vibration and Acoustics, Transactions of the ASME,1997,119(4):629-634.
    [18]伍先俊,朱石坚.基于Autosea2的家电产品声品质设计.研发技术,2005,2:53-56.
    [19]Cuschieri J M, Sun J C. Use of statistical energy analysis for rotating machinery. Journal of Sound and Vibration,1994,170(2):181-190.
    [20]Belov V. D, ed. Propagation of vibrational energy in absorbing structures. Journal of Soviet Physics-Acoustics.1977,23(2):115-119.
    [21]Belov V. D, Rybak S. A. Applicability of the transport equation in the one-dimensional wave propagation problem. Journal of Soviet Physics-Acoustics. 1975,21(2):110-114.
    [22]Nikiforov A. S. Estimating the intensity of structure-borne noise in ribbed structures. International congress on Intensity Techniques,1990:115-119.
    [23]Nikiforov A. S. Structural acoustics of ships. Russian:Russian Academic of Science,1974.35-45.
    [24]Buvailo L. E. Ionov A. V. Application of the finite element method to the investigation of the vibraacoustical characteristic of Structures at high audio frequencies. Journal of Soviet Physics-Acoustics.1980,26(4):277-279.
    [25]Cabbos C, Jokat J. computation of structure-borne noise propagation in ship structures using noise-FEM. Proceeding PRADS98,1998. Osterveld and Tan eds., Elsevier,927-934.
    [26]Bouthier O. M, Bernhard R. J. Models of space-averaged energetics of plates. AIAA Journal.1992,3.0(3):616-622.
    [27]Bouthier O. M, Bernhard R. J. Simple models of energy flow in vibrating membranes. Journal of Sound and Vibration.1995,182(1):129-147.
    [28]Bouthier O. M, Bernhard R. J. Simple models of energetics of transversly vibrating plates. Journal of Sound and Vibration.1995,182(1):149-164.
    [29]L. D. Pope. Band-limited power flow into enclosures. The Journal of Acoustical Society of America,1980,68(3):823-826.
    [30]L. D. Pope. Development and validation of preliminary analytical models for aircraft interior noise prediction. The Journal of Acoustical Society of America, 1982,72(2):276-291.
    [31]仪垂杰.功率流理论及其在装甲车上的应用(博士学位论文).西安交通大学,1994.
    [32]Trefftz E. Ein Gefensttick Zum rizschen Verfahren. Proc.2nd Int. cong. Appl. Mech.,1926,23:131-137.
    [33]Antes, H. On a regular boundary integral equation and a modified Terfftz method in Reissner's plate theory. Engineering Anal,1984,1(3):49-53.
    [34]Hochard,Ch., Proslier,L. A simplified analysis of plate structures using Trefftz functions. Int. J. Numer. Meth. Engng,1992,34:179-195.
    [35]Kita E, Kamiya N. Trefftz method:an overview. Advanced in Engineering Software,1995,24:3-12.
    [36]何雪松.结构-声学耦合分析及其波函数法研究(博士学位论文).华中科技大学,2008.
    [37]张肃,陈南,张建润.基于多分辨小波的复杂封闭空腔声固耦合场分析.现代振动与噪声技术.2008,6(6):136-139.
    [38]张肃,陈南,李普,张建润.基于小波加辽金法的复杂封闭空腔结构-声耦合场分析.机械工程学报.2008,6(44):155-160.
    [39]吴九汇.车辆内腔声固耦合分析的覆盖域方法研究(博士学位论文).西安交通
    大学,2001.
    [40]J. H. Wu, H. L. Chen, W. B. An. A method to predict sound radiation from a plate-ended cylindrical shell Excited by an external force. Journal of Sound and Vibration,2000,237(5):793-803.
    [41]Wu Jiuhui, Chen Hualing, Hu Xuanli. Method to calculate interior sound field of atbitary-shaped closed thin shell. Chinese Journal of Acoustics,2001,20(1):81-87.
    [42]范成高,陈南,张肃.基于改进Trefftz解析法的封闭空腔噪声由原控制.动力学与控制学报,2006,4(4):380-384.
    [43]A. J. Pretlove. Free vibrations of a rectangular panel backed by a closed rectangular cavity. Journal of Sound and Vibration,1965,2:197-209.
    [44]A. Craggs. The use of simple three-dimensional acoustic finite element for determining the natural modes and frequencies of complex shaped enclosure. Journal of Sound and Vibration,1972,23(4):331-339.
    [45]Wolf J. A, Nefske D, Howell L. T. Structural-Acoustic Finite Element Analysis of the Automobile Passenger Compartment. Transactions of the Society of Automotive Engineer,1976,85:857-864.
    [46]Junger M. C. Sound scattering by thin elastic shells. Journal of Acoustic Society of America.1952,24(6):336-373.
    [47]Goodman, Stern R. Reflection and transmission of sound by elastic spherical shells, Journal of Acoustic Society of America.1962,34(6):338-344.
    [48]Hickling R. Analysis of echoes from hollow metallic sphere in water, Journal of Acoustic Society of America.1964,36(3):1124-1137.
    [49]Hayek S. Vibration of a spherical shell in an acoustic medium. Journal of Acoustic Society of America.1966,40(2):342-348.
    [50]Zhang P. Z, Thomas G. Excitation of a fluid-filled submerged spherical shell by a transient acoustic wave. Journal of Acoustic Society of America.1993, 93(5):696-706.
    [51]王勖成,邵敏编著.有限单元法基本原理和数值方法[M].北京:清华大学出版社,2003.
    [52]A. Craggs. The transient response of a coupled plate-acoustic system using plate and acoustic finite elements. Journal of Sound and Vibration,1971,15:509-528.
    [53]A. crags. An acoustic finite element approach for studying boundary flexibility and sound transmission between irregular enclosures. Journal of Sound and Vibration, 1973,30:343-357.
    [54]M. petyt, J. Lea, G. H. Koopmann. A finite element method for determining the acoustic modes of irregular shaped cavities. Journal of Sound and Vibration,1976, 45:495-502.
    [55]J. L. Richards, S. K. Jha. A simplified finite element method for studying acoustic characteristics inside a car cavity. Journal of Sound and Vibration,1979,63:61-72.
    [56]L. Cheng. Fluid-Structural coupling of a plate ended cylindrical shell:vibration and internal sound field. Journal of Sound and Vibration,1994,174(5):641-654.
    [57]L. E. Gilroy. Finite element methods for analyzing coupled fluid/structure systems. Proceedings of International Conference on Noise Control Engineering (Noise93), 1993.
    [58]石秀勇,李国祥,胡玉平.发动机飞轮螺栓的三维有限元分析[J].中国机械工程,2006,8(17):845-848.
    [59]R. Courant. Variational method for solutions of problems of equilibrium and vibrations. Bull. Am. Math. Soc.,1943,49:1-23.
    [60]M. J. Turner, R. W. Clough, H. C. Martin. Stiffness and deflection analysis of complex structures. J. Aero. Sci.,1956,23:805-823.
    [61]R. W. Clough. The finite element method in plane stress analysis. Proc.2nd ASME Conference on Electronic Computation, Pittsburgh, Pa., Sept.,1960.
    [62]姚振汉,杜庆华.边界元法应用的若干近期研究及国际新进展.清华大学学报(自然科学版),2001,41(4/5):89-93.
    [63]Perrey-Debain, E. Analysis of convergence and accuracy of the DRBEM for axisymmetric Helmholtz-type equation.Engineering Analysis with Boundary Elements.1999,23(8):703-711.
    [64]Golberg M. A., Chen C. S., Bowman H. Some recent results and proposals for the use of radial basis functions in the BEM. Engineering Analysis with Boundary
    Elements.1999,23(4):285-296.
    [65]Popov V., Power H. DRM-MD approach for the numerical solution of gas flow in porous media, with application to landfill. Engineering Analysis with Boundary Elements.1999,23(2):175-188.
    [66]Songping Zhu, Satravaha Pornchai. Solving nonlinear time-dependent diffusion equations with the dual reciprocity method in Laplace space. Engineering Analysis with Boundary Elements.1996,18(1):19-27.
    [67]Niku S. M., Adey R. A. Computational aspect of the dual reciprocity method for dynamics. Engineering Analysis with boundary Element.1996,18(1):43-60.
    [68]Jumarhon Bartur, Amini Sia,Chen Ke. On the boundary element dual reciprocity method. Engineering Analysis with Boundary Elements.1997,20(3):205-211.
    [69]Zhang Z., Vlahopoulos N., Raveendra S. T., Zhang K. Y. A computational field reconstruction process Society of America,2000,108(5):2167-2178.
    [70]Raveendra S. T. An efficient indirect boundary element technique acoustic analysis. Int. J. Num. Meth. Engng.,1999(44):59-76.
    [71]Guiggiani M. et al. A general algorithm for the numerical solution of hypersingular BEM. Journal of Applied Mechanics,1992,59(2):604-614.
    [72]Peter R. Johnston, David Elliott. A generalization of Telles' method for evaluating weakly singular boundary element integrals. Journal of Computational and Applied Mathematics,2001, (131):223-241.
    [73]赵志高.结构声辐射的机理与数值研究方法(博士学位论文).华中科技大学,2005.
    [74]D. Martin, M. Aliabadi. A BE hyper-singular formulation for contact problems using non-conforming discretization. Computers and Structures,1998, (69):557-569.
    [75]J. Blauert. Aesthetic and cognitive aspects of Noise Engineering [A]. Proc. Inter Noise'86[C]. Cambridge MA,1986, (1):3-14.
    [76]J. Blauert. Product-sound assessments:An enigmatic issue from the point of view of Engineering [A]. Proceedings of Inter Noise 94[C]. Yokohama, Japan,1994, (2):857-862.
    [77]Jeong-Guon Ih, Sung-Hwan Shin. Investigation on the Correlation Between Sound Quality and Spectral Composition of Vacuum Cleaner Sound by using the Orthogonal Array. Sound Quality Symposium 2002, DEARBORN, MICHIGAN,AM.SQS02-21.
    [78]B. Berglund, P. Hassmen and A. Preis. Annoyance and spectral contrast are cues for similarity and preference of environmental sounds. Journal of Sound and Vibration, 2002,250:53-64.
    [79]R. Heinrichs, M. Bodden. Perceptual and instrumental description of the gear-rattle phenomenon for diesel vehicles.6th Proceedings International Congress on Sound and Vibration, Copenhagen, Denmark,1999:3103-3112.
    [80]M. Bodden, R. Heinrichs. Analysis of the time structure of gear rattles. Proceedings of the Inter Noise 99, Fort Lauderdale, USA,1999:1273-1278.
    [81]Fidell S, Sneddon M, Pearsons K, Howe R. Insufficiency of an environmental sound's power spectrum as a predictor of its annoyance. Journal of Noise Control Engineering,2002,50(1):12-18.
    [82]M. Hussain, J. Golles, A. Ronacher, H. Schiffbanker. Statistical evaluation of an annoyance index for engine noise recordings. SAE Technical Paper Series 911080,1991.
    [83]Amman. Scott, Greenberg. Jeff. Subjective evaluation and objective quantification of automobile structure noise. Noise control Eng. J.47(1),1999:17-27.
    [84]Teik C. Lim. Correlations Between Deficiencies in Power Window Systems Influencing Sound Quality and Some Psychoacoustic Metrics. Applied Acoustics, 2001,62(9):1025-1047.
    [85]L. Zhang, A. Vertiz. What really affect customer perception? a window regulator sound quality example. Proceeding of the 1997 Noise and Vibration Conference, Traverse City, Michigan, USA,1997.SAE Paper No.971909.
    [86]C.Hogstrom. Sound Quality of Air Conditioning Systems in Trains. Sound Quality Symposium 2002, DEARBORN, MICHIGAN, Am. SQS02-18.
    [87]Khan S., C.Hogstrom. Determinitation of sound quality of HVAC system on trains using multivariate. Journal of Noise Control Engineering,2001,
    49(6):276-283.
    [88]C.Hogstrom, Anders Frid. Sound Quality Aspects in the Design of Railway Vehicles. Sound Quality Symposium 2002, DEARBORN, MICHIGAN, Am. SQS02-19.
    [89]K. Fujii, Y. Soeta, Y. Ando. Acoustical properties of aircraft noise Measured by temporal and spatial factors. Journal of Sound and Vibration,2001,241:69-78.
    [90]INOUE M., ANDO Y, TAGUTI T. The frequency range applicable to pitch identification based upon the auto-correlation function model. Journal of Sound and Vibration,2001,241 (1):105-116.
    [91]JEON J. Y. Subjective evaluation of floor impact noise based on the model ACF//ACF. Journal of Sound and Vibration,2001,241(1):147-155.
    [92]Rhona Hellman. Predicting the Loudness and Annoyance of Low-Frequency Spectra. Sound Quality Symposium 2002, DEARBORN, MICHIGAN, Am. SQS02-12.
    [93]Reinhard Weber, Takeo Hashimoto, Shigeko Hatano. Objective signal correlates of the booming effect in vehicles. Sound Quality Symposium 2002, DEARBORN, MICHIGAN, Am. SQS02-27.
    [94]S. K. Lee, H. C. Chae, D. C. Park, S. G..Jung. Sound Quality Index development For the Booming Noise of Automotive Sound Using Artificial Neural Network Information Theory. Sound Quality Symposium 2002, DEARBORN, MICHIGAN, Am. SQS02_05.
    [95]Norm Broner. Melbourne. Low Frequency Noise-Are Loudness and Annoyance the Same? Sound Quality Symposium 2002, DEARBORN, MICHIGAN, Am. SQS02-38.
    [96]T. Hashimoto. Sound quality approach on vehicle interior and exterior noise-Quantification of frequency related attributes and impulsiveness. Journal of Acoustical Society of Japan (E),2000,21:337-340.
    [97]R. Hoeldrich, M. Pflueger. A generalized psychoacoustical model of modulation parameters (roughness) for objective vehicle noise evaluation. Proceeding of the 1999 Noise and Vibration Conference, Traverse City Michigan, USA,1999. SAE Paper No.1999-01-1817.
    [98]M. Pflueger, R. Hoeldrich, F. Brandl, W. Biermayer. Subjective assessment of roughness as a basis for objective vehicle interior noise quality evaluation. Proceeding of the 1999 Noise and Vibration Conference, Traverse City, Michigan, USA,1999. SAE Paper No.1999-01-1850.
    [99]Otto Martner, Carsten Zerbs, B. John Feng. Psychoacoustic Model for The Objective Determination of Engine Roughness. Sound Quality Symposium 2002 DEARBORN, MICHIGAN, Am. SQS02-35.
    [100]Aaron Hastings, Patricia Davies. An Examination of Aures'Model of Tonality. Sound Quality Symposium 2002, DEARBORN, MICHIGAN, Am. SQS02-35.
    [101]W. Ellermeier, P. Daniel. Tonal Components in Tire Sounds:Refined Subjective and Computational Procedures. Sound Quality Symposium 2002, DEARBORN, MICHIGAN, Am. SQS02-08.
    [102]M. Bodden. Instrumentation for Sound Quality Evaluation. Acta Acustica united with Acustica,1997,83:775-783.
    [103]Schiffbanker, Hussain. Development and Application of an Evaluation Technique to Assess the Subjective Character of Engine Noise, SAE Paper,911081.
    [104]Kousuke Noumura, Junji Yoshida. Perception Modeling and Quantification of Sound Quality in Cabin. SAE paper,2003-01-1514.
    [105]L. N. Solomon. Semantic reactions to systematically varied sounds. J. Acoust. Soc. Am.,31:986-990,1959.
    [106]S. Buss, N. Chouard, Schulte. Fortksmp. Semantic differential tests show Intercultural differences and similarities in perception of car sounds. In Fortschritte der Akustik-DAGA 2000.
    [107]T. Hempel, N. Chouard. Evaluation of Interior Car Sound with a New Specific Semantic Differential Design, ASA-EAA-DAGA Joint Meeting, Berlin, Germany, 1999.
    [108]N. Chouard, T. Hmpel. A semantic differential design especially developed for the evaluation of interior car sounds. ASA-EAA-DAGA Joint Meeting, Berlin, Germany,1999.
    [109]S. Buss et al. Combing methods to evaluate sound quality. The 2000 International Congress and Exhibition on Noise Control Engineering, Nice, France,2000.
    [110]E. Parizet. Paired comparison listening tests and circular error rates. Acta Acustica United with Acustica,2002,88:594-598.
    [111]W. Ellermeier, M. Mader, P. Daniel. Scaling the Unpleasantness of Sounds According to the BTL Model Ratio-Scale Representation and Psychoacou stical Analysis. Acta Acustica United with Acustica,2004,90:101-107.
    [112]A. Farina, E. Ugolotti. Subjective evaluation of the sound quality in cars by the naturalization technique. In proceeding of 4th International Conference and Exhibition Comforting the automotive industry, Bologna, Italy,1997.
    [113]Gabriella CerratoJay, Douglas Collings and David Lowery. Implementation of Sound Quality Measurements in Component Rating Tests. Sound Quality Symposium 2002, DEARBORN, MICHIGAN, Am., SQS02-01.
    [114]M. Bodden, R. Heinrichs, A. Linow. Sound Quality Evaluation of interior vehicle noise using an efficient psychoacoustic method. Proceeding of Euronoise 98,1998.
    [115]N. Otto, S. Amman, C. Eaton, S. Lake. Guidelines for Jury evaluations of Automotive Sounds. SAE TECHNICAL Paper 1999-01-1822.
    [116]S. Kuwano, S. Namba, H. Fastl, A. Schick. Evaluation of the Impression of Danger Signals Comparison between Japanese and German Subjects. In 7. Oldenburger Symposium (A. Schick, M. Klate, Eds.), BIS Oldenburg,1997:115-128.
    [117]S. Kuwano, S. Namba, A. Schick., H. Fastl. The timbre and annoyance of auditory warning signals in different countries. Inter'Noise 2000 in Nice,2000.
    [118]Nielsen. A Neural Network Model for Prediction of Sound Quality. LA_report_53, 1993.
    [119]Anna Preis, Marta Chudzicka. Expert And Non-Expert Judgments of Musical Instruments:Subjective Evaluation Vs Acoustical Characteristics of Musical Sound. ICA2004,Tu5.X1.2.
    [120]R. Bisping. Emotional effect of car interior sounds:pleasantness and power and their relation to acoustic key features. SAE paper 951284,1995:1203-1209.
    [121]R. Bisping. Car interior sound quality:Experimental analysis by synthesis. Acta
    Acustica united with Acustica,1997,83:813-818.
    [122]毛东兴.车内声品质主观评价与分析方法的研究(博士学位论文).同济大学,2003.
    [123]焦风雷,刘克,毛东兴.运用多维尺度分析进行噪声品质的主观评价,声学技术,2004,(23):95-96.
    [124]梁杰.基于双耳听觉模型的车内声品质分析与评价方法研究(博士学位论文).吉林大学,2007.
    [125]J. Pan, C. H. Hansen, D. A. Bies. Active control of noise transmission through a panel into a cavity:Ⅰ. Analytical study. Journal of the Acoustical Society of America.1990,87:2098-2108.
    [126]J. Pan. The forced response of an acoustic-structural coupled system. Journal of the acoustical Society of America.1992,91:949-956.
    [127]K. L. Hong, J. Kim. New analysis method for general acoustic-structural coupled systems. Journal of Sound and Vibration.1996,192:465-480.
    [128]E. H. Dowell, G F. Gorman, D. A. Smith. Acoustoelasticity:General theory, acoustic modes and forced response to sinusoidal excitation, including comparisons with experiment. Journal of Sound and Vibration.1977(52):519-542.
    [129]E. L. Hixson. Shock and Vibration Handbook. New York:McGraw-Hill.1987.
    [130]L. E. Kinsler, A. U. Frey, A. B. Coppens and J. V. Sanders. Fundamentals of Acoustics. New York:3rd edition.
    [131]L. Cremer, H. Heckl. Structure-Borne Sound:Structural Vibrations and Sound Radiation at Audio Frequencies. [M]2nd editions. Berlin:Springer-Verlag.
    [132]F. Fahy. Sound and structural Vibration, Radiation, Transmission and Response. [M] London:Academic Press.
    [133]Moore B C J, Psychophysical tuning curves measured in simultaneous and forward masking. JASA,63(2):524-532,1978.
    [134]Moore B C J, Glasberg B R, Shailer M J. Frequency and intensity difference limens for harmonics within complex tones.JASA,75(2):550-561,1984.
    [135]Moore B C J, Alcantara J I, Dau T. Masking patterns for sinusoidal and narrow-band noise maskers.JASA,104(2):1023-1038,1998.
    [136]Paterson R D. The sound of a sinusoid:Spectral models. JASA,96(3):1409-1418, 1994.
    [137]Paterson R. D. The sound of a sinusoid:Time-interval models. JASA,96(3): 1419-1428,1994.
    [138]Zwicker E, Fastl H. Psychoacoustics, Facts and Models. Berlin, Heidelberg: Springer Verlag,1990.
    [139]Moore B C J, Glasberg B R. Growth of forward masking for sinusoidal and noise maskers as a function of signal delay:implications for suppression in noise,1983, 73(3):1249-1259,JASA.
    [140]Moore B C J, Glasberg B R, Baer T.A Model for the Prediction of Thresholds, Loudness, and Partial Loudness.JASA,45(4):224-240,1997.
    [141]P.A. Nelson, S. J. Elliott. Active control of Sound. [M] London:Academic Press. 1992.
    [142]S. D. Snyder, N. Tanaka. On feed forward active control of sound and vibration using vibration error signals. Journal of the acoustical society of America.1993, 94:2181-2193.
    [143]H. Fastl. Hearing:Physiological bases and Psychophysics. Berlin Heidelberg: Springer,1993
    [144]H. Fastl. The psychoacoustics of sound quality evaluation. Acustica,1997,83(5): 754-764
    [145]J. Bemsen. Sound in design. Danish Design Center& DELTA Acoustics and Vibration,1999
    [146]M. A. Milosevic, A. M. Mitic, M. S. Milosevic. Parameters influencing noise estimation. Working and Living Environmental Protection,2004,2(4):277-284
    [147]J. Blauert, U. Jekosch. Sound quality evaluation:a multilayered problem. Antwerp: EEA Tutorium,1996
    [148]Hansen. C. H., Snyder. S. D.,仪垂杰(译),噪声和振动的主动控制.2002,北京:科学出版社.
    [149]熊大国.积分变换.1990.北京:北京理工大学出版社.
    [150]W. Sethares. Tuning, timbre, spectrum, scale. London:Springer Verlag,1998
    [151]P. N. Vassilakis. Perceptual and physical properties of amplitude fluctuation and their musical significance. PhD. Thesis,2001, University of California at Los Angeles
    [152]Chouard N., Hempel T. A semantic differential design especially developed for the evaluation of interior car sounds. ASA-EAA-DAGA Joint Meeting, Berlin,1999.
    [153]Chouard. N., Weber R. On the influence of the ordering of noise in sequences for paired comparison judgment utilization. In Proceeding of Inter-Noise 1994,1994:1089-1092.
    [154]Brambilla G., Flindell I. H., Rice C. G. Noise quality in cars:field evaluation versus laboratory assessment. Proceeding of 2nd International Conference and Exhibition Comfort in the automotive industry. Bologna, Italy.1992,1045-1053.
    [155]Ronacher A. W., Hussain M., Biermayer W., stoklschwaiger, W. Evaluating vehicle interior noise quality under transient driving conditions. Proceeding of the 1999 noise and vibration conference, Traverse City, Michigan, USA,1999. SAE Paper No.1999-01-1683.
    [156]饶伟.车内声品质评价模型的建立及应用研究(硕士学位论文).吉林大学.2008.
    [157]黄其柏.工程噪声控制学[M].武汉:华中科技大学出版社.1999.
    [158]师汉民,谌刚,吴雅.机械振动系统——分析测试建模对策[M].武汉:华中科技大学出版社.1992.
    [159]罗超.基于压电薄膜的非规则封闭空间噪声主动控制的理论及实验研究(博士学位论文).上海交通大学.2005.
    [160]S. M. Kim, M. J. Brennan. A compact matrix formulation using the impedance and mobility approach for the analysis of structural-acoustic systems. Journal of sound and vibration.1999,223(1):97-213.
    [161]Sahin Yildirim. Ikbal Eski. Sound quality analysis of cars using hybrid neural networks. Simulation Modeling Practice and Theory.2008,16,410-418.
    [162]Sung-Hwan Shin, Geong-Guon Ih, Takeo Hashimoto, Shigeko Hatano. Sound quality evaluation of the booming sensation for passenger cars. Applied Acoustics,
    2009,70,309-320.
    [163]Leopoldo P. R. de Oliveira, Karl Janssens, Peter Gajdatsy, Herman Van der Auweraer etc. Active sound quality control of engine induced cavity noise. Mechanical Systems and signal Processing,2009,23,476-488.
    [164]Etienne Parizet, Erald Guyader, Valery Nosulenko. Analysis of car door closing sound quality. Applied acoustics.2008,69,12-22.
    [165]D. Berckmans, K. Janssens, H. Van der Auweraer, P. Sas, W, Desmet. Model-based synthesis of aircraft noise to quantify human perception of sound quality and annoyance. Journal of Sound and Vibration,2008, (311),1175-1195.
    [166]Sang-Kwon Lee. Objective evaluation of interior sound quality in passenger cars during acceleration. Journal of Sound and Vibration,2008,310,149-168.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700