用户名: 密码: 验证码:
聚焦式超声悬浮谐振腔结构设计及实验
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文介绍了超声悬浮在国内外的研究应用现状和发展趋势,讨论了其在农业工程领域生物质精确定位输送的可行性。对比分析了聚焦式超声悬浮和平板式超声悬浮系统的声悬浮辐射力和悬浮稳定性。根据超声悬浮系统工作要求建立了聚焦式超声悬浮系统的三维参数化模型,并建立了聚焦式超声悬浮系统的有限元模型,在此基础上,对聚焦式超声悬浮系统进行仿真分析,得到以下结果:
     (1)模态分析采用Block Lanczos法,在20k~50k的频率范围搜索到其固有频率为:26311,26575,26577,28088,31957,33974,34230,34448,34449,37951Hz。四阶频率28088Hz下的纵向振动模态是最符合工作要求的,将其作为超声悬浮机构的工作频率。
     (2)在模态分析的基础上,对超声换能器进行了瞬态动力学分析。在超声换能器上分别加载三角波和方波电压,结果表明方波电压适合驱动换能器。在换能器上加载不同值的方波电压,辐射端面随着电压的提高,响应时间越短,响应值越大。
     (3)以模态分析和瞬态分析的结果对不同谐振腔壁进行谐响应分析,得到了谐振腔的声压分布以及声场特性,据此优化设计谐振腔的辐射端面为球面,且谐振腔壁内径与辐射端外径相等;在优化谐振壁后对不同谐振腔长度(L)的超声悬浮系统进行了谐响应分析。结果显示随着L值的增大,声压值变化的趋势是先增大,然后趋向减小。
     根据仿真结果加工制造了超声悬浮系统实物模型,测试了实物模型最佳工作频率为28000Hz,与仿真结果(28088Hz)相差3%,满足工程精度的要求。在此频率下进行了种子悬浮实验,实验结果如下:
     (1)种子悬浮在谐振腔中心的波节或波腹点附近;
     (2)对不同类型谐振腔壁和不同谐振腔长度下的悬浮性能进行了实验,结果表明优化后的谐振腔对超声悬浮系统的悬浮性能有很大的改善;
     (3)利用声压与功率成正比的关系,测量了同一颗种子在不同L值下使悬浮种子能够稳定的悬浮起来悬浮系统的功率。得到功率与L值的实验曲线,据此得到声压与谐振腔长度(L)的关系曲线,随着L值的增大,谐振腔内声压呈先增大后减小的趋势。
The situation、application and trend of ultrasonic levitation were introduced in this paper. The significance of the application of ultrasonic levitation to agricultural engineering also was introduced. Sound levitation radiating power and levitation stability of the focusing type ultrasonic levitation and the plate-type ultrasonic levitation system were analyzed. With Pro/ENGINEER software, the three dimensional parametric model of focusing type ultrasonic levitation system was established according to the ultrasonic levitation system work request. And then, the finite element model was established using ANSYS software. Finite analysis gets the following results:
     (1) It analysed the ultrasonic transducer carried on the analysis modality analysic,namely the frequency response analysis, obtain the drive boundary condition which the harmony response analysis needs, which provides the ultrasonic transducer the operating frequency for later transient state dynamics response, simultaneously the reliable essential parameter for the ultrasonic levitation system experiment operating frequency establishment.
     (2) In the modality analysis foundation ,it has carried on the transient state dynamics analysis to the ultrasonic transducer, and determined separately the transducer in 40V,70V,100V,120V,150V,180V and under the 220V exchange excitation voltage radiates the end surface oscillation amplitude the response value, simultaneously along with the voltage markup, radiates the end surface response time to be smaller, the response value is bigger.
     (3) According to the result from the modle analysis and the transient state analysis it got the harmony response analysis boundary condition, obtains the resonant cavity sound pressure distribution as well as the sound field characteristic through the harmony response analysis .according to the above it obtain the optimized design after resonant cavity for to radiate the end surface are the spherical surface, the resonant cavity wall inside diameter and the radiation end outer diameter equal resonant cavity.
     In order to confirm the simulation result and the theory as well as tests whether tallies, the ultrasonic levitation experiment on the wisring equipment has been carried on to confirm, its result was as follows:
     (1) Ultrasonic levitation system can suspend the seed in the resonant cavity centre.
     (2) Different resonant cavity wall suspension function, the experiment has indicated the resonant cavity wall suspension optimizing the better according to simulated result to surpassing the systematic sound suspension function having very big improvement systematically.
     (3) Through the analysis power to the ultrasonic levitation system sound pressure size influence ,it had found the sound pressure and L value relations, namely along with L value enlargement ,in the resonant cavity the sound pressure increases first, then the trend reduces.
引文
[1]解文军,魏炳波.声悬浮无容器处理过程的优化设计研究[J].宇航学报1989,21:94-101.
    [2]Rudolf T.,Sigurd B.,Heiko K.C.The generation of octadecanol monolayers on acoustical levitated water drops[J].Physicochem.Eng.Aspects,2007(309):198-201.
    [3]Vincent V,Pierre L,Alain D.Non-contact handling in microassembly:Acoustical levitation[J].Precision engineering,2005(29):491-505.
    [4]Lee,Y.S,Kwon,J.H.A smart device for particle separation in water using ultrasonic standing waves.[J].Water Science and Technology:Water Supply,2006,6(1):173-183.
    [5]贺诗华.新的生化痕量分析手段[J].化学通报,2004(11):808-812.
    [6]Lu Yongjun,Wei bing-bo.Supercooling of aqueous NaCl and KCl solutions underacoustic levitation[J].Chemical physics,2006,125(14):1445-1448.
    [7]Kuo-Tsi Chang.A novel ultrasonic clutch using near-field acoustic levitation[J].Ultrasonics,2004(43):49-55.
    [8]Takeshi Idl,James Friend,kentaro Nakamura.A non-contact linear bearing and actuator via ultrasonic levitation[J].Sensors and Actuators A,2007(135):740-747.
    [9]潘祥生,邢立华,李勋.聚焦式超声悬浮[J].北京航空航天大学学报,2006,32(1):79-82.
    [10]L.V.King,Proc.R.So c.(London)A 147,(1934)A147:212-240.
    [11]M.Barmatz,and P.Collas,J.Acoust.Soc.Am.,77(3)(1 985)928.
    [12]解文军,曹崇德,魏炳波.声悬浮的实验研究和数值模拟分析[J].物理学报1998,48(2):250-256.
    [13]李冰航,吴嘉,席葆树.球形粒子在低频声场作用下悬浮的实验研究[J].清华大学学报,2002,42(S1):8-22.
    [14]P.Collas M.,Barmatz and C.Shipley.Acoustic levitation in the presence of gravity[J].Acoust.Soc.Am.,1989,86(2):777-787.
    [15]上羽贞行.超声波悬浮力[Z].1998年秋日本音响学会、日本仙台研究发表会特别演讲,1998.
    [16]熊田明生.超声波减摩性能的研究[J].声学与电子工程,1986,5:24-29.
    [17]Glenn Whitworth,W.T.Coaley.Particle column formation in a stationary ultrasonic field[J].Acoust.Soc.Am.,1992,91(1):79-85.
    [18]Robert K.G.,Coakly W.T.,Grundy M.A.Upper sound pressure limits on particle concentration in fields of ultrasonic standing wave at megahertz frequencies[J].Ultrasonics,1992,30(4):239-244.
    [19]E.Matsuo,Y.Koike,K.Nakamura.Holding characteristics of planar objects suspended by near-field acoustic levitation[J].Ultrasonics,2000(38):60-63.
    [20]Sadayuki Ueha,Yoshiki Hashimoto,Yoshikazu Koike.Non-contact transportation using near-field acoustic levitation[J].Ultrasonics,2000(38):26-32.
    [21]Vincent Vandaele,Pierre Lambert,Alain delchambre.Non-contact handling in microassembly:AcousticalLevitation[J].PrecisionEngineering,2005(29):491-505.
    [22]Xie,W.J.Cao,C.D.Lu,Y.J.Acoustic method for levitation of small living animals[J].Applied Physics Letters,2006,89(21):P214102.
    [23]中国农业年鉴编辑委员会.中国农业年鉴[M].北京:中国农业出版社,2004.
    [24]胡建平,毛罕平.精密播种机的研究与创新[J].农机化研究,2003(10):52-53.
    [25]Youming Cao,Wenjun Xie,Jun Sun.Preparation of epoxy blends with nanoparticles by acoustic levitation technique[J].Journal of Applied Polymer Science,2002(86):84-89.
    [26]解文军.材料声悬浮无容器处理研究[D].西北工业大学硕士论文,1999.
    [27]S.Bauerecker,B.Neidhart.Formation and growth of ice particles in stationary ultrasonic fields[J].Chem.Phys.1998,109(10):P3709.
    [28]E.H.Brand,Science.1989:243-249.
    [29]P.C.Nordine and R.M.Atkins.Rev.Sci.Instrum.53,1456(1982).
    [30]K.Nagashio,K.Kuribayashi,Y.Takamura,Acta Mater.48,3049(2000).
    [31]S.K.Chung,D.B.Thiessen,and W.K.Rhim,Rev.Sci.Instrum.,6 7,3 175(1996).
    [32]W.K.Rhim,K.Ohsaka,and P.F.Paradis,Rev.Sci.Instrum.70,2796(1999).
    [33]T.Volkman,G.Wilder,R.Willnecker,andD.M.Herlach,J.Appl.Phys.83,3028(1998)
    [34]N.Wang,W.J.Xie,and B.Wei,Acta Physica Sinica~Overseas Edition,8,503(1999)
    [35]B.W ei,D.M.H erlach,an dB.Fe uerbacher,M icrogravityO.,3,19 3(1993).
    [36]胡富强,赵寒涛,牛晓明.喷射式超声波发生器及应用[J],机械工程师,2000,45(2):44-46
    [37]葛飞.超声波技术的应用现状及发展前景[J].郑州牧业工程高等专科学校学报,1999,19(1):58-59
    [38]杜功焕,朱哲民,龚秀芬.声学基础[M].上海:上海科学技术出版社,1986:344-347
    [39]M.Barmatz,P.Collas,Acoustic radiation potential on sphere in plane,cylindrical,and spherical standing wave fields[J].Acoust.Soc.Am.1985,77(3):928-945.
    [40]M.Barmatz,and P.Collas,J.A coust.So c.A m.77,928(1985)
    [41]M.B armatz,1984U ltrasonicsS ymposium,43 6(1984).
    [42]解文军,声悬浮优化设计理论极其应用研究,西北工业大学博士论文,2002.
    [43]P.Collas,M.Barmatz,and C.Sh ipley,J.A coust.So c.A m.86,777(1989).
    [44]李远,秦自楷,周志刚.压电与铁电材料的测量[M].北京:科学出版社.1984.
    [45]袁易全.超声换能器[M].南京:南京大学出版社.1992.
    [46]林书玉.超声换能器的原理及设计[M].北京:科学出版社,2004.
    [47]袁易全.近代超声原理与应用[M].南京:南京大学出版社.1996.
    [48]Hrennikoff A.Solution of Problems in Elasticity by the Frame Work Method[J].Applied Mechanics,1941,8(4):169-175.
    [49]McHenry D.A Lattice Analogy for the Solution of Plane Stress Problems[J].Institution of Civil Engineers,1943,(21):59-82.
    [50]Courant,R.Variational Methods for the Solution of Problems of Equilibrium and Vibrations[J].Bulletin of the American Mathematical Society,1943(49):1-23.
    [51]Argyris J.H.Energy Theorems and Structural Analysis[J].Aircraft Engineering,1954.
    [52]Gallagher R.H.,Padlog,J.,and Bijlaard P.P.Stress Analysis of Heated Complex Shapes[J].The American Rocket Society,1962,(32):700-707.
    [53]Melosh R.J.Structural Analysis of Solids[J].Structural Division,Proceedings of the American Society of Civil Engineers,1963:205-223.
    [54]高宏.浆液搅拌车的轴流泵喷浆流场仿真分析及参数优化[D].北京机械工 业学院硕士学位论文,2005.
    [55]张本照等.流体力学数值方法[D].北京:机械工业出版社,2003.
    [56]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [57]傅志方,华宏星.模态分析理论与应用[M].上海:上海交通大学出版社,2000.
    [58]叶先磊,史亚杰.ANSYS工程分析软件应用实例[M].北京:清华大学出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700