用户名: 密码: 验证码:
辐射流体动力学方程的Cauchy问
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要考虑辐射流体动力学方程整体解的存在性和唯一性,以及解的大时间行为.本文的主要内容如下:
     第一章为绪言.在这里,我们回顾了辐射流体动力学方程的物理背景及研究历史,并交代了将要研究的方程和相关的主要结论.
     第二章中,我们研究了多维辐射流体动力学方程的一个简化模型,即一个双曲-椭圆耦合方程组.在第一节中,我们研究模型的Cauchy问题经典解的整体存在性和逐点估计.首先,利用能量估计的方法,我们得到经典解的整体存在唯一性.进一步,通过对线性化问题Green函数的研究,我们得到Green函数的逐点估计.并利用Duhamel原理将非线性微分方程转换成非线性积分方程.然后,利用Green函数的逐点估计,我们获得当初始值在一个常状态附近扰动时非线性方程解的逐点收敛速度.研究发现,解随时间增加不断地耗散,与此同时解的主部向某个方向在平移.最后,我们得到了解的最优的Lp模衰减估计.在第二节中,我们研究前面模型的一种修改形式.这一形式,因其不满足Shizuta-Kawashima条件,一般认为这类耗散结构较差.通过对这一问题的研究,我们得到了多维的较差耗散结构方程组解的整体存在性.这里利用加权能量的方法,我们获得解的Lp模的衰减估计.进一步,我们研究了解的大时间渐近行为.在第三节中,利用不动点定理和Green函数方法,我们研究了一个相关方程解的整体存在性和逐点估计.
     第三章中,我们考虑的是带粘性的辐射流体动力学方程的Cauchy问题.在第一节中,我们得到了Cauchy问题经典解的整体存在唯一性和衰减估计.这里我们主要利用[54]中的应用能量方法得到解的先验估计.在第二节中,在前面Cauchy问题解的整体存在性基础上,利用线性化问题Green函数的逐点估计,我们获得解的逐点估计.在第三节中,我们考虑多维等熵球对称流体动力学方程组弱解的局部存在性.
     第四章中,我们研究多维辐射流体动力学方程简化模型大扰动解的整体存在性和衰减估计.首先,我们考虑Cauchy问题经典解的爆破.然后,利用能量方法,我们得到当初始值的梯度满足某种小性假设条件时问题的经典解的整体存在性和衰减估计.
In this thesis, we consider the global existence and uniqueness of solutions to the initialvalue problem for the equations of radiation hydrodynamics. Furthermore, we study thelarge time behaviors of the solutions. The thesis is arranged as follows:
     In Chapter 1, we review the physics background of the equations of radiation hydrody-namics and the history on studying the equations. We also introduce the problems addressedin this study and summarize the main results.
     In Chapter 2, we investigate a model system for the radiating gas, i.e. a hyperbolic-elliptic coupled system. In Section 1, we consider global existence and pointwise estimatesof solutions to the Cauchy problem for the model system of the radiating gas. First of all,by using the energy method, we obtain the global existence and uniqueness of the solutions.Then, we derive pointwise estimates of the Green function by studying the Green functionproblem. Moreover, by using the Duhamel principle and the pointwise estimates of theGreen function, we obtain pointwise estimates of the solutions when the initial perturbationcorresponding to a positive constant state is sufficiently small in Hs(Rn). Furthermore, weshow the optimal Lp-norm estimates of the solutions. In Section 2, we consider a modi-fied model system for the radiating gas. This model doesn’t satisfy the Shizuta-Kawashimacondition. Here, we study the global existence and asymptotic behaviors of solutions to aregularity-loss type for nonlinear hyperbolic-elliptic system in multi-dimensions. By usinga weighted energy method, we obtain Lp-norm decay estimates of solutions to the Cauchyproblem. Fianlly, we get large time asymptotic behaviors of the solutions. In Section 3, westudy the global existence and pointwise estimates of solutions to an equation which satisfiesthe Shizuta-Kawashima condition.
     In Chapter 3, we consider the initial value problem for a radiation hydrodynamic model with viscosity in R3. In Section 1, we obtain the global existence and some decay estimatesof solutions to the problem. In order to prove a priori estimates of the solutions, we applyan energy method as that in [54]. In Section 2, under the proof of the global existenceof the solutions in Section 1, we obtain pointwise estimates of solutions. Here, the decayestimates of the Green function for the linearized system to the equations is used. In Section3, when omitting the radiation effect, we consider the local existence of weak solutions tothe isentropic spherically symmetric Navier-Stokes equations.
     In Chapter 4, we investigate the global existence and decay estimates of solutions tothe Cauchy problem for a model system of the radiating gas with large initial data. Firstly,we consider the blow up of classical solutions. Secondly, when the derivative of initial datasatisfies some smallness conditions, we obtain the global existence and decay estimates ofthe solutions by using an energy method.
引文
[1] R. Adams, Sobolev Space, Academic Press, New York, 1975.
    [2] S. Alinhac, Blow up for Nonlinear Hyperbolic Equations, Birkhauser Boston, Boston,1995
    [3] J. W. Bond Jr., K. M. Watson, and J. A. Welch Jr., Atomic Theory of Gas Dynamics,Addison-Wesley Publishing Company, Inc, 1965
    [4] G. Q. Chen, M. Kratka, Global solutions to the Navier-Stokes equations for compress-ible heat-conducting ?ow with symmetry and free boundary, Comm. Partial Differen-tial Equations, 27 (2002), 907-943.
    [5] G. Q. Chen, T. H. Li, Formation ofδ-shocks and vacuum states in the vanishingpressure limit of solutions to the Euler equations for isentropic ?uids, , SIAM J. Math.Anal., 34 (2003), 925-938.
    [6] G. Q. Chen, B. H. Li and T. H. Li, Entropy solutions in L∞for the Euler equations innonlinear elastodynamics and related equations, Arch. Ration. Mech. Anal., 170 (2003),331-357.
    [7] P. Chen, T. Zhang, A vacuum problem for multidimensional compressible Navier-Stokes equations with degenerate viscosity coefficients, Comm. Pure Appl. Anal., 7(2008), 987-1016.
    [8] R. J. Duan, K. Fellner and C. J. Zhu, Energy method for multi-dimensional balancelaws with non-local dissipation, J. Math. Pures Appl., in press.
    [9] B. Ducomet, E. Feireisl, On the dynamics of gaseous stars, Arch. Rational Mech.Anal., 174 (2004), 221-266.
    [10] B. Ducomet, E. Feireisl, The equations of magnetohydrodynamics: on the interactionbetween matter and radiation in the evolution of gaseous stars, Commun. Math. Phys.,266 (2006), 595-629.
    [11] B. Ducomet, A. Zlotnik, Lyapunov functional methods for 1D radiative and reactiveviscous gas dynamics, Arch. Ration. Mech. Anal., 177 (2005), 185-229.
    [12] M. D. Francesco, Initial value problem and relaxation limits of the hamer model forradiating gases in several space variables, NoDEA, Nonl. Differential Equations Appl.,13 (2007), 531-562.
    [13] K. O. Fredrichs, Symmetric hyperbolic linear differential equations, Comm. Pure Appl.Math., 7 (1954), 345-392.
    [14] W. L. Gao, L. Z. Ruan and C. J. Zhu, Decay rates to the planar rarefaction waves fora model system of the radiating gas in n dimensions, J. Differential Equations, 244(2008), 2614-2640.
    [15] W. L. Gao, C. J. Zhu, Asymptotic decay toward the planar rarefaction waves for amodel system of the radiating gas in two dimensions, Math. Models Methods Appl.Sci., 18 (2008), 511-541.
    [16] K. Hammer, Nonlinear effects on the propagation of sound waves in a radiating gas,Quart. J. Mech. Appl. Math., 24 (1971), 155-168.
    [17] K. Haramoto, Asymptotic Behavior of Solutions to the Dissipative Timoshenko Sys-tem, Master thesis, Kyushu University, 2005 (Japanese).
    [18] D. Hoff, K. Zumbrum, Multi-dimensional diffusion waves for the Navier-Stokes equa-tions of compressible ?ow, Indiana Univ. Math. J., 44 (1995), 603-676.
    [19] D. Hoff, K. Zumbrum, Pointwise decay estimates for multidimensional Navier-Stokesdiffusion waves, Z. Angew. Math. Phys., 48 (1997), 597-614.
    [20] T. Hosono, S. Kawashima, Decay property of regularity-loss type and applicationto some nonlinear hyperbolic-elliptic system, Math. Models Methods Appl. Sci., 16(2006), 1839-1859.
    [21] F. M. Huang, R. H. Pan, Convergence rate for compressible Euler equations withdamping and vacuum, Arch. Ration. Mech. Anal., 166 (2003), 359-375.
    [22] F. M. Huang, R. H. Pan, Asymptotic behavior of the solutions to the damped compress-ible Euler equations with vacuum, J. Differential Equations, 220 (2006), 207-233.
    [23] K. Ide, K. Haramota and S. Kawashima, Decay property of regularity-loss type fordissipative Timoshenko system, Math. Models Methods Appl. Sci., 18 (2008), 647-667.
    [24] T. Iguchi, S. Kawashima, On space-time decay properties of solutions to hyperbolic-elliptic coupled systems, Hiroshima Math. J., 32 (2002), 229-308.
    [25] Q. S. Jiu, Z. P. Xin, On strong convergence to 3-D axisymmetric vortex sheets, J.Differential Equations, 223 (2006), 33-50.
    [26] Y. Kagei, T. Kobayashi, On large time behavior of solutions to the compressibleNavier-Stokes equations in the half space in R3, Arch. Rational Mech. Anal., 165(2002), 89-159.
    [27] Y. Kagei, T. Kobayashi, Asymptotic behavior of solutions of the compressible Navier-Stokes equations on the half space, Arch. Rational Mech. Anal., 177 (2005), 231-330.
    [28] S. Kawashima, System of a Hyperbolic-Parabolic Composite Type, with Applicationsto the Equations of Magnetohydrodynamics, thesis, Kyoto University, Kyoto, 1983.
    [29] S. Kawashima, M. Nakao and K. Ono, On the decay property of solutions to theCauchy problem of the semilinear wave equation with a dissipative term, J. Math. Soc.Japan, 47 (1995), 617-653.
    [30] S. Kawashima, Y. Nikkuni and S. Nishibata, The initial value problem for hyperbolic-elliptic coupled systems and applications to radiation hydrodynamics, Analysis of sys-tems of conservation laws, Chapman and Hall/CRC Monogr. Surv. Pure Appl. Math.,99 (1999), 87-127.
    [31] S. Kawashima, Y. Nikkuni and S. Nishibata, Large-time behavior of solutions toHyperbolic-Elliptic coupled systems, Arch. Rational Mech. Anal., 170 (2003), 297-329.
    [32] S. Kawashima, S. Nishibata, Weak solutions with a shock to a model system of theradiating gas, Sci. Bull. Josai. Univ., (Special issue), 5 (1998), 119-130.
    [33] S. Kawashima, S. Nishibata, Cauchy problem for a model system of the radiating gas:weak solutions with a jump and classical solutions, Math. Models Methods Appl. Sci.,9 (1999), 69-91.
    [34] S. Kawashima, S. Nishibata, Shock waves for a model system of a radiating gas, SIAMJ. Math. Anal., 30 (1999), 95-117.
    [35] S. Kawashima, Y. Tanaka, Stability of rarefaction waves for a model system of aradiating gas, Kyushu J. Math., 58 (2004), 211-250.
    [36] A. Kiselev, F. Nazarov, T. Sherenberg, Blow up and regularity for fractal Burgersequation, Dynamics of PDE, 5 (2008), 211-240.
    [37] A. Kiselev, F. Nazarov, A. Volberg, Global well-posedness for the critical 2D dissipa-tive quasi-geostrophic equation, Invent. math., 167 (2007), 445-453.
    [38] D. Klaus, Decay estimates for the compressible Navier-Stokes equations in unboundeddomains, Math. Z., 209 (1992), 115-130.
    [39] T. Kobayashi, Some estimates of solutions for the equations of motion of compressibleviscous ?uid in an exterior domain in R3, J. Differential Equations, 184 (1998), 587-619.
    [40] T. Kobayashi, Y. Shibata, Decay estimates of solutions for the equations of motion ofcompressible viscous and heat-conductive gases in an exterior domain in R3, Comm.Math. Phys., 200 (1999), 621-659.
    [41] T. Kubo, S. Kawashima, Decay property of regularity-loss type and nonlinear effectsfor some Hyperbolic-Elliptic system, Kyushu J. Math., 63 (2009), 139-159.
    [42] C. Lattanzio, P. Marcati, Global well-posedness and relaxation limits of a model forradiating gas, J. Differential Equations, 190 (2003), 439-465.
    [43] D. L. Li, The Green’s function of the Navier-Stokes equations for gas dynamics in R3,Comm. Math. Phys., 257 (2005), 579-619.
    [44] T. T. Li, Y. M. Chen, The Nonlinear Evolution Equation, Scientific Press, 1989(Chinese).
    [45] T. T. Li, Y. Zhou, Breakdown of solutions to u + ut = |u|1+α, Discrete Contin. Dyn.Syst., 1 (1995), 503-520.
    [46] J. Liao, W. K. Wang and T. Yang, Lp convergence rates of planar waves for multi-dimensional Euler equations with damping, J. Differential Equations, 247 (2009), 303-329.
    [47] C.J. Lin, J.-F. Coulombel, T. Goudon, Shock profiles for non-equilibrium radiatinggases, Physica D., 218 (2006), 83-94.
    [48] C.J. Lin, J.-F. Coulombel, T. Goudon, Asymptotic stability of shock profiles in radiativehydrodynamics, C. R. Acad. Sci. Paris, 345 (2007), 625-628.
    [49] H. Liu, E. Tadmor, Critical thresholds in a conservation model for nonlinear conserva-tion laws, SIAM J.Math. Anal., 33 (2001), 930-945.
    [50] T. P. Liu, W. K. Wang, The pointwise estimates of diffusion wave for the Navier-Stokessystems in odd multi-dimension, Commun. Math. Phys., 196 (1998), 145-173.
    [51] T. P. Liu, Y. Zeng, Large time behavior of solutions for general quasilinear hyperbolic-parabolic systems of conservation laws, Mem. Amer. Math. Soc., 125 (1997).
    [52] Y. Q. Liu, W. K. Wang, The pointwise estimates of solutions for dissipative waveequation in multi-dimensions, Discrete Contin. Dyn. Syst., 20 (2008), 1013-1028.
    [53] P. Maremontik, Asymptotic stability theorems for viscous ?uid motions in exteriordomains, Rend. Semin. Mat. Univ. Pasova., 71 (1984), 35-72.
    [54] A. Matsumura, T. Nishida, The initial value problem for the equations of motion ofviscous and heat conductive gases, J. Math. Kyoto. Univ., 20 (1980), 67-104.
    [55] S. Nishibata, Asymptotic behavior of solutions to a model system of a radiating gaswith discontinuous initial data, Math. Models Methods Appl. Sci., 10 (2000), 1209-1231.
    [56] M. Nishikawa, S. Nishibata, Convergence rates toward the travelling waves for a modelsystem of the radiating gas, Math. Meth. Appl. Sci., 30 (2007), 649-663.
    [57] M. Okada, T. Makino, Free boundary problem for the equation of spherically symmet-rical motion of viscous gas, Japan J. Appl. Math., 10 (1993), 219-235.
    [58] R. Racke, Lectures on Nonlinear Evolution Equations: Initial Value Problems, Aspectsof Mathematics, Vol. E19, Vieweg & Sohn, Braunschweig, 1992.
    [59] J. E. Mun?oz Rivera, R. Racke, Global stability for damped Timoshenko systems, Discr.Cont. Dyn. Syst., 9 (2003), 1625-1639.
    [60] L. Z. Ruan, J. Zhang, Asymptotic stability of rarefaction wave for hyperbolic-ellipiccoupled system in radiating gas, Acta Math. Sci., 27 (2007), 347-360.
    [61] L. Z. Ruan, C. J. Zhu, Asymptotic decay toward rarefaction wave for a hyperbolic-elliptic coupled system on half space, J. Partial Differential Equations, 21 (2008),173-192.
    [62] L. Z. Ruan, C. J. Zhu, Asymptotic behavior of solutions to a hyperbolic-elliptic coupledsystem in multi-dimensional radiating gas, preprint, 2008.
    [63] D. Serre, Stabilite L1 des chocs et de deux types de prodiles, pour des lois de conser-vation scalsires, Se′minaire EDP de l’X.
    [64] D. Serre, L1-stability of constants in a model for radiating gases, Comm. Math. Sci., 1(2003), 197-205.
    [65] Y. Shizuta, S. Kawashima, Systems of equations of hyperbolic-parabolic type withapplications to the discrete Boltzmann equation, Hokkaido Math. J., 14 (1985), 249-275.
    [66] T. C. Sideris, Formation of singularities in three-dimensional compressible ?uids,Comm. Math. Phys., 101 (1985), 475-485.
    [67] T. C. Sideris, The lifespan of smooth solutions to the three-dimensional compressibleEuler equations and the incompressible limit, Indiana Univ. Math. J., 40 (1991), 535-550.
    [68] T. C. Sideris, Delayed singularity formation in 2D compressbile ?ow, Amer. J. Math.,119 (1997), 371-422.
    [69] M. Umehara, A. Tani, Global solutions to the one-dimensional compressible viscouspolytropic ideal gas, J. Differential Equations, 234 (2007), 439-463.
    [70] W. G. Vincenti, C. H. Kruger, Introduction to physical gas dynamics, A Wiley & Sons,New York, 1965.
    [71] J. Wang, F. Xie, Global existence of strong solutions to the Cauchy Problem for a 1Dradiative gas, J. Math. Anal. Appl., 346 (2008), 314-326.
    [72] W. K. Wang, The pointwise estimates of solutions for general Navier-Stokes systemsin odd multi-dimensions, Methods Appl. Anal., 12 (2005), 279-290.
    [73] W. K. Wang, W. J. Wang, The pointwise estimates of solutions for a model system ofthe radiating gas in multi-dimensions, Nonlinear Anal., 71 (2009), 1180-1195.
    [74] W. K. Wang, W. J. Wang, The Pointwise Estimates of Solutions for Semilinear Dissi-pative Wave Equation in Multidimensions, J. Math. Anal. Appl., 336 (2010), 226-241.
    [75] W. K. Wang, H. M. Xu, Pointwise estimate of solutions of isentropic Navier- Stokesequations in even multi-dimensions, Acta Math. Sci., 21 (2001), 417-427.
    [76] W. K. Wang, T. Yang, The pointwise estimates of solutions for Euler equations withdamping in multi-dimensions, J. Differential Equations, 173 (2001), 410-450.
    [77] W. K. Wang, T. Yang, Pointwise estimates and Lp convergence rates to diffusion wavesfor p-system with damping, J. Differential Equations, 187 (2003), 310-366.
    [78] W. K. Wang, T. Yang, Existence and stability of planar diffusion waves for 2-D Eulerequations with damping, J. Differential Equations, 242 (2007), 40-71.
    [79] W. K. Wang, X. F. Yang, The pointwise estimates of solutions to the isentropic Navier-Stokes equations in even space-dimensions, J. Hyperbolic Differ. Equ., 2 (2005), 673-695.
    [80] W. J. Wang, L. Yao, Spherically symmetric Navier-Stokes equations with degenerateviscosity coefficients and vacuum, Comm. Pure. Appl. Anal., 9 (2010), 459-481.
    [81] C. J. Xu, T. Yang, Local existence with physical vacuum boundary condition to Eulerequations with damping, J. Differential Equations, 210 (2005), 217-231.
    [82] T. Yang, H. J. Zhao, BV estimates on Lax-Friedrichs’scheme for a model of radiatinggas, Appl. Anal., 83 (2004), 533-539.
    [83] Y. Zeng, L1 Asymptotic behavior of compressible isentropic viscous 1-D ?ow, Comm.Pure Appl. Math., 47 (1994), 1053-1082.
    [84] J. W. Zhang, F. Xie, Global solution for one-dimensional model problem in thermallyradiative magnetohydrodynamics, J. Differential Equations, 245 (2008), 1853-1882.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700