用户名: 密码: 验证码:
粘性黄土水坠坝筑坝泥浆配比试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水坠法筑坝与碾压法筑坝相比,可大幅度提高筑坝土料的装运、卸载、铺压等功效。特别当用轻、中粉质壤土,用水力冲填法筑坝时,比碾压法筑坝要提高功效3~6倍。尽管如此,水坠法筑坝仍然存在许多问题,其中一个重要的缺陷是目前的水坠法筑坝主要适用于轻壤土、轻粉质壤土,而对于重粉质壤土(粘性土),由于其特别的属性,使得在筑坝时很少考虑,从而这方面的资料和经验很有限,也缺乏进一步的试验研究,使得推广地域受到一定的制约。
     为解决上述存在的问题,本文以黄土高原南部陕西白水县尧禾镇西武村大沟流域的土壤(粘性黄土)为研究对象,运用水土保持学、土力学、水力学、水土保持工程学、水坠坝技术规范、土工试验技术规范等相关理论与技术,采用室内试验测定和数学分析相结合的方法,对粘性黄土以不同土水比、不同填筑速度下泥浆的土壤物理力学性质、填筑浆体物理性质的变化规律进行了系统研究,其成果丰富和发展了水坠坝技术理论,对水坠坝技术的推广和水土保持具有现实意义。本论文主要取得了以下研究结果:
     (1)通过对项目区所采土样土工试验分析,证实试验区土壤类型为重粉质壤土,习惯叫硬黄土,是水坠坝坝体填筑的适宜材料。最大干密度ρ_d为1.77g.cm~(-3),最优含水率ω为15.77%。土料在加压初期,孔隙比e减小的速率较快,中期和后期孔隙比e的减小速率相对较慢,且基本呈线性递减。当所加压力接近110 kPa时,曲线均出现拐点,拐点之前,料场土料的压缩系数依次减小,压缩模量依次增大,且二者的递减和递增速率很大,即压缩性急剧减小。在拐点前压缩系数α_v等于或大于0.1MPa~(-1),具有高压缩性,在拐点后压缩系数α_v小于0.1MPa~(-1),具有低压缩性。直剪试验结果表明整个料场的粘聚力C和内摩擦角φ分别为50.20 kPa、25.96°,而三轴剪切试验结果表明C、φ值分别为62.6kPa、23.54°
     (2)土水比、填筑速度和均匀沉陷变形之间的规律为,无论表面沉陷,还是不同高度沉陷,随浆体高度变化而变化的规律均为先增大后减小,趋势均为二次曲线。对同一种土水比而言,浆体同一高度处的表面沉陷和不同高度沉陷均随填筑速度的增加而增加;对同一填筑速度而言,浆体同一高度处的表面沉陷和不同高度沉陷均随土水比的增加而减小。
     土水比、填筑速度和抗剪强度之间的规律为,抗剪强度随浆体高度变化而变化的规律均成指数递减。对同一种土水比而言,浆体同一高度处的抗剪强度均随填筑速度的增加而增加;对同一填筑速度而言,浆体同一高度处的抗剪强度均随土水比的增加而增加。
     土水比、填筑速度和湿密度之间的规律为,湿密度均随浆体高度的增加而减小。对同一种土水比而言,浆体同一高度处的湿密度随填筑速度的变化规律不明显;对同一填筑速度而言,其湿密度随土水比的变化规律也不明显。
     对同一种土水比而言,以3种速度填筑同样的高度,浆体同一高度处的下渗量随填筑速度的增加而减小。
     对同一填筑速度而言,以3种土水比填筑同样高度,浆体同一高度处的下渗量随土水比的增加而减小。
     土水比、填筑速度和表面排水之间的规律为,当土水比为2和3时,以不同速度填筑,表面排水均随浆体高度的增加先增加后减少。当土水比为2和3时,对同一种土水比而言,浆体表面排水随填筑速度增加而增加,当达到一定的高度后则减少;当土水比为2和3时,对同一填筑速度而言,浆体表面排水随土水比增加而减少;当以土水为4时,浆体的表面几乎不排水。
     土水比、填筑速度和渗透系数之间的规律为,渗透系数随浆体高度变化而变化的规律均成指数递增。对同一种土水比而言,浆体同一高度处的渗透系数随填筑速度的变化规律不明显:对同一填筑速度而言,浆体同一高度处的渗透系数随土水比的变化规律也不明显。
     (3)通过主效应和多重比较分析,得出优化土水比和填筑速度分别为3和15cm/d。
Using the hydraulic fill method by gravity flow for dam construction can improve the effects of shipment, unloading and pressing of the soil significantly, compared with the rolling method. Particularly for the light silt loam and middle silt loam, the effects of dam construction by the hydraulic fill method by gravity flow is 3~6 times to that by rolling method. In spite of this, there are still many problems about the hydraulic fill method by gravity flow. One of the major shortcomings at present is that the hydraulic fill method by gravity flow is mainly applicable to the light loam and light silt loam, whereas it is less considered to the heavy silt loam(clay) due to the soil's special properties. Because of the limited information and experience, as well as the lacking of further research, the promotion of the hydraulic fill method by gravity flow has a certain geographical constraints
     The soils of Dagou basin near Xiwu village of Baishui County, Shaanxi Province in the southern part of Loess Plateau were taken as experimental materials. Soil erosion, soil mechanics, soil-retaining dam(including sluicing-siltation dam) geotechnical test and mathematical statistics theory as well as related technology were used in this paper, the filling earth material of dam was investigated on the spot and sampled, then it was studied by laboratory determination and indoor comparative analysis. The determination and analysis both contained two contents: the first was the conventional geotechnical test of filling earth material, and the second was the mud experiment based on the first test. Soil physical and chemical properties in this area were studied, the change law of the physical properties of slurry were revealed when the mud made by using this kind of soil with different soil-water ratio (the soil-water ratio was 2, 3, 4 successively) was filling with different velocity. This study had practical meaning for the enrichment and development of the sluicing-siltation technology theory, technology popularization of sluicing-siltation dam and soil and water conservation. The main results of this study were as follows:
     (1) By geotechnical test analysis of the sample soil in the project area, it was found that the soil type in this area was heavy silty loam, called stiff loess customarily, which was the suitable filler of sluicing-siltation dam.
     The maximum dry density was 1.77g.cm-3, and the optimum moisture content was 15.77%. The decrescent velocity of void ratio (e)was faster when the soil material was pressurized during the early stage, then it was relatively slower during the middle and later stage, what's more, it showed linear decrease basically. When the pressure was near 110KPa, there was a inflection point in the curve. Before the inflection point, compression coefficient of soil material in the material field decreased successively, while the compression modulus increased, and the velocity of decrease and increase was high, so the compressibility decreased sharply. Before the inflection point, compression coefficient (av) was equal to or more than 0.1 MPa-1, having high compressibility. After the inflection point, the compression coefficient (av) was less than 0.1MPa-1, having low compressibility. The results of direct shear test showed that cohesive force (C) and the internal friction angle (Φ) were 50.20 kPa, 25.96°, respectively. While the values of cohesive force and the internal friction angle in triaxial shear test were 62.6 kPa, 23.54°, respectively.
     (2) The law between uniform settlement deformation and soil-water ratio & filling velocity showed that the surface settlement and other settlement at different height increased first and then decreased with the change of slurry height, the trends were all quadratic curve. For the same soil-water ratio, the surface settlement at the same height and other settlement at different height increased with the increase of filling velocity. For the same filling velocity, the surface settlement of slurry at the same height and other settlement at different height decreased with the increase of soil-water ratio.
     The law between shear strength and soil-water ratio & filling velocity showed that shear strength was an exponential decline with the change of slurry height. For the same soil-water ratio, the shear strength of slurry at the same height increased with the increase of filling velocity; for the same filling velocity, the shear strength of slurry at the same height increased with the increase of soil-water ratio.
     The law between wet density and soil-water ratio & filling velocity showed that wet density all decreased with the increase of slurry height. For the same soil-water ratio, wet density of slurry at the same height didn't change significantly with the change of filling velocity; for the same filling velocity, wet density of slurry had no obvious change with the change of soil-water ratio.
     The law between infiltration amount and soil-water ratio & filling velocity showed that infiltration amount both increased first and then decreased with the increase of slurry height. For the same soil-water ratio, the infiltration amount decreased with the increase of filling velocity; for the same filling velocity, the infiltration amount decreased with the increase of soil-water ratio.
     The law between moisture content and soil-water ratio & filling velocity showed that there was an exponential increase of moisture content with the increase of slurry height, but the increasing extent was very finite. For the same soil-water ratio, the moisture content of slurry at the same height didn't change significantly with the change of the filling velocity; for the same filling velocity, the moisture content of slurry at the same height had no obvious change with the change of the soil-water ratio.
     The law between surface drainage and soil-water ratio & filling velocity showed that when soil-water ratio was 2 and 3, surface drainage increased first and then decreased with the increase of slurry height by using different pouring velocity. For the same soil-water ratio, surface drainage of slurry increased with the increase of filling velocity When soil-water ratio was 2 and 3. while it reached a certain height, the surface drainage decreased; for the same filling velocity, surface drainage of slurry decreased with the increase of soil-water ratio when the soil-water ratio was 2 and 3; when the soil-water ratio was 4, the slurry surface hardly drained.
     The law between permeability coefficient and soil-water ratio & filling velocity showed that there was an exponential increase of permeability coefficient with the change of slurry height. For the same soil-water ratio, the permeability coefficient of slurry at the same height didn't change significantly with the change of filling velocity; for the same filling velocity, the permeability coefficient of slurry at the same height had no obvious change with the change of soil-water ratio.
     (3) Through the analysis of main effect and multiple comparison, it was found that the mud prepared when the soil-water ratio was 3 was more ideal.
引文
[1]中华人民共和国水利电力部.水坠坝设计及施工暂行规定(SD122-1984)[S].北京:中国水利水电出版,1984.
    [2]中华人民共和国水利部.水坠坝技术规范(SL302-2004)[S].北京:中国水利水电出版社,2004.
    [3]曹文洪.黄土高原地区提倡节水型水土保持[J].中国水土保持科学,2003,1(1):41-42.
    [4]谭术魁,彭补拙.我国粮食供给安全与耕地资源变化[J].世界地理研究,2002,11(4):12-15.
    [5]朱显谟.黄土区土壤侵蚀的分类[J].土壤学报,1956,4(2):99-115.
    [6]陈永宗,景可,蔡强国.黄土高原现代侵蚀与治理[M].北京:科学出版社,1988.
    [7]唐克丽.黄河流域的侵蚀与径流泥沙变化[M].北京:中国科学技术出版社,1993.
    [8]刘元宝.黄土高原坡面沟蚀的危害及其发展规律[D].中国科学院西北水土保持研究,1984.
    [9]Menzel R.G.Transport of strontium-90 in runoff[J].science(Washington).1960,131:499-500.
    [10]Robbins J.A.and D.N.Edgington.Determination of recent sedimentation rates in Lake Michigan using Pb-210 and Cs-137[J].Geochemical et Cosmochimica Acta,1975,39:285-304.
    [11]Simpson H J,Olsen C R,Triver,et al.Man-made radionuclides and sedimentation in the Hudson River[J].Science,1976,194:1979-1982.
    [12]de Jong E,H Villar and J R Bettany Preliminary investigations on the use of ~(137)Cs to estimate erosion in Saskatchewan[J].Can.J.Soil Science,1982,62:673-683.
    [13]de Jong E,Begg C M,Kachanoski R G.Estimates of soil erosion and deposition from Saskatchewan Soils[J].Can.J.Soil Science,1983,63:607-617.
    [14]de Jong E,C Wang and H W Rees.Soil redistribution on three cultivated New Brunswich hill slopes calculated from ~(137)CS measurements,slum data and the USLE[J].Can.J.Soil.Sci.1986,66:721-730.
    [15]Spomer R G,J R Mchenry,R F Piest.Sediment movement and deposition using cesium-137tracer[J].Transactions of the ASAE,1985,28(3):767-772.
    [16]Soileau J M,B F Hajek and J T Touchton.Soil erosion and deposition evidence in a small watershed using fallout cesium-137[J].SSSAJ,1990,54:1712-1719.
    [17]Claude Bernard and Mare R Laverdjere.Spatial redistribution of ~(137)Cs and soil erosion on Orleans Island,Quebec[J].Can.J.Soil Sci.1992,72:543-554.
    [18]Murray A,Ellen Wlhl and Jon East.Thermoluminescence and excess266 Ra decay dating of Lake Quaternary fluvial sands,East Alligator River,Australia[J].Quatemary Research,1992,37:29-41.
    [19]Busacca A J,C A Cook and D J Mulla.Compering landscape-scale estimation of soil erosion in the Palouse using ~(137)Cs and RUSLE[J].Journal of Soil and Water Conservation,1993,4:361-367.
    [20]Wautcrs J,L Sweeck,E Valcke,et al.Availability of radiocaesing in soils:a new methodology[J].The Science of the Total Environment,1994,157:239-248.
    [21]Cao Y Z,D R Coote,M C Nolin,et al.Using ~(137)Cs to investigate net soil erosion at two soil benchmark site in Quebec[J].Can.J.Soil Sci.,1993,73:515-526.
    [22]Bremer E,E de Jong and H H Janzen.Difficulties in using ~(137)Cs to measure erosion in stubble-mulched soil[J].Can.J.Soil Sci 1995,75:357-359.
    [23]Pennock D J,D S Lemmon and E de Jong.Cesium-137-measured erosion rates for soils of five parent-material groups in southwestern Saskatchewan[J].Canadian J.Soil Science,1995,75:205-210.
    [24]Bajracharya R M,Rattan Lal and John M Kimble.Use of radioactive fallout cesium-137 to estimate soil erosion on three farms in West Central Ohio[J].Soil Science.1998,163:133-142.
    [25]Wiranatha A S,C W Rose and M S Salama.A comparison using caesium-137 technique of the relative importance of cultivation and overland flow on soil erosion in asteep semi-tropical sub-catchment[J].Aust.J.Soil Res.2001,39:219-238.
    [26]张信宝,李少龙,王成华等~(137)Cs法测算粱峁坡农耕地土壤侵蚀量的初探[J].水土保持通报,1988,8(5):18-22.
    [27]张信宝,李少龙,王成华等.黄土高原小流域泥沙来源地~(137)Cs法研究[J].科学通报,1989,34(3):210-213.
    [28]张信宝,汪阳春,李少龙等.蒋家沟流域土壤侵蚀及泥石流细粒物质来源的~(137)Cs法初步研究[J].中国水土保持,1992,(3):28-31.
    [29]张信宝,李少龙,T.A.Quine,等.犁耕作用对~(137)Cs法测算农耕地侵蚀量的影响[J].科学通报,1993,38(22):2072-2076.
    [30]吴永红,李倬,张信宝.黄土高原沟壑区谷坡农地侵蚀及产沙德~(137)Cs法研究[J].水土保持通报,1994,14(2):22-25.
    [31]Mackenzi A B.Environmental radioactivity:experience from the 20th century-trends and issues for the21st century[J].The Science of the Total Environment,2000,249:313-329 Walling D E,et al.Use of caesium-137 and lend-210 as tracers in soil erosion investigation.IAHSPUBL.1995,249:163-172.
    [32]Murray A S.Methods for determining the sources of sediments reaching reserveoirs:targeting soil conservation[J].Ancold Bulletin,1990,85:61-70.
    [33]张信宝,贺秀赋,文安邦,等.川中丘陵区小流域泥沙来源地~(137)Cs和210Pb双同位素法研究[J].科学通报,2004,49(15):1537-1541.
    [34]郑新民.水坠坝设计与施工[M].郑州:黄河水利出版社,2006.
    [35]高亚军,王玉明,赫晓慧,黄河中游严重水土流失区土壤粒子径分布规律研究[J].水土保持研究,2006,13(5):27-29.
    [36]唐克丽,中国水土保持[M].北京:科学出版社,2004,440.
    [37]黄河水利委员会绥德水土保持科学实验站,水土保持试验研究成果汇编[C]第二集,1980年.
    [38]安锁堂,淤地坝鼻祖天然湫滩[J].陕西水利,2004,(2):47-48.
    [39]郜志峰.山西省汾西县打坝淤地的历史记载[J].山西水土保持科技,1998,(3):28.
    [40]黄自强.黄土高原地区淤地坝建设的地位及发展思路[J].中国水利,2003,(17):8-10.
    [41]李仪社原著,黄河水利委员会选编.李仪社水利论著选集[C].水利电力出版社,1988,11.
    [42]孟庆枚,黄土高原水土保持[M],郑州:黄河水利出版社,1996.
    [43]方学敏,坝系相对稳定-均衡坝系前瞻[J].科技导报,1996,(4):29-30.
    [44]柏跃勤,常茂德.黄土高原地区小流域坝系相对稳定研究进展与建议[J].中国水土保持,2002,(10):12-13.
    [45]薛顺康,王答相.淤地坝系试点示范建设浅见[J].水土保持通报,2004,24(6):99-102.
    [46]杨红新.黄土高原多沙粗沙区淤地坝系空间布局优化研究-以西庄流域为例[D].河南大学硕士学位论文.2007.:8-9.
    [47]秦向阳,郑新民.小流域治沟骨干坝系优化规模研究[J].中国水土保持,1994,(1):18-22.
    [48]黄河上中游管理局,淤地坝规划[M],北京:中国计划出版社,2004.
    [49]陈彰岑,于德广,雷元静等.黄河中游多沙粗沙区快速治理模式的实践与理论[M].郑州:黄河水利出版社,1998.
    [50]白风林.小流域坝系优化规模及其应用[J],人民黄河,1995,(11):29-36.
    [51]秦向阳,郑新民.小流域治沟骨干坝系优化规模研究[J].中国水土保持,1994,(1):18-22.
    [52]朱小勇,雷元静,刘立赋.对坝系相对稳定几个重要问题的认识[J].中国水土保持,1997,(7):53-56.
    [53]张金慧,白东晓,马宁.坝系建设与坡面治理关系的分析[J].士壤侵蚀与水土保持学报,1991,5-7.
    [54]肖培青,姚文艺,史学建,淤地坝建设回顾及其物理比尺模型研究展望[J].水土保持研究,2003,10(4):316-319.
    [55]蔺明华,王志意,段文中.淤地坝研究的回顾与展望[J].中国水利,2003,(9):62-64.
    [56]张汉雄,郭宝安,淤地坝系规划设计通用软件及其应用[J].水土保持通报,1977,17(2):46-52.
    [57]姚金刚,常彦平.淤地坝设计初级模型及其程序[J].山西水土保持科技,1996,8:14-16.
    [58]陈文利.介绍几种大型土石方工程量计算方法[J].湖南水利水电,2002,(6):10-11.
    [59]Oxley A,1989.Calculating earthworks volumes-an exercise in geometric algorithms.Computer Journal,32(4):377-379.
    [60]凌建国.土石方工程量计算程序设计及应用[J].铜业工程,1996,(1):48-49.
    [61]温建伟,张建军,牛全生.从防洪保收角度设计骨干淤地坝的探讨[J].中国水土保持,1996,1:16-20.
    [62]王连生,赵喜云,杨英译.淤地坝放水涵洞最佳位置的探讨[J].山西水土保持科技,1998,(3):15-17.
    [63]高季章,曹文洪等.新时期淤地坝规划设计中的若干技术问题探讨[J].中国水利水电科学研究院学报,2003,1(1):9-14.
    [64]薛顺康,王答相.淤地坝系试点示范建设浅见[J].水土保持通报,2004,24(6):99-102.
    [65]辛全才,刘力,史文兵.淤地坝最优坝高设计[J].水土保持学报.1995,9(2):45-51.
    [66]闫宇振,爆破-水坠法筑坝技术在水保工程中的应用[J].西安理工大学学报,1997,139(1):42-43.
    [67]黄河上中游管理局.淤地坝施工[M].中国计划出版社.2004,9,1-2.
    [68]辛全才,沙际德,朱林.淤地坝坝地经济效益预测[J].水土保持学报,1995,9(2):45-51.
    [69]刘利年,梁小卫.关于淤地坝规划中效益评价的探讨[J].水利发展研究,2002,2(4):15-16.
    [70]焦菊英,王万忠,李靖.黄土高原丘陵沟壑区淤地坝的减水减沙效益分析[J].2001,15(1):78-83.
    [71]幸全才,王长春.淤地坝信息管理系统的设计与实现[J].人民黄河,1996,(3):35-36.
    [72]王英顺,田安民,黄土高原地区淤地坝试点建设成就与经验[J].中国水土保持,2005,(12):44-46.
    [73]刘寻续,马良军,杨琳.淤地坝建设和运行管理体制探讨[J].中国水土保持.2006,(5):30-31.
    [74]王煜,秦向阳,张国建.淤地坝建设管理中存在的问题及建议[J],中国水土保持,2005,(12):49-50.
    [75]郑宝明.多沙粗沙区淤地坝建设研究[J],人民黄河,2003,25(7):33-34.
    [76]贾峰,赵俊峰,陕北淤地坝管理运用的经验、问题及对策[J].中国水土保持,1994,(11):44-46.
    [77]许国平,郭文元.淤地坝管理运行中的几个问题及对策[J].中国水土保持,1996,(4):55-56.
    [78]丁加林,王治国,王秦湘,淤地坝运行前期地管理与养护[J].中国水利,2003,(9):48-50.
    [79]段喜明,王治国.小流域淤地坝坝系分别设计方案的优化研究[J].山西农业大学学报,1998,(12):326-329.
    [80]刘保红,王志益.窟野河流域够道坝系建设布局及前景分析[J].中国水土保持,2003,9:5-7.
    [81]郑新民.黄土高原沟壑坝系建设有关问题探讨[J].中国水利,2003,(9):19-22.
    [82]薛顺康,王答相.淤地坝系试点示范建设浅见[J].水土保持通报,2004,24(6):99-102.
    [83]宏田永 宏韭园沟示范区小流域坝系布局分析[J].中国水土保持,2005,(9):21-22.
    [84]宛士春,刘连新.非线性规划在坝系优化规划中的应用[J].武汉水利电力大学学报,1995,28.(3):260-265.
    [85]武永昌.崔云鹏.淤地坝系拦泥、滞洪坝高的双优化[J].水土保持学报,1991,(3):19-25.
    [86]龚建华,李亚赋,王道军等.地理知识可视化中知识图特征与应用研究[C].中国GIS协会理论与方法研讨会交流论文.南京.2005.
    [87]陕晋两省水坠坝试验研究工作组.水坠坝研究成果汇编(第五集)[M],1982-1985.
    [88]罗恩华,浅谈围岸湖分洪闸工程原型观测施工技术[J].湖南工业职业技术学院学报,2008,8(5).5-6.
    [89]黄文熙.水坠坝的固结理论及其应用[J].水利学报,1982,(9).
    [90]郭耿新,方开泽.水坠坝施工期脱水固结计算[J].河海大学(自然科学版),1991,(3).
    [91]方开泽,高新科.水坠坝冲填体二维非线性固结问题[J].人民黄河,1981,(5).
    [92]洪振舜.吹填土的一维大变形固结计算模型[J].河海大学(自然科学版),1987,(6).
    [93]石玉沽,杨新民.史竹叶黄土高原几种质地土壤的水分扩散率[J].水土保持研究,1985,(2).
    [94]顾长存,罗戌青岛滨海公路吹填地基的固结特性分析[J].青岛理工大学学报,2006,(1).
    [95]谢新宇,朱向荣,谢康和,潘秋元.饱和土体一维大变形固结理论新进展[J].岩土工程学报,1997,(4).
    [96]谢康.层状土半透水边界一维固结分析[J].浙江大学学报(工学板),1996,(5).
    [97]洪振舜.大变形固结计算模型及定解条件的探讨[J].河海大学(自然科学版),1988,(5).
    [98]王伟,杨尧志.土工织物与微孔波纹管网状排水系统分析[J].江南学院学报,2000,15(2):64-68.
    [99]王升,邢焕政,肖向红.安沟水坠坝新型固结排水措施的试验研究[J].水利水电技术,1992(12).
    [100]陈萍,张振营,李小山等.废弃淤泥作为再生资源的固化技术与工程应用研究[J].浙江水利科技,2006,148(6):3-5.
    [101]白水县县志编纂委员会.白水县志[地方志][M].西安,西安地图出版社,1989.
    [102]中华人民共和国水利部.水利水电工程地质勘测规范(GB 50287-99)[S].北京:中国计划出版社,1999.
    [103]中华人民共和国水利部.水利水电工程天然建筑材料勘察规程(SL251-2000)[S].北京:中国水利水电出版社,1999.
    [104]中华人民共和国水利部.土工试验规程(SL237-1999)[S].北京:中国水利水电出版社,1999.
    [105]刘成宇.土力学[M].北京:中国铁道出版社,1997.
    [106]崔云鹏,等.水土保持工程学[M].西安:陕西人民出版社,1998.
    [107]张伯平,等.土力学与地基基础[M].西安:西安地图出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700