用户名: 密码: 验证码:
三维矢量水听器及其低频校准方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文针对目前三维同振球形矢量水听器设计中采用对称结构存在的体积大、通道传感器配对难的问题开展了有关其小型化和相位特性优化方面的研究,并根据目前研制工作需要尝试在常规水池中开展了低频矢量水听器性能测试方法的研究。
     论文对矢量水听器的工作原理和设计思想进行了理论研究的基础上,采用实验的方法对三维矢量水听器进行了小型化和相位特性优化,根据优化结果设计制作了一只新型结构的三维矢量水听器,该水听器内部使用三只加速度计,呈等边三角形放置,每个顶点处放置一只,并使其重心与三角形顶点重合,主轴方向不是与等边三角形中心处的X、Y、Z三个坐标轴线重合而是平行,该水听器工作频带为1kHz~8kHz,灵敏度较低-215dB(参考频率5000Hz),高频具有较好指向特性,测试结果较为满意。在测试方法的研究方面,论文对有限水域声场低频特性进行了理论研究,采用了室内声学理论和声场仿真软件SYSNOISE相结合的方法。为了在常规水池中开展低频矢量水听器性能测试方法研究,论文还设计制作了一只采用传统对称结构设计的宽频带、高灵敏度三维同振式矢量水听器。文中在常规水池(消声水池、非消声水池、信道水池)和低频驻波场声管中对其分别进行了性能测试,测试结果表明:在其工作频带内,矢量水听器指向特性的测量对于声场条件要求不苛刻,只要测量距离满足远场条件、测量信噪比足够高、波尺寸足够小即可,而灵敏度测试需要复杂的声场修正。
Research about miniaturization and optimizing phase character of co-vibration vector hydrophone have been presented in this paper,for solve some problems about big volume and matching channel sensors of tri-axis spheroid vector hydrophone using symmetric structure in design.And the calibration method,which meeting the requirement of the presented research work,for low frequency vector hydrophone in the general cistern is also established.
     ON the basis of work principle and designing idea of vector hydrophone,a new structural tri-axis vector hydrophone is designed using the result of the paper which is about miniaturization and phase character optimizing of tri-axis spheroid vector hydrophone.This hydrophone uses three accelerometers inside and these accelerometers are put on the vertex of general triangle in the direction of X,Y,Z. every vertex of the general triangle has one accelerometer and the center of accelerometer's gravity and the vertex of the general triangle are superposition. Thus the main axes of the accelerometers are parallel to the X,Y,and Y axes.This vector hydrophone has an essentially flat response in 1000-8000Hz with a sensitivity of-215dB(measured at 5000Hz) and possess good directionality.In a word,the testing result is satisfactory.On the aspect of measuring vector hydrophone,the low frequency sound characteristic of limited water area is studied adopting the theory of indoor acoustic and the stimulation function of SYSNOISE.IN order to research measuring vector hydrophone in general cistern, paper designs another tri-axis spheroid vector hydrophone that has wide bandwidth and high sensitivity using traditional symmetric structure.This hydrophone is measured in the general cistern such as anechoic cistern,echoic cistern and channel cistern,and also measured in the low frequency stand sound field.The testing results show that,if only distance,SNR and wave size have been satisfied,the strict sound field condition is not necessary for the directional property measurement within the working frequency,but the sensitivity test needs correcting sound field complicatedly.
引文
[1]李启虎.数字式声纳设计原理.安徽教育出版社,2002:3-5页
    [2]孙贵青,李启虎.声矢量传感器研究进展.声学学报.2004,29(6):481-490页
    [3]孙贵青,李启虎等.新型光纤水听器和矢量水听器.声纳技术及其应用专题.2006,35(8):645-653页
    [4]贾志富.三维同振球型矢量水听器的特性及其结构设计.应用声学.2001,20(4):15-19页
    [5]陈洪娟.矢量传感器.哈尔滨工程大学出版社,2006:8-10页
    [6]James A.McConnell.Analysis of a compliantly suspended acoustic velocity sensor.J.A.S.A.2003,113(3):1395-1405P
    [7]C.B.Leslie,J.M.Kendall,J.L.Jones.Hydrophone for Measuring Particle Velocity.J.A.S.A.1956,3(5):711-719P
    [8]V.a.Gordienko,V.I.Ilichex and L.N.Zakharov.Vector-phase methods in acoustics.Moscow:Nauka.1989:1-5P
    [9]V.A.Shchurov.Coherent and diffusive fields of underwater acoustic ambient noise.J.A.S.A.1991,90(2):991-998P
    [10]F.J.Fahy.Measurement of acoustic intensity using the cross-spectral density of two microphone signal.J.A.S.A.1977,67(3):761-769P
    [11]Kevin J.Bastyr and Gerald C.Lauchle.Development of a velocity gradient underwater acoustic intensity sensor.J.A.S.A.1999,106(4):2297-2231P
    [12]J.Y.Chung.Cross-Spectral method of measuring acoustic intensity without error caused by instrument phase mis-match.J.A.S.A.1978,64(6):1613-1620P
    [13]J.Shipps,KenDeng.A miniature vector sensor for line array applications.IEEE Oceans 2003 Proceedings,2003(5):2367-2370P
    [14]J.Clay Shipps,Bruce M.Abraham.The Use of Vector Sensor for Underwater Port and Waterway Security.ISA/IEEE Sensors for Industry Conference Proceeding,2004:41-44P
    [15]Joseph A.Clark,Gerald Tarasek.Localization of Radiating Sources along the Hull of a Submarine Using a Vector Sensor Array.OCEANS 2006
    [16]陈洪娟,贾志富.压电圆盘弯曲式矢量水听器设计.传感器技术.2002,21(8):23-25页
    [17]陈洪娟,洪连进.采用双迭片压电敏感元件的同振柱型矢量水听器.应用声学.2003,22(3):23-26页
    [18]F.Schloss,M.Strasberg.Hydrophone Calibration in a Vibration Column of Liquid.J.A.S.A.1962,34(7):958-960P
    [19]Bauer B.B.A Laboratory Calibrator for Gradient Hydrophone.J.A.S.A.1966,39(7):585P
    [20]Benjamin B.Bauer,Louis A.Abbragnaro and Juergen Schumann.Wide-Range Calibration Slytem for Pressure-Gradient Hydrophones.J.A.S.A.1971,25(5):1717P
    [21]郑士杰等.水声计量测试技术.哈尔滨工程大学出版社,1995:190-200页
    [22]莫喜平,王文芝,郑士杰.偶极子接收换能器驻波场校准系统的研究.应用声学.1998,17(6):14-18页
    [23]费腾.矢量水听器校准装置.声学技术.2004(增刊):289页
    [24]王郁,房克家,刘文帅.矢量传感器校准方法研究.326-331页
    [25]陈洪娟,杨士莪,王智元,洪连进.同振式矢量传感器设计方法的研究.声学技术.2005,24(2):80-83页
    [26]范继祥.矢量水听器校准装置研究.哈尔滨工程大学硕士学位论文.2007:11页
    [27]赵鹏涛.10~100Hz矢量水听器研制及其测试方法研究.哈尔滨工程大学硕士学位论文.2008:59页
    [28]P.M.莫尔斯,杨训仁等译.理论声学.科学出版社,1986:656-658页
    [29]何祚镛,赵玉芳.声学理论基础.国防工业出版社,1981:113-130页
    [30]马大猷.现代声学理论基础.科学出版社,2004:171-183页
    [31]杜功焕,朱折民,龚秀芬.声学基础.南京大学出版社,2001:434-438页
    [32]李琪.水筒噪声测量方法研究.哈尔滨工程大学博士论文.1990:25-40页
    [33]赵松龄.复变特征方程求根的系统逼近程序.同济大学学报.1989,9:123-125页
    [34]张志涌等.掌握和精通MATLAB.北京航空航天大学出版社,1997
    [35]李增刚.SYSNOISE Rev5.6详解.国防工业出版社,2005:1-5页
    [36]华宏星,沈荣瀛.国际著名振动和声软件系列介绍之一LMS声学软件SYSNOISE.噪声与振动控制.1992,1:44-46页
    [37]求实科学.MATLAB7.0从入门到精通.人民邮电出版社,2006:128-137页
    [38]A.V.奥本海姆,董士嘉等译.数字信号处理.科学出版社,1980:73-81页
    [39]周福洪.水声换能器与基阵.国防工业出版社,1991:44页
    [40]俞宏沛,宋兰英.采用多模振动拓宽换能器频带的几种方法.声学电子工程.1999,3:23-26页
    [41]国防科工委科技与质量司.声学计量.原子能出版社,2002:171页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700