用户名: 密码: 验证码:
基于数据同化的太湖叶绿素浓度遥感估算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科技的不断进步,湖泊水质监测的手段也越来越丰富,这就意味着我们可以获得更多的数据源,但不同的数据具有不同的时间和空间尺度。与此同时,在国内外众多学者的不懈努力下,开发了大量的水质参数遥感估算反演模型,但不同的模型都具有其“局限性”,只能从某个层面反映“真值”。基于上述考虑,本研究以太湖为研究区,以叶绿素a浓度为研究对象,首先,利用数据同化方法,结合不同遥感估算模型的模型误差,实现太湖叶绿素a浓度的多模型协同反演;其次,利用数据同化方法,结合水体动力学模型,融合浮标、平台等观测数据及卫星影像数据,构建适合于太湖的叶绿素数据同化系统;最后,基于已构建的太湖叶绿素数据同化系统,分别以GOCI数据和浮标、平台数据为观测数据,进行了太湖叶绿素a浓度估算与预测实验。这将为多数据源、多尺度、多模型、多传感器的联合应用提供新的方法,从而克服现有的水体水质参数反演算法的不足,最终提高水质参数的反演精度。
     基于以上研究和分析,主要得出以下结论:
     (1)基于数据同化方法的多模型协同反演算法,通过对多个反演模型的反演结果进行有效加权,可以有效融合不同模型的优点,改善单模型反演精度较低区域的反演结果,从而整体提高反演精度,有利于水环境质量监测和评价。以2006~2009年太湖野外实测数据为例,最终遴选出6个反演效果较好的太湖叶绿素a浓度遥感估算模型,分别为:波段比值模型、三波段模型、四波段模型、Dall'Olmo模型、Gitelson模型和徐京萍模型,模型的平均绝对误差(MAPE)分别为29%、32%、35%、25%、27%、25%,均方根误差(RMSE)分别为13.19μg/L、14.21μg/L、28.35μg/L、14.78μg/L、13.98μg/L‘15.71μg/L、进而利用多模型协同反演算法,从6个反演模型中任意选取2至6个模型参与多模型协同反演。结果表明:当6个反演模型都参与多模型协同反演时,反演效果最好,MAPE为23.4%,RMSE为14.58μg/L;同时,随着参与多模型协同反演的模型个数的增加,反演效果也越好。
     (2)基于集合的卡尔曼滤波数据同化方法,可以提高太湖叶绿素a浓度的估算和预测精度。利用集合均方根滤波,结合太湖水体动力学模型,构建了太湖叶绿素数据同化系统。通过观测模拟实验(OSSE),分析和评价了太湖叶绿素数据同化系统的有效性和适用性。当浮标布设于梅梁湾时,同化实验结果较控制实验结果精度提高了65%;当浮标布设于湖心区时,同化实验结果较控制实验结果精度提高了57%;但当浮标布设于湖心区时,叶绿素a浓度分布更加连续和稳定;考虑到水质监测的需求,建议将浮标和平台布设于拖山附近。进而分别以GOCI数据和浮标、平台数据作为观测数据,利用数据同化系统进行了太湖叶绿素同化实验。当以GOCI数据为观测数据时,将同化结果、控制实验结果分别与多模型协同反演结果进行对比,全湖MAPE分别为45%和125%,决定系数分别为0.71和0.41;将同化结果、控制实验结果分别与地面实测叶绿素a浓度进行对比,MAPE分别为28%和161%,RMSE分别为9.57μg/L和55.66μg/L。当以浮标、平台数据为观测数据时,在同化阶段,对于平台站点,MAPE从218%降低到27%, RMSE从16.23μg/L降低到2.97μg/L;对于浮标站点,MAPE从1125%降低到98%,RMSE从17.29μg/L降低到3.98μg/L;在预测阶段,对于平台站点,MAPE从139%降低到3%;对于浮标站点,MAPE从2001%降低到468%。
     (3)太湖叶绿素数据同化系统对于不同参数的敏感性将直接影响到该系统能否准确的估算太湖叶绿素a浓度的分布。在敏感性分析实验中,分析和评价了样本数目、同化时长、背景场误差、观测误差和模型误差对于同化系统性能的影响。结果表明:从计算成本、系统运行时间和同化效果等方面分析,当集合样本数目达到30至40左右时同化系统取得了较好的结果;同化系统对于背景场误差的估计变化并不是很敏感,即初始场的估计是否准确对于同化系统影响不是很大;同化系统对于模型误差和观测误差的变化较为敏感,此外,由于水体动力学性质不一,不同的测试点位其敏感性的表现形式有所差异;利用数据同化方法可以有效的估算太湖叶绿素a浓度。
With the development of technology, there are more and more ways to monitor water quality. This means that we can get more data from different sources with different time and space scales. Meanwhile, in the unremitting efforts of many scholars, large amount of remote retrieve models of water quality parameters have been developed. However, each model could only reflect the "true value" from one level because of the natural limitation of remote sensing. To get the relatively true value by combining all of the data sources with the various models, we developed the data assimilation method for retrieving the concentration of chlorophyll a in Taihu Lake: Firstly, multi-model collaborative retrieve algorithm was established using data assimilation method to retrieve chlorophyll a concentration in Taihu Lake, in which the model error of different remote retrieval models was considered to enhance the accuracy; Secondly, the chlorophyll a concentration data assimilation system was built by integrating with the water dynamics model, observation data (buoys, platforms and other observation data) and satellite imagery data; Finally, the assimilation experiments was conducted to evaluate and forecast the chlorophyll a concentration in Taihu Lake by applying the constructed data assimilation system, taking GOCI imagery data, buoys and platform data as the observation data. In this paper, a new method is provided to overcome the deficiencies of the existing remote retrieve models and ultimately improve water quality parameters retrieval accuracy, by combining multiple data sources, multi-scale, multi-model and multi-sensor.
     The main conclusions of this study are as follows:
     (1) The multi-model collaborative retrieve algorithm based on data assimilation could effectively blend the advantages of different retrieve models and meanwhile, could effectively weight the retrieve results. Therefore, it could improve the accuracy of the single model in lower retrieve accuracy region, and then improve the overall retrieval accuracy finally. In this study, six models were selected for remote retrieving chlorophyll a concentration in Taihu Lake based on in situ measured data during2006to2009, these models are:band ratio model, three band model, four band model, Dall'Olmo model, Gitelson model and Xu model. The mean absolute percent errors (MAPE) for these models are29%,32%,35%,25%,27%and25%; root mean square errors (RMSE) are13.19μg/L,14.21μg/L,28.35μg/L,14.78μg/L,13.98μg/L and 15.71μg/L. Then,2to6models were selected to test the efficiency of the multi-model collaborative retrieve processes. The results indicates that the best value is when six retrieve models all participate in the multi-model collaborative retrieve procedure, i.e., MAPE is23.4%, and RMSE is14.58μg/L. Meanwhile, with the increased retrieve model participated, the retrieve result gets better.
     (2) Kalman filter algorithm based on ensemble could improve the accuracy of evaluation and prediction of chlorophyll a concentration in Taihu Lake. Thereafter, the chlorophyll a data assimilation system of Taihu Lake was built using ensemble square root kalman filter, combining with water dynamic model. In addition, the effectiveness of this method for evaluation and prediction of the concentration of chlorophyll a was validated. When virtual buoys were laid in Meiliang Bay, the evaluation accuracy had been improved by65%. When virtual buoys were laid in the center of the lake, the evaluation accuracy had been improved by57%. However, the distribution of chlorophyll a is more continuous and stable when the buoys were laid in the center of the lake. Considering the water quality monitoring requirements, recommend buoys placed around Tuoshan Mountain. Then, the evaluation and forecasting of chlorophyll a concentration experiment in Taihu Lake were conducted based on Taihu Lake chlorophyll a data assimilation system, taking GOCI imagery data, buoys and platform data as the observation data.Taking GOCI imagery data as observation data, the MAPEs of assimilation experiment and control experiment compared to the multi-model retrieve result in the whole lake were45%and125%respectively, and that of the R2were0.71and0.41, respectively; While, compared to the in situ result, the MAPEs were28%and161%, respectively, and the RMSEs were9.57μg/L and55.66μg/L respectively. Taking buoys and platform data as the observation data, the MAPE for the platform station decreased from218to27%, and the RMSE decreased from16.23μg/L to2.97μg/L, during the assimilation procedure; the MAPE for the buoy station decreased from1125%to98%, and the RMSE decreased from17.29μg/L to3.98μg/L. In the prediction procedure, the MAPE for the platform station decreased from139%to3%, and the MAPE for the buoy station decreased from2001%to468%.
     (3) Sensibility of the Taihu Lake chlorophyll a assimilation system to different parameters directly control the accuracy of estimate the chlorophyll a concentration distribution when using this assimilation system. We used multispectral data of Environmental Satellite1(HJ-1), obtained on21April,2009, combined with in situ data to retrieve the concentration of chlorophyll a in Taihu Lake. Take the retrieved chlorophyll a concentration of Taihu Lake as the initial background value, then combined with the data assimilation system to analyze the influence of the ensemble size, the assimilation time, the background error, the observation error and the model error on the assimilation system. The results indicate:taking the computing cost, time cost of system and the performance of assimilation system into consideration, the assimilation system performs well when the ensemble size are30-40; the assimilation system is not very sensitive to the background error; both the observation error and the model error are very sensitive for the performance of the system; different test stations have different water dynamic properties, that induces the different performance; the estimation of chlorophyll a concentration can be improved by using the data assimilation method.
引文
[1]Ahn J H, Park Y J, Ryu J H, et al. Development of atmospheric correction algorithm for geostationary ocean colcor imager (GOCI) [J]. Ocean Science Journal,2012, 47(3):247-259.
    [2]Allen J I, Eknes M, Evensen G. An ensemble Kalman filter with a complex marine ecosystem model:hindcasting phytoplankton in the Cretan Sea [J]. Annales Geophysicae,2002,20:1-13.
    [3]Anderson J L. An ensemble adjustment Kalman filter for data assimilation [J]. Mon. Wea. Rev.,2001,129:2884-2903.
    [4]Antoine D, Morel A. A multiple scattering algorithm for atmospheric correction of remotely sensed ocean colour (MERIS instrument):principle and implementation for atmospheres carrying various aerosols including absorbing ones [J]. International Journal of Remote Sensing,1999,20(9):1875-1916.
    [5]Armstrong R A, Sarmiento J L, Slater R D. Monitoring ocean productivity by assimilating satellite chlorophyll into ecosystem models [J]. In:Powell, Steele (Eds), Ecological time series. Chapman and Hall, London,371-390.
    [6]Bates D M, Watts D G. Nonlinear regression analysis and its applications [M]. Wiley,1988.
    [7]Bengtsson L, Ghil M, Kallen E. Dynamic Meteorology:Data assimilation Methods [M]. Springe-Verlag.1981.
    [8]Besiktepe S T, Lermusiaux P F J, Robinsion A R. Coupled physical and biogeochemical data-driven siulations of Massachusetts Bay in late summer:real-time and postcruise data assimilation [J]. Journal of Marine Systems,2003,40: 171-212.
    [9]Bishop C H, Etherton B J, Majumdar S J. Adaptive sampling with the ensemble transform Kalman filter. Part I:Theoretical aspects [J]. Mon. Wea. Rev.,2001, 129(3):420-436.
    [10]Bouttier F, Courtier P. Data assimilation concepts and methods [M],1999.
    [11]Burgers G, Leeuwen P J van, Evensen G. Analysis scheme in the ensemble Kalman filter [J]. Mon. Wea. Rev.,1998,126:1719-1724.
    [12]Carder K L, Chen F R, Cannizzaro J P, et al. Performance of the MODIS semi-analytical ocean color algorithm for chlorophyll-a [J]. Advances in Space Research, 2004,33(7):1152-1159.
    [13]Casulli V, Cattani E. Stability, A three dimensional semi-implicit algorithm for environment flows on unstructured grids. Institute for Computational Fluid Dynamics Conference on Numerical Methods for Fluid Dynamics VI,1998.
    [14]Chen C, Beardsley R C, Cowles G. An Unstructured Grid, Finite-Volume Coastal Ocean Model FVCOM User Manual:Umassd-06-0602 S.2006.
    [15]Choi J K, Park Y J, Ahn J H, et al. GOCI, the word's first geostationary ocean color observation satellite, for the monitoring of temporal variability in coastal water turbidity [J]. Journal of Geophysical Research,117:1-10.
    [16]Daley. Atmospheric data analysis [M]. Cambridge Univ. Press,1991.
    [17]Dall'Olmo G, Gitelson A A, Rundquist D C, et al. Assessing the potential of SeaWiFS and MODIS for estimationg chlorophyll concentration in turbid productive waters using red and near-infrared bands [J]. Remote Sensing of Environment,2005,96(2):176-187.
    [18]Dall'Olmo G, Gitelson A A, Rundquist D C. Towards a unified approach for remote estimation of chlorophyll-a inboth terrestrial vegetation and turbid productive waters [J]. Geophysical Research Letters,2003,30(18). doi:10.1029/2003GL018065.
    [19]Dall'Olmo G, Gitelson A. Effect of bio-optical parameter variability on the remote estimation of chlorophyll a concentration in turbid productive waters:experimental results [J]. Applied optics,2005,44(3):412-422.
    [20]Dekker A.G, Peters S W M. The use of Thematic Mapper for the analysis of eutrophic lakes:a study in the Netherlands [J]. International Journal of Remote Sensing,1993,14:799-821.
    [21]Ellassen A. Provisional report on calculation of spatial covariance and autocorrelation of the pressure field. Institute for weather and climate research, The Norwegian Academy of Science and Letters. Publication and reports July 1,1953-June 30,1954.
    [22]Epstein E S. Stochastic dynamic prediction [J]. Tellus Ser A,1969,21(4):739-759.
    [23]Evesen G. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics [J]. J Geophys Res,1994, 99(10):10143-10162.
    [24]Evensen G. The ensemble Kalman filter:Theoretical formulation and practical implementation [J]. Ocean Dynamic,2003,53:343-367.
    [25]Fasham M J R, Evans G T, Kiefer D A, et al. The use of optimization techniques to model marine ecosystem dynamics at the JGOFS station at 47 degrees N 20 degrees W [J]. Philosophical Transactions of the Royal Society of London,1995, B348:203-209.
    [26]Fasham M J R, Boyd R W, Savidge G. Modeling the relative contributions of utotrophs and heterotrophs to carbon flow at a Lagrangian JGOFS station in the Northeast Atlantic:the importance of DOC [J]. Limnology and Oceanography, 1999,44:80-94.
    [27]Gitelson A A, Schalles J F, Hladik C M. Remote chlorophyll-a retrieval in turbid, productive estuaries:Cheapeake Bay case study [J]. Remote Sensing of Environment,2007,109:464-472.
    [28]Gitelson A A, Dall'Olmo G, Moses W, et al. A simple semi-analytical model for remote estimation of Chlorophyll a in turbid waters:Validation [J]. Remote sensing of environment,2008,112(9):3582-3593.
    [29]Gordon H R, Andre Y, More A. Remote assessment of ocean color for interpretation of satellite visible imagery:a review. American geophysical union, 1983.
    [30]Gregg W W. Assimilation of SeaWiFS ocean chlorophyll data into a three-dimensional global ocean model [J]. Journal of marine systems,2008,69:205-225.
    [31]Gurlin D, Gitelson A A, Moses W J. Remote estimation of chl-a concentration in turbid productive waters - Return to a simple two-band NIR-red model? [J]. Remote Sensing of Environment,2011,115:3479-3490.
    [32]Ham S J, Kim S W, Yun H S, et al. Red tide detection simulation for integrated ray tracing model in-orbit performance verification with GOCI [J]. Proc. SPIE 7105, Remote Sensing of the Ocean, Sea Ice, and Large Water Regions 2008,710506 (October 13,2008); doi:10.1117/12.800158.
    [33]He B B. A simple data assimilation method for improving the MODIS LAI time-series data products based on the object analysis and gradient inverse weighted filter [J]. Chinese Optics letters,2007,5(6):367-369.
    [34]Hemmings J C P, Srokosz M A, Challenor P, Fasham M J R. Assimilating satellite ocean-colour observations into oceanic ecosystem models [J]. Philosophical Transactions of the Royal Society of London A-Mathematics, Physics, and Engineering Science,2003,361:33-39.
    [35]Hemmings J C P, Srokosz M A, Challenor P, Fasham M J R. Split-domain calibration of an ecosystem model using satellite ocean colour data [J]. Journal of Marine systems,2004,50:141-179.
    [36]Hoogenboom H J, Dekker A G, Dehaan J F. Retrieval of chlorophyll and suspended matter in inland waters from CASI data by matrix inversion [J]. Canadian Journal of Remote Sensing,1998,24(2):144-152.
    [37]Houtekamer P L, Mitchell H L. Data assimilation using an ensemble Kalman filter technique [J]. Mon. Wea. Rev.,1998,126:796-811.
    [38]Houtekamer P L, Mitchell H L. A sequential ensemble Kalman filter for atmospheric data assimilation [J]. Mon. Wea. Rev.,2001,129:123-137.
    [39]Hu C M, Feng L, Lee Z P. Evaluation of GOCI sensitivity for at-sensor radiance and GDPS-retrieved chlorophyll-a products [J]. Ocean Science Journal,2012, 47(3):279-285.
    [40]Hurtt G C, Armastrong R A. A pelagic ecosystem model calibrated with BATS data [J]. Deep-sea Research. Part 2. Topical Studies in Oceanography,1996,43:653-683.
    [41]Hurtt G C, Armastrong R A. A pelagic ecosystem model calibrated with BATS and OWSI data [J]. Deep-sea Research. Part 2. Topical Studies in Oceanography,1999, 46:27-61.
    [42]Ide K, Courtier P, Ghil M, et al. Unified notation for data assimilation:operational, sequential and variational [J]. J. Met. Soc. Japan,1997,75(1B):1-20.
    [43]Ishizaka J. Coupling of Coastal Zone Color Scanner data to a physical-biological model of the southeastern United-States continental-shelf ecosystem.3. Nutrient and phytoplankton fluxes and CZCS data assimilation [J]. Journal of Geophysical Research,1990,95:20201-20212.
    [44]John M, Melack, Mary Gastil. Airborne remote sensing of chlorophyll distributions in Mono Lake [J]. California Hydrobiologia,2001,466:31-38.
    [45]Kalman R E. A new approach to linear filtering and prediction problems [J]. Transactions of the American Society of Mechanical Engineering, Journal of Basic Engineering Series D,1960,82:35-45.
    [46]Lahoz W, Khattatov B, Menard R. Data Assimilation:Making Sense of Observations [M]. New York:Springer-Verlag,2010.
    [47]Le C F, Li Y M, Zha Y, et al. A four-band semi-analytical model for estimation chlorophyll a in highly turbid waters:the case study of Taihu Lake, China [J]. Remote sensing of environment,2009,113(6):1175-1182.
    [48]Lee Z P, Jiang M S, Davis C, et al. Impact of Multiple satellite ocean color samplings in a day on assessing phytoplankton dynamic [J]. Ocean Science Journal, 2012,47(3):323-329.
    [49]Leisenring M, Moradkhani H. Analyzing the uncertainty of suspended sediment load prediction using sequential data assimilation [J]. Journal of Hydrology,2012, 468-469:268-282.
    [50]Lewis J M, Lakshmivarahan S, Dhall S. Dynamic data assimilation—A least squares approach [M]. Cambridge university press,2009.
    [51]Losa S N, Kivman G A, Ryabchenko V A. Weak constraint parameter estimation for a simple ocean ecosystem model:what can we learn about the model and data? [J]. Journal of Marine systems,2004,45:1-20.
    [52]Moon J E, Park Y J, Ryu J H, et al. Initial validation of GOCI water products against in situ data collected around Korean Peninsula for 2010-2011 [J]. Ocean Science Journal,2012,47(3):261-277.
    [53]Morel A, Gordon H R. Report of the working group of water color [J]. Boundary Layer Meterol,1980,18:343-355.
    [54]Mueller J L, Fargion G S, Zaneveld R V, et al. Ocean Optics Protocols for Satellite Ocean Color Sensor Validation Revision 4. Volume Ⅳ. NASA,2003.
    [55]Natvik L J, Eknes M, Evensen G. A weak constraint inverse for zero-dimensional marine ecosystem model [J]. Journal of Marine Systems,2001,28:19-44.
    [56]Natvik L J, Evesen G. Assimilation of ocean colour data into a biochemical model of the North Atlantic. Part 1. Data assimilation experiments [J]. Journal of Marine systems,2003,40-41:127-153.
    [57]Natvik L J, Evesen G. Assimilation of ocean colour data into a biochemical model of the North Atlantic. Part 2. Statistical analysis [J]. Journal of Marine systems, 2003,40-41:155-169.
    [58]O'Reilly J E, Maritorena S, Mitchell B G, et al. Ocean color chlorophyll algorithms for SeaWiFS [J]. Jouranl of Geophysical Research,1998,103(C11):24937-24953.
    [59]Panofsky R A. Objective weather-map analysis [J]. Journal of Meteorology,1949, 6(6):386-392.
    [60]Popova E E, Lozano C J, Srokosz M A, Fasham M J R, Haley P J, Robinson A R. Coupled 3D physical and biological modeling of the mesoscale variability observed in North-East Atlantic in Spring 1997:biological processes [J]. Deep-sea research, Part 1. Oceanographic research papers,2002,49:1741-1768.
    [61]Parsons T R, Maita Y, Lalli C M. A manual of chemical and biological methods for seawater analysis, pp.173 Pergamon, New York,1984.
    [62]Press W H, Teukolsky S A, Vettering W T, et al. Numerical recipes in C:The art of scientific computing,2nd edition [M]. Cambridge University press,1992.
    [63]Schartau M, Oschlies A. Simultaneous data based optimization of a 2D-ecosystem model at three locations in the North Atlantic:Part I-method and parameter estimates [J]. Jouranl of Marine Research,2003,61:765-793.
    [64]Scheffer M. Ecology of shallow lakes [M]. Dordretcht:Kluwer Academic Publishers,1998.
    [65]Smith N R. The global ocean data assimilation experiment [J]. Adv. Space Res. 2000,25(5):1089-1098.
    [66]Sun J H, Sug W K, Hyung S Y, et al. Red tide detection simulation for integrated ray tracing model in-orbit performance verification with GOCI [J]. Proc. SPIE 7105, Remote Sensing of the Ocean, Sea Ice, and Large Water Regions 2008, 710506 (October 13,2008); doi:10.1117/12.800158.
    [67]Tippett M K, Anderson J L, Bishop C H, et al. Ensemble square root filters [J]. Mon. Wea. Rev.,2003,131:1485-1490.
    [68]Wang Q, Jin X, Li Y M, et al. Estimation of suspended sediment concentration based on Bio-optical mechanism and HJ-1 image in Chaohu Lake [J]. Science in China Series D:Earth Sciences,2010,53:58-66.
    [69]Whitaker J S, Hamill T M. Ensemble data assimilation without perturbed observations [J]. Mon. Wea. Rev.,2002,130:1913-1924.
    [70]Yacobi Y Z, Moses W J, Kaganovsky S, et al. NIR-red reflectance-based algorithms for chlorophll-a estimation in mesotrophic inland and coastal waters: Lake Kinneret case study [J]. Water Research,2011,45:2428-2436.
    [71]Zhang Z, Song Z Y, Lv G N. A new implicit scheme for solving 3-D shallow water flows [J]. Journal of Hydrodynamics (Series B),2009,21(6):790-798.
    [72]Zhang Z, Song Z Y. Three-dimensional numerical modeling for wind-driven circulation and pollutant transport in a large scale lake [A]. International Conference of Bioinformatics and Biomedical Engineering. Chengdu:IEEE,2010. 1-7.
    [73]陈思宁.基于集合卡尔曼滤波的遥感信息和作物模型结合研究-以东北地区玉米估产为例[D].南京:南京信息工程大学,2012.
    [74]陈宇炜,高锡云.浮游植物叶绿素a含量测定方法的比较测定[J].湖泊科学, 2000,12(2):185-188.
    [75]陈宇炜,陈开宁,胡耀辉.浮游植物叶绿素a测定的“热乙醇法”及其测定误差探讨[J].湖泊科学,2006,18:550-552.
    [76]高山红,吴增茂,谢红琴.Kalman滤波在气象数据同化中的发展与应用[J].地球科学进展,2000,15(5):571-575.
    [77]黄昌春.顾及颗粒物垂直分布的太湖水体组分生物光学模型反演研究[D].南京:南京师范大学,2011.1-120.
    [78]黄昌春,李云梅,徐良将等.内陆水体叶绿素反演模型普适性及其影响因素研究[J].环境科学,2013,34(2):525-531.
    [79]胡维平,濮培民,秦伯强.太湖水动力学三维数值试验研究—1.风生流和风涌增减水的三维数值模拟[J].湖泊科学,1998,10(4):17-25.
    [80]黄勇,王颖.集合卡尔曼滤波在浅水模式数据同化中的应用[J].解放军理工大学学报(自然科学版),2008,9(1):85-90.
    [81]黄漪平.太湖水环境及其污染控制[M].北京:科学出版社,2001.
    [82]金惠淑,鱼京善,孙文超等.基于GOCI遥感数据的湖泊富营养化监测[J].北京师范大学学报(自然科学版),2013,49:271-274.
    [83]金相灿等.中国湖泊环境[M].北京:海洋出版社,1995.
    [84]孔繁翔,高光.大型浅水富营养化湖泊中蓝藻水华形成机理的思考[J].生态学报,2005,25(3):589-595.
    [85]孔繁翔,胡维平,范成新等.太湖流域水污染控制与生态修复的研究与战略思考[J].湖泊科学,2006,18(3):193-198.
    [86]孔繁翔,马荣华,高俊峰等.太湖蓝藻水华的预防、预测和预警的理论与实践[J].湖泊科学,2009,21(3):314-328.
    [87]刘成思.集合卡尔曼滤波资料同化方案的设计和研究[D].北京:中国气象科学研究院,2005.
    [88]刘成思,薛纪善.关于集合Kalman滤波理论和方法的发展[J].热带气象学报,2005,21(6):628-633.
    [89]罗潋葱,秦伯强.基于三维浅水模式的太湖水动力数值试验—盛行风作用下的太湖流场特征[J].水动力学研究与进展,2003,18(6):686-691.
    [90]梁瑞驹,仲金华.太湖风生流的三维数值模拟[J].湖泊科学,1994,6(4):289-297.
    [91]李素菊,吴倩,王学军等.巢湖浮游植物叶绿素含量与反射光谱特征的关系[J].湖泊科学,2002,14(3):230-233.
    [92]李新,摆玉龙.顺序数据同化的Bayes滤波框架[J].地球科学进展,2010, 25(5):515-522.
    [93]李云梅,黄家柱,韦玉春等.用分析模型方法反演水体叶绿素的浓度[J].遥感学报,2006,10(2):169-175.
    [94]李云梅,王桥,黄家柱等.太湖水体光学特性及水色遥感[M].科学出版社,2010.
    [95]李渊,李云梅,王桥等.基于集合均方根滤波的太湖叶绿素a浓度估算与预测[J].环境科学,2013,34(1):61-68.
    [96]刘忠华.基于高分数据的太湖重点污染入湖河流叶绿素a浓度遥感反演[D].南京:南京师范大学,2012.1-77.
    [97]马荣华,戴锦芳.应用实测光谱估测太湖梅梁湾附近水体叶绿素浓度[J].遥感学报,2005,9(1):78-86.
    [98]逢勇,濮培民.太湖风生流三维数值模拟试验[J].地理学报,1996,51(4):322-328.
    [99]逢勇,濮培民,高光等.非均匀风场作用下太湖风成流风涌水的数值模拟及验证[J].海洋湖沼通报,1994,(4):9-15.
    [100]秦伯强,胡维平,陈伟民等.太湖水环境演化过程与机理[M].科学出版社,2004.
    [101]孙德勇.基于光谱确定因子的太湖水体组分浓度实测高光谱提取模型研究[D].南京:南京师范大学,2012.1-104.
    [102]施坤.基于光学特征分类的内陆浑浊水体叶绿素浓度遥感估算研究[D].南京:南京师范大学,2012.1-110.
    [103]孙顺才,黄漪平.太湖[M].北京:海洋出版社,1993,1-10.
    [104]唐军武,田国良,汪小勇等.水体光谱测量与分析Ⅰ:水面以上测量法[J].遥感学报,2004,8(1):37-44.
    [105]谭维炎.计算浅水动力学[M].北京:清华大学出版社,1998.
    [106]吴传庆,盖嘉翔,王桥等.湖泊富营养化遥感评价模型的建立方法[J].中国环境监测,2011,27(5):77-81.
    [107]吴坚.琵琶湖南湖、太湖的一个多层水动力数值模式[J].海洋湖沼通报,1994,(4):9-15.
    [108]万蕾.我国湖泊富营养化问题与治理现状[J].生态环境,2011,(01):378-381.
    [109]王谦谦,姜加虎,濮培民.太湖和大浦河口风成流、风涌水的数值模拟及其单站验证[J].1992,4(4):1-7.
    [110]王谦谦.太湖风成流的数值模拟[J].河海大学学报,1987,增刊2.
    [111]徐京萍,张柏,宋开山等.基于半分析模型的新庙泡叶绿素a浓度反演研 究[J].红外与毫米波学报,2008,27(3):197-201.
    [112]徐同仁.同化MODIS温度产品估算地表水热通量[D].北京:北京师范大学,2008,1-61.
    [113]许旭峰,刘青泉.太湖风生流特征的数值模拟研究[J].水动力学研究与进展,2009,24(4):512-518.
    [114]许小永.四维变分和集合卡尔曼滤波同化多普勒雷达资料的方法及其反演暴雨中尺度结构的研究[D].南京:南京信息工程大学,2005.
    [115]杨煜.基于HJ-1高光谱数据的巢湖叶绿素a浓度三波长因子反演模型研究[D].南京:南京师范大学,2010.
    [116]赵碧云,贺彬,朱云燕等.滇池水体中叶绿素a含量的遥感定量模型[J].云南环境科学,2001,20(3):1-3.
    [117]邹春蕾.资料同化理论和应用[M].气象出版社,2009.
    [118]周冠华,柳钦火,马荣华,等.基于半分析模型的波段最优化组合反演混浊太湖水体叶绿素a[J].湖泊科学,2008,20(2):153-159.
    [119]朱建荣.海洋数值计算方法和数值模型[M].北京:海洋出版社,2004.
    [120]周琳,马荣华,段洪涛等.浑浊Ⅱ类水体叶绿素a浓度遥感反演(Ⅰ):模型的选择[J].红外与毫米波学报,2011,30(6):531-536.
    [121]张生雷,谢正辉,师春香等.集合Kalman滤波在土壤湿度同化中的应用[J].大气科学,2008,32(6):1419-1430.
    [122]周伟奇.内陆水体水质多光谱遥感监测方法和技术研究[D].北京:中科院遥感应用研究所,2004.
    [123]朱永春,蔡启铭.太湖梅梁湾三维水动力学的研究—1.模型的建立及结果分析[J].海洋与湖沼,1998a,29(1):79-85.
    [124]朱永春,蔡启铭.太湖梅梁湾三维水动力学的研究—2.营养盐随三维湖流的扩散规律[J].海洋与湖沼,1998b,29(2):169-174.
    [125]曾忠一.大气科学中的反问题(上册)[M].台北市:国立编译馆,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700