用户名: 密码: 验证码:
联用色谱在中药活性成分和生物样品分析中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,“回归自然”的浪潮使中药备受关注,中药现代化的步伐越来越快。中药现代化进程中主要面临着两方面的问题:①中药成分复杂,并且成分之间相互影响和作用,同一成分化合物的分析结果可能会因母体药材或制剂配方的改变而受到不同程度的影响。故建立简单、可靠的中药及其复方中活性成分的分析方法是实现中药现代化的基本前提之一。②中药的有效成分是新药开发的先导,但是中药的药效成分与生物体内的代谢作用机理还不是十分清晰,因此建立灵敏、准确、快速生物样品中中药活性成分的测定分析方法,为进一步实现中药药代动力学的研究就显得尤为迫切。联用色谱技术的发展为中药的质量控制研究和中药药效物质基础研究提供了一个高效、可靠的分析方法。基于此,本文主要开展了以下几方面的创新性研究工作:
     (1)采用分子印迹技术,以表儿茶素作为模板分子,丙烯酰胺为功能单体,乙烯基二甲基丙烯酸酯为交联剂,合成了表儿茶素分子印迹聚合物。用红外光谱和扫描电子显微镜表征了所合成的分子印迹聚合物。通过筛分,粒子尺寸在15和38μm之间的分子印迹聚合物被选为固相萃取吸附剂。结果表明:分子印迹聚合物对表儿茶素具有较高的分子识别能力和选择性。而空白聚合物却不具备这样的特性。在此基础上,把此分子印迹聚合物固相萃取小柱用于萃取茶叶提取物,分离富集其中的活性成分单体表儿茶素,获得了满意的结果。
     (2)我们选取了栀子中的主要生物活性物质栀子甙为目标分析物,建立了用于分析栀子和栀子中药制剂清火栀麦片中的栀子甙的高效液相色谱-二极管阵列-质谱联用(HPLC-DAD-ESI/MS)分析方法。为了进一步更全面的对栀子中药制剂清火栀麦片进行质量控制,针对现有分析栀子中药制剂的缺陷,发展了简便、灵敏的高效液相色谱-二极管阵列-质谱联用(HPLC-DAD-ESI/MS)方法同时分析中药栀子复方制剂清火栀麦片及其原料药材中的活性物质脱水穿心莲内酯,穿心莲内酯和栀子甙。这三种活性成分主要用来作为清火栀麦片的质量控制的标志物。相对于其他分析方法,此方法提供了更多的定性、定量信息,同时能更全面的对中药复方制剂进行质量控制。
     (3)针对现有的流动相体系不能对橘属中药中生物碱类和黄酮类两种不同色谱保留行为的活性物质同时分析测定的现状,且对生物碱类分析的流动相不适合于液质联用分析,我们采用挥发性全氟羧酸为离子对添加剂,解决了生物碱类物质辛氟林的低保留和峰拖尾,并考察了对黄酮类物质的色谱保留行为的影响,首次成功地建立了橘属中药中生物碱类和黄酮类物质同时分析的高效液相色谱-二极管阵列-质谱联用(HPLC-DAD-ESI/MS)分析方法。并且把这种方法应用于橘属中药青皮、陈皮、枳实和枳壳的全面质量控制中,获得满意的结果。
     (4)以中药人参中的大分子量活性化合物人参皂甙为研究对象,研究了高锥孔电压对其电离效率,检测灵敏度的影响。建立了简单、灵敏的分析人参皂甙的高效液相色谱-质谱联用分析方法。高锥孔电压的采用能大大提高检测灵敏度,并且得到用于人参皂甙结构鉴定的加合离子和特征碎片离子。分析方法的线性范围在5-2×105之间,线性相关系数超过0.990,检测限达到pg级。该方法成功地应用于人参以及人参制剂中的人参皂甙的分析检测中,为其质量控制提供了更为简单、有效的检测方法。
     (5)在本章中,建立了磁性纳米粒子-微波萃取的新方法用于中药中的有效成分的提取。这种新方法基于磁性纳米粒子能够吸收辐射的微波,把磁性纳米粒子作为中间媒介吸收微波。以中药黄芩的有效成分提取为例,磁性纳米粒子-微波萃取整个的萃取过程只需要40 s的微波辐射时间。而且,与一般的微波萃取相比,加入磁性纳米粒子的萃取效率更高,需要的有机溶剂更少。得到的提取物用高效液相色谱-质谱联用分析。本文所建立的方法的回收率在97.6–104.1%之间,相对标准偏差小于2.5%。黄芩苷,黄芩素,汉黄芩素的检测限分别为0.05,1.0和2.0 ng/mL。此方法成功地应用到了实际样品中有效成分地提取分析检测。
     (6)为了保护动物,减少或取代动物实验,体外评估化学药品对细胞的毒性作用对于开发新药用于治疗各种各样的癌症具有十分重要的作用。尽管伊立替康对白血病、消化道和卵巢肿瘤具有较好的治疗作用,而对乳腺癌治疗的报道很少。本文首次以乳腺癌细胞MCF-7为模型,体外评估了伊立替康对乳腺癌细胞的毒性后,建立了快速、简单的HPLC-ESI/MS测定细胞中伊立替康及其代谢产物SN-38的方法,本法采用-80℃甲醇一步沉淀蛋白,线性范围可达3个数量级,线性相关系数大于0.9995,且方法特异性高,基质效应小,具有合适的精密度和灵敏度。该法成功地测定了伊立替康作用不同时间下的MCF-7细胞内的药物浓度,对抗肿瘤药物伊立替康的细胞药物代谢动力学进行了初浅地探讨。
     (7)样品制备在HPLC的生物样品分析中是关键性的一步,经典的样品预处理包括蛋白质沉淀和药物萃取。此方法的缺点是大大增加了劳动量和分析时间,同时由于分析物在沉积蛋白质上的吸附而降低了回收率。直接进样技术在节约时间和劳力方面显示出了相当大的优越性。本工作应用简单、可靠的胶束液相色谱(micellar liquid chromatography ,MLC)法直接进样分析了生物样品中的隐丹参酮和丹参酮ⅡA。隐丹参酮和丹参酮ⅡA是传统中药丹参中主要的活性成分。由于它们有活跃的强而广药理性质,受到广泛关注。在实验中,采用C18色谱柱,流动相是pH 5的0.15 M SDS-8%正丁醇(n-butanol)溶液。与高有机溶剂消耗的HPLC相比,更为绿色。该方法准确度、精确度好、回收率高。并且也能成功地应用到丹参制剂中的隐丹参酮和丹参酮ⅡA分析检测,为丹参及其制剂中活性成分的药理,药代动力学研究研究提供了简单可靠的分析检测方法。
Recently, the traditional Chinese medicine (TCM) has attracted more and more attention for their therapeutic effects, which has accelerated the modernization process of TCM. Two aspects must be realized during the modernization of TCM. First, TCM is a complicated system, which contains a number of bioactive compounds. Herbal medicinal preparations are combined mixtures of herbal medicines. In order to ensure their maximal therapeutic effect, it is necessary and important to develop a simple and sensitive quality control method for TCM and the herbal medicinal preparations. Second, the bioactive compounds in TCM are the precursor of the new drug. However, the pharmacokinetics of the bioactive compounds is not very clear. So the method of determination of the bioactive compounds in biological sample is urgent to establish. The proposed method can applied to the pharmacokinetic studies. Based on the above situation, this thesis was concentrated on the quality control of the TCM and the determination of bioactive compounds in biological samples. The details are summarized as follows:
     (1) Based on molecularly imprinted solid-phase extraction, a new molecularly imprinted polymer (MIP) was prepared by using epicatechin as the template molecule. The synthesized MIP was characterized by infrared spectroscopy and scanning electron microscopy and the MIP with 15-38μm particle size was selected as a solid-phase extraction (SPE) sorbent. It showed good selectivity and affinity for epicatechin in contrast to the structurally related compounds. The MIP cartridge enabled the selective extraction and preconcentration of epicatechin from tea samples.
     (2) A rapid, specific, and reproducible high-performance liquid chromatography (HPLC)-photodiode array detection (DAD)-electrospray ionization mass spectrometry (ESI/MS) method has been developed for determination of geniposide in Gardenia jasminoides and its preparation. For full quality control of herbal medicinal preparations, the multiple bioactive compounds were analyzed. Dehydroandrographolide, andrographolide and geniposide are used as the markers to control the quality of such herbal preparations. A simple and sensitive high-performance liquid chromatographic (HPLC) method coupled with photodiode array detection (DAD) and electrospray mass spectrometry (ESI/MS) was developed to determine the three compounds simultaneously in the extracts of medicinal herbs and herbal preparations. Compared with the previously reported method, the proposed method is more simple and effective.
     (3) The major active biological constituents in Citrus herbs are flavonoids and alkaloids, especially hesperidin, naringin and synephrine. However, they can not be detected in one run due to their different chromatographic retention behaviors. In this thesis, perfluorinated carboxylic acids, which are appropriate for MS detection due to their volatility, were used as ion pairing agents. The problems of the synephrine separation, such as band tailing and low retention were solved successfully. A new ion pairing chromatographic method was developed to exclude the most polar solute (synephrine) from the void volume and to maintain selectivity among the two other solutes (hesperidin, naringin). The two different kinds of the analytes were well separated in a single run using an isocratic eluent. The method is employed successfully to determine of hesperidin, naringin and synephrine in several Citrus herbs.
     (4) High cone voltage was used to improve the quantification sensitivity of large molecular weight compounds in HPLC-ESI/MS, with ginsenosides as example. Investigations on the effect of cone voltage showed that within a voltage range of 3-?130 V, for all the ginsenosides tested, i.e., Rb1, Rb2, Rc, Rd, Re, Rf and Rg1, the increase of the applied cone voltage can significantly increase the sensitivity of the method. At the high cone voltage, both the molecular weight and structural information `were obtained from a single mass spectrum. It can also be used for isomer differentiation and structure determination of ginsenosides. Linear relationships between the peak area response and concentration were observed in the range of 50-2×10~5 ng/mL, with the correlation coefficients >0.99. The limits of detection reached down to pg for ginsenosides. The method was successfully applied to the determination of ginsenosides in commercial ginseng samples. It offers a simple and effective method to quality control of the ginseng.
     (5) Based on the unique capacity of magnetite beads to absorb microwave radiation, a new magnetite nano-beads based microwave-assisted (MBMAE) technique was developed to improve the extraction of bioactive compounds from plant tissues, Scutellaria baicalensis Georgi and its herbal preparations were taken as application examples. In the presence of magnetite beads, 40 s microwave irradiation, was sufficient for carrying out the whole extraction process, Furthermore, it yields a higher extraction efficiency compared with the conventional microwave extraction technique and a lower consumption of organic solvent. The extracts were analyzed by high performance liquid chromatography–electrospray ionization mass spectrometry. The recovery of this method was in the range of 97.6–101.4% with relative standard deviation lower than 2.5 %. The limits of detection were 0.05, 1.0 and 2.0 ng/mL for wogonin, baicalein and baicalin, respectively. The present method has been successfully applied to the extraction determinination of wogonin, baicalein and baicalin in real samples. The results demonstrated the powerful application foreground of the proposed method in analysis of bioactive compounds contained in other Chinese herbal medicine.
     (6) In order to protect the animal, decrease or replace the animal experiments, the in-vitro assessment of the toxicity of the drug using the cell mode is urgently. Many clinical researches showed that CPT-11 is useful in the treatment of many types of cancer, such as colorectal, ovarian and small cell lung cancers, while there are few reports about the treatment of breast tumors. Human breast cancer cell line MCF-7 was selected as a model to test the potent anticancer activity of CPT-11 in vitro. A a simple, rapid and sensitive method of liquid chromatography-electrospray mass spectrometry has been developed to assay the concentrations of anticancer drug irinotecan in human breast cancer cells. A single step protein precipitation with the -80℃methanol was used for sample preparation. High specificity and little matrix effects was obtained by this method. After exposure to irinotecan at different time interval, the intracellular drug concentration was successfully determined by the proposed method. The pharmacokinetics of irinotecan in human breast cancer cells was investigated.
     (7) The sample pretreatment is the key step in the biological sample analysis by HPLC. The sample pretreatment contains the protein precipitation and the analyte extraction, thus the operation is relatively laborious and time-consuming. Meantime, the recovery is low. A simple and sensitive micellar liquid chromatography (MLC) method is proposed for the determination of Cryptotanshinone (CT) and tanshinone IIA (TS) in biological samples. No extraction step is required. A C18 column and a micellar mobile phase of 0.15 M SDS and 8% n-butanol were used. CT and TS are the major active compounds contained in traditional Chinese medicine Radix salvia miltiorrhiza (Danshen), with powerful pharmacological activities. Satisfactory recoveries in the biological matrices were achieved for CT and TS. Compared with the conventional reversed-phase chromatography method, the proposed MLC method is more sensitive, time-saving and less organic solvent is required. The proposed method could be used for the pharmacokinetic studies of the CT and TS.
引文
[1]肖培根,肖小河. 21世纪与中药现代化.中国中药杂志, 2000, 25(2): 67-70
    [2]娄小娥,陈智.中药现代化.中华医学杂志, 2006, 86(1): 68-69
    [3]惠永正.中药的可知性与新视角.世界科学技术, 1999, 1(3): 4-8
    [4]李萍,刘丽芳.常用中药液相与气相色谱鉴定.化学工业出版社, 2005, 26-28
    [5]张志琪,张延妮,田振军.药物筛选模型和技术及其在中药活性成分研究中的应用.中国中药杂志, 2003, 28(10): 907-909
    [6]祝晨陈,郑志华,陈知良. HPLC/MS法测定大黄酸在大鼠的血药浓度.中药材, 2002, 25(9): 646-649
    [7] Smith R M. Before the injection—modern methods of sample preparation for separation techniques. J. Chromatogr. A, 2003, 1000(1-2): 3-27
    [8] Hennion M C, Cau-Dit-Coumes C, Pichon V. Trace analysis of polar organic pollutants in aqueous samples: Tools for the rapid prediction and optimisation of the solid-phase extraction parameters. J. Chromatogr. A, 1998, 823(1-2): 147-161
    [9]黄骏雄.环境样品前处理技术及其进展.环境化学, 1994, 13(1): 95-103
    [10]郭孝武.一种提取中草药中化学成分的方法—超声提取法.天然产物研究与开发, 1998, 11(1): 37-40
    [11] HromádkováZ, EbringerováA. Ultrasonic extraction of plant materials investigation of hemicellulose release from Buckwheat Hulls. Ultrason. Sonochem., 2003, 10(1): 127-133
    [12] Li H, Chen B, Yao S Z. Application of ultrasonic technique for extracting chlorogenic acid from Eucommia Ulmodies Oliv. (E. ulmodies). Ultrason. Sonochem., 2004, 12(4): 295-300
    [13] Sun Y Y, Wang W H. Ultrasonic extraction of ferulic acid from Ligusticum chuanxiong. J. Chin. Inst. Chem. Eng., 2008, in press.
    [14] Ma Y Q, Chen J C, Liu D H, Ye X Q. Simultaneous extraction of phenolic compounds of citrus peel extracts: Effect of ultrasound. Ultrason. Sonochem., 2009, 16(1): 57-62
    [15] Smith R M, Burford M D. Optimization of supercritical fluid extraction of volatile constituents from a model plant matrix. J. Chromatogr., 1992, 600(2): 175-181
    [16] Hedrick J L, Mulcahey L J, Taylor L T. Fundamental review: supercritical fluid extraction. Mikrochim. Acta, 1992, 108(1): 115-132
    [17] Hu Q H, Hu Y, Xu J. Free radical-scavenging activity of Aloe Vera (Aloe Barbadensis Miller) extracts by supercritical carbon dioxide extraction. Food Chem., 2005, 91(1): 85-90
    [18] Yu W L, Shu B, Zhao Y P. Supercritical CO2 extraction of resveratrol and its glycoside piceid from Chinese traditional medicinal herb Polygonum Cuspidatum. J. Sci. Food Agric., 2005, 85(3): 489-492
    [19] Mi H, Qu L L, Ren Y L. Analysis of volatile components in essential oil of Radix Angelicae Dahuricae of supercritical fluid extraction by Gas Chromatography/ Mass Spectrometry. Chin. J. Anal. Chem., 2005, 33(2): 366-370
    [20] Liu X W, Li Z Y, Chen S H. Experimental and simulating study of supercritical CO2 extraction of Ginger essential Oil. Chin. J. Chem. Eng., 2005, 13(5): 572-576
    [21] Zhao S, Liang H. Study of Extraction of cinnamon oils from the bark of Cinnamomum Cassia Presl by supercritical carbon dioxide. Pol. J. Chem., 2006, 80(1): 99-105
    [22] Liu B, Jiang H L, Shen B, Chang Y L. Supercritical fluid extraction of sinomenine from Sinomenium acutum (Thumb) Rehd et Wils. J. Chromatogr. A, 2005, 1075(1-2): 213-215
    [23] Liu B, Li W J, Chang Y L, Dong W H, Ni L. Extraction of berberine from rhizome of Coptis Chinensis Franch using supercritical fluid extraction. J. Pharm. Biomed. Anal., 2006, 41(3): 1056-1060
    [24] Zhang J, Duan J C, Liang Z, Zhang W B, Zhang L H, Huo Y S, Zhang Y K. Analysis of triterpenoids in fruiting bodies of Ganoderma Lucidum with offline supercritical fluid extraction high performance liquid chromatography system. Chin. J. Anal. Chem., 2006, 34(4): 447-450
    [25] Liu C M, Zhao X L, Li H M, Liu Z Q, Xing J P. Supercritical fluid extraction of saponins from Ginseng. Chem. Res. Chin. Univ., 2005, 21: 757-760
    [26] Zhang J, Zhang L H, Duan J C, Liang Z, Zhang W B, Hu Y S, Zhang Y K. On-line hyphenation of supercritical fluid extraction and two-dimensional high performance liquid chromatography-atmospheric pressure chemical ionization tandem mass spectrometer for the analysis of Ganoderma lucidum. J. Sep. Sci., 2006, 29(16): 2514-2522
    [27] Peng J Y, Fan G R, Wu Y T. Ultra-rapid separation of an angiotensin mixture innanochannels using shear-driven chromatography. J. Chromatogr. A, 2006, 1115(1-2): 103-111
    [28] Peng J Y, Fan G R, Wu Y T. Efficient new method for extraction and isolation of three flavonoids from Patrinia Villosa Juss. by supercritical fluid extraction and high-speed counter-current chromatography. J. Chromatogr. A, 2006, 1102(1-2): 44-50
    [29] Wang X, Wang Y Q, Yuan J P, Sun Q L, Liu J H, Zhen C C. An efficient new method for extraction, separation and purification of psoralen and isopsoralen from Fructus Psoraleae by supercritical fluid extraction and high-speed counter-current chromatography. J. Chromatogr. A, 2004, 1055(1-2): 135-140
    [30] Peng J Y, Fan G R, Wu Y T. Supercritical fluid extraction of aurentiamide acetate from Patrinia Villosa Juss. and subsequent isolation by silica gel and high-speed counter-current chromatography. J. Chromatogr. A, 2005, 1083(1-2): 52-57
    [31] Dickey F H. The preparation of specific adsorbents. Proc. Natl. Acak. Sci. USA., 1949, 35(3): 227-229
    [32] Wulff G, Sarhan A. The use of polymers with enzyme-analogous structures for the resolution of racemates. Angew. Chem. Int. Ed. Engl., 1972, 11(3): 341-345
    [33] Tomayo F G, Turiel E, Martin-Esteban A. Molecularly imprinted polymers for solid-phase extraction and solid-phase microextraction: Recent developments and future trends. J. Chromatogr. A, 2007, 1152(1?2): 32?40
    [34] Hugon C F, Mullota J U, Tuffal G, Henniona M C, Pichon V. Selective and automated sample pretreatment by molecularly imprinted polymer for the analysis of the basic drug alfuzosin from plasma. J. Chromatogr. A, 2008, 1196–1197(4): 73–80
    [35] Song S Q, Shi X Z, Li R X, Lin Z X, Wu A B, Zhang D B. Extraction of chlorpromazine with a new molecularly imprinted polymer from pig urine. Process Biochem., 2008, 43(11): 1209–1214
    [36] Benito P E, Urraca J L, Sellergren B, Moreno-Bondi M C. Solid-phase extraction of ?uoroquinolones from aqueous samples using a water-compatible stochiometrically imprinted polymer. J. Chromatogr. A, 2008, 1208(1-2): 62–70
    [37] Xie J C, Zhu L L, Luo H P, Zhou L, Li C X, Xu X J. Direct extraction of specific pharmacophoric ?avonoids from Gingko leaves using a molecularly imprinted polymer for quercetin. J. Chromatogr. A, 2001, 934(1-2): 1-11
    [38] Zhu L L, Xu X J. Elective separation of active inhibitors of epidermal growth factor receptor from Caragana Jubata by molecularly imprinted solid-phaseextraction. J. Chromatogr. A, 2003, 991(2): 151-158
    [39] Xie J C, Zhu L L, Xu X J. Affinitive separation and on-Line identification of antitumor components from Peganum nigellastrum by coupling a chromatographic column of target analogue imprinted polymer with mass spectrometry. Anal. Chem., 2002, 74(10): 2352-2360
    [40] Li H, Liu Y J, Zhang Z H, Liao H P, Nie L H, Yao S Z. Separation and purification of chlorogenic acid by molecularly imprinted polymer monolithic stationary phase. J. Chromatogr. A, 2005, 1098(1-2): 66–74
    [41] Lin L Q, Zhang J, Fu Q, He L C, Li Y C. Concentration and extraction of sinomenine from herb and plasma using a molecularly imprinted polymer as the stationary phase. Anal. Chim. Acta, 2006, 561(1-2): 178–182
    [42] Ou J J, Kong L, Pan C S, Su X Y, Lei X Y, Zou H F. Determination of DL-tetrahydropalmatine in Corydalis yanhusuo by L-tetrahydropalmatine imprinted monolithic column coupling with reversed-phase high performance liquid chromatography, J. Chromatogr. A, 2006, 1117(2): 163–169
    [43] Lord H, Pawliszyn J. Evolution of solid-phase microextraction technology. J. Chromatogr. A, 2000, 885(1-2): 153-193
    [44] Deng C H, Song G X, Hu Y M, Zhang X M. Comparison of essential oil composition of Artemisia argyi leaves at different collection times by headspace solid-phase microextraction and gas chromatography-mass spectrometry. Chromatographia, 2003, 57(1): 357-361
    [45] Song G X, Deng C H, Hu Y M. Headspace Solid-phase Microextraction–Gas Chromatographic–Mass Spectrometric Analysis of the Essential Oils of Two Traditional Chinese Medicines, Angelica pubescens and Angelica sinensis. Chromatographia, 2004, 59(5-6): 343-349
    [46] Shen S, Sha Y F, Deng C H, Zhang X M, Fu D X, Chen J K. Quality assessment of Flos Chrysanthemi Indici from different growing areas in China by solid-phase microextraction-gas chromatography-mass spectrometry. J. Chromatogr. A, 2004, 1047(2): 281-287
    [47] Sha Y F, Shen S, Duan G L. Analysis of Rhioxma Curcumae Aeruginosae volatiles by solid-phase microextraction with gas chromatography-mass spectrometry. Z. Naturf. C., 2004, 59(7-8): 533-538
    [48] Guo F Q, Huang L F. Comparison of the volatile compounds of Atractylodes medicinal plants by headspace solid-phase microextraction-gas chromatography–mass spectrometry. Anal. Chim. Acta, 2006, 570(1): 73-78
    [49] Cao J, Qi M L, Fang L H, Zhou S, Fu R N, Zhang P P. Solid-phase microextraction–gas chromatographic–mass spectrometric analysis of volatile compounds from Curcuma wenyujin Y.H. Chen et C. Ling. J. Pharm. Biomed. Anal., 2006, 40(3): 552-558
    [50] Liang M M, Qi M L, Zhang C B. Gas chromatography–mass spectrometry analysis of volatile compounds from Houttuynia cordata Thunb after extraction by solid-phase microextraction, flash evaporation and steam distillation. Anal. Chim. Acta, 2005, 531(1): 97-104
    [51] Dong L, Deng C H , Wang J Y, Shen X Z. Fast determination of paeonol in plasma by headspace solid-phase microextraction followed by gas chromatography–mass spectrometry. Anal. Chim. Acta, 2007, 585(1): 76–80
    [52] DeJager L S, Andrews A R J. Development of a rapid screening technique for organochlorine pesticides using solvent microextraction (SME) and fast gas chromatography (GC) . Analyst, 2000, 125: 1943-1948
    [53] Psillakis E, Kalogerakis N. Application of solvent microextraction to the analysis of nitroaromatic explosives in water samples. J. Chromatogr. A, 2001, 907(1-2): 211-219
    [54] DeJager L S, Andrews A R J. Development of a screening method for cocaine and cocaine metabolites in urine using solvent microextraction in conjunction with gas chromatography. J. Chromatogr. A, 2001, 911(1): 97-105
    [55] Theis A L, Waldack A J, Hansen S M, Jeannot M A. Headspace solvent microextraction. Anal. Chem., 2001, 73(23): 5651-5654
    [56] Cao J, Qi M L. Analysis of volatile compounds in Curcuma wenyujin Y.H. Chen et C. Ling by headspace solvent microextraction–gas chromatography–mass spectrometry. Anal. Chim. Acta, 2005, 561(1-2): 88-95
    [57] Shahdousti P, Mohammadi A, Alizadeh N. Determination of valproic acid in human serum and pharmaceutical preparations by headspace liquid-phase microextraction gas chromatography-?ame ionization detection without prior derivatization. J. Chromatogr. B, 2007, 850(1-2): 128–133
    [58] Chiang J S, Huang S D. Simultaneous derivatization and extraction of amphetamine and methylenedioxyamphetamine in urine with headspace liquid-phase microextraction followed by gas chromatography–mass spectrometry. J. Chromatogr. A, 2008, 1185(1): 19–22
    [59] Shi W, Wang Y T, Quan X J, Bai L F, Zhang H R, Chen X D, Ding L, Zhang H Q. Determination of ginsenosides in the root of Radix Ginseng by high performanceliquid chromatography/evaporative light scattering detection. Chin. J. Anal. Chem., 2006, 34(2): 243-246
    [60] Zhang F, Chen B, Xiao S, Yao S Z. Optimization and comparison of different extraction techniques for sanguinarine and chelerythrine in fruits of Macleaya cordata (Willd) R. Br. Sep. Purif. Technol., 2005, 42(3): 283-290
    [61] Gao M, Huang W, RoyChowdhury M, Liu C Z. Microwave-assisted extraction of scutellarin from Erigeron breviscapus Hand-Mazz and its determination by high-performance liquid chromatography. Anal. Chim. Acta, 2007, 591(2): 161-166
    [62] He J T, Shi Z H, Chang W B. Comparison of microwave-assisted and ultrasound-assisted extraction for determination of main water-soluble bioactive constituents in traditional Chinese medicinal preparation Tongmaichongji by HPLC-DAD. J. Liq. Chromatogr. Rel. Technol., 2004, 27(11): 1769-1784
    [63] Liu Z Y, Yan G Q, Bu F Q, Sun J, Hu X L, Zhang H Q, Liu Z Q. Analysis of chemical composition of Acanthopanax senticosus leaves applying microwave-assisted extraction. Chemia. Analityczna, 2005, 50(5): 851-861
    [64]张宏峰.中山大学硕士论文. 2005,广州: 18-21
    [65] Deng C H, Mao Y, Yao N, Zhang X M. Development of microwave-assisted extraction followed by headspace solid-phase microextraction and gas chromatography–mass spectrometry for quantification of camphor and borneol in Flos Chrysanthemi Indici. Anal. Chim. Acta, 2006, 575(1): 120-125
    [66] Deng C H, Ji J, Li N, Yu Y J, Duan G L, Zhang X M. Fast determination of curcumol, curdione and germacrone in three species of Curcuma rhizomes by microwave-assisted extraction followed by headspace solid-phase microextraction and gas chromatography–mass spectrometry. J. Chromatogr. A, 2006, 1117(2): 115-120
    [67] Deng C H, Yao N, Wang B, Zhang X M. Development of microwave-assisted extraction followed by headspace single-drop microextraction for fast determination of paeonol in traditional Chinese medicines. J. Chromatogr. A, 2006, 1103(1): 15-21
    [68] Ericson M, Colmsjo A. Dynamic microwave-assisted extraction. J. Chromatogr. A, 2000, 877(1-2): 141-151
    [69] Du F Y, Xiao X H, Li G K. Application of ionic liquids in the microwave- assisted extraction of trans-resveratrol from Rhizma Polygoni Cuspidati. J. Chromatogr. A, 2007, 1140(1-2): 56-62
    [70] Lu Y B, Ma W Y, Hu R L, Dai X J, Pan Y J. Ionic liquid-based microwave- assisted extraction of phenolic alkaloids from the medicinal plant Nelumbo nucifera Gaertn. J. Chromatogr. A, 2008, 1208(1-2): 42-46
    [71] Cueva M R, Sosa F Z, et al. Preconcentration of pharmaceuticals residues in sediment samples using microwave assisted micellar extraction coupled with solid phase extraction and their determination by HPLC–UV. J. Chromatogr. B, 2008, 863(1): 150–157
    [72] Sun C, Liu H Z. Application of non-ionic surfactant in the microwave-assisted extraction of alkaloids from Rhizoma Coptidis. Anal. Chim. Acta, 2008, 612(2): 160–164
    [73] Fernández P, Lago M, Lorenzo R A, Carro A M, Bermejo A M, Tabernero M J. Microwave-assisted extraction of drugs of abuse from human urine. J. Appl. Toxicol., 2007, 27(4): 373-379
    [74] Fernández P, Lago M, Lorenzo R A, Carro A M, Bermejo A M, Tabernero M J. Microwave-assisted extraction and HPLC-DAD determination of drugs of abuse in human plasma. J. Anal. Toxicol., 2007, 31(7): 388-393
    [75] Hoang T H, Sharma R, Susanto M, Di Maso M, Kwong E. Microwave-assisted extraction of active pharmaceutical ingredient from solid dosage forms. J. Chromatogr. A, 2007, 1156(1-2): 149-153
    [76] Wo?niakiewicza M, Wietecha-Pos?usznya R, Garbacika A, Ko?cielniak P. Microwave-assisted extraction of tricyclic antidepressants from human serum followed by high performance liquid chromatography determination. J. Chromatogr. A, 2008, 1190(1-2): 52–56
    [77] Benthin B, Danz H, Hamburger M. Pressurized liquid extraction of medicinal plants. J. Chromatogr. A, 1999, 837(1-2): 211-219
    [78] Ramos L, Kristenson E M, Brinkman U A Th. Current use of pressurised liquid extraction and subcritical water extraction in environmental analysis. J. Chromatogr. A, 2002, 975(1): 3-29
    [79] Gong Y X, Li S P, Wang Y T, Li P. Simultaneous determination of anthraquinones in Rhubarb by pressurized liquid extraction and capillary zone electrophoresis. Electrophoresis, 2005, 26(9): 1778-1782
    [80] Yang F Q, Li S P, Chen Y, Lao S C, Wang Y T, Dong T T X, Tsim K W K. Identification and quantitation of eleven sesquiterpenes in three species of Curcuma rhizomes by pressurized liquid extraction and gas chromatography– mass spectrometry. J. Pharm. Biomed. Anal., 2005, 39(3-4): 52-558
    [81] Yang F Q, Wang Y T, Li S P. Simultaneous determination of 11 characteristic components in three species of Curcuma rhizomes using pressurized liquid extraction and high-performance liquid chromatography. J. Chromatogr. A, 2006, 1134(1-2): 226-231
    [82] Wei J X, Du Y C. Modern science research and application of panax notoginseng, Yunnan science and technology press, Kunming, China, 1996
    [83] Wang J B, Li P, Li S P, Wang Y T, Dong T T X, Tsim K W K. Simultaneous determination of 11 saponins in Panax notoginseng using HPLC-ELSD and pressurized liquid extraction. J. Sep.Sci., 2006, 29(14): 2190-2196
    [84] Wan J B, Yang F Q, Li S P, Wang Y T, Cui X M. Chemical characteristics for different parts of Panax notoginseng using pressurized liquid extraction and HPLC-ELSD. J. Pharm. Biomed.Anal., 2006, 41(5): 1596-1603
    [85] Wan J B, Lai C M, Li S P. Simultaneous determination of nine saponins from Panax notoginseng using HPLC and pressurized liquid extraction. J. Pharm. Biomed. Anal., 2006, 41(1): 274-279
    [86] Fan H, Li S P, Xiang J J, Lai C M, Yang F Q, Gao J L, Wang Y T. Qualitative and quantitative determination of nucleosides, bases and their analogues in natural and cultured Cordyceps by pressurized liquid extraction and high performance liquid chromatography–electrospray ionization tandem mass spectrometry (HPLC–ESI–MS/MS). Anal.Chim. Acta, 2006, 567(2): 218-228
    [87] Li P, Li S P, Lao S C, Fu C M. Optimization of pressurized liquid extraction for Z-ligustilide, Z-butylidenephthalide and ferulic acid in Angelica sinensis. J. Pharm. Biomed. Anal., 2006, 40(5): 1073-1079
    [88] Zhao J, Li S P, Yang F Q, Li P, Wang Y T. Simultaneous determination of saponins and fatty acids in Ziziphus jujuba (Suanzaoren) by high performance liquid chromatography-evaporative light scattering detection and pressurized liquid extraction. J. Chromatogr. A, 2006, 1108(2): 188-194
    [89] Jiang Y, Li S P. Pressurized liquid extraction followed by high-performance liquid chromatography for determination of seven active compounds in Cortex Dictamni. J. Chromatogr. A, 2006, 1108(2): 268-272
    [90] Fernandez P V, Jimenez C M M. An approach to the static–dynamic subcritical water extraction of laurel essential oil: comparison with conventional techniques. Analyst, 2000, 125: 481-485
    [91] Teo C C, Tan S N, Yong J W H, Hew C S, Ong E S. Evaluation of the extraction efficiency of thermally labile bioactive compounds in Gastrodia elata Blume bypressurized hot water extraction and microwave-assisted extraction. J. Chromatogr. A, 2008, 1182(1): 34–40
    [92] Mukhopadhyay M, Panja P. A novel process for extraction of natural sweetener from licorice (Glycyrrhiza glabra) roots. Separ. Purif. Tech., 2008, In press
    [93] Deng C H, Li N, Zhang X M. Rapid determination of essential oil in Acorus tatarinowii Schott. by pressurized hot water extraction followed by solid-phase microextraction and gas chromatography–mass spectrometry. J. Chromatogr. A, 2004, 1059(1-2): 149-155
    [94] Deng C H, Ji J, Wang X C, Zhang X M. Development of pressurized hot water extraction followed by headspace solid-phase microextraction and gas chromatography-mass spectrometry for determination of ligustilides in Ligusticum chuanxiong and Angelica sinensis. J. Sep. Sci., 2005, 28(1): 1237-1243
    [95] Deng C H, Wang A Q, Shen S. Rapid analysis of essential oil from Fructus Amomi by pressurized hot water extraction followed by solid-phase microextraction and gas chromatography–mass spectrometry. J. Pharm. Bioanal. Anal., 2005, 38(2): 326-331
    [96] Deng C H, Yao N, Zhang X M. Determination of essential oil in a traditional Chinese medicine Fructus amomi by pressurized hot water extraction followed by liquid-phase microextraction and gas chromatography–mass spectrometry. Anal. Chim. Acta, 2005, 536(1-2): 237-244
    [97] Deng C H, Yang X H, Zhang X M. Rapid determination of panaxynol in a traditional Chinese medicine of Saposhnikovia divaricata by pressurized hot water extraction followed by liquid-phase microextraction and gas chromatography–mass spectrometry. Talanta, 2005, 68(1): 6-11
    [98] Chemat F, Smadja J, Lucchesi M E. European Patent Demand, 03001183.7, 2003.
    [99] Lucchesi M E, Chemat F, Smadja J. Solvent-free microwave extraction of essential oil from aromatic herbs: comparison with conventional hydro-distillation. J. Chromatogr. A, 2004, 1043(2): 323-327
    [100] Wang Z M, Ding L, Li T C, Zhou X, Wang L, Zhang H Q, Liu L, Li Y, Liu Z H, Wang H J, Zeng H, He H. Improved solvent-free microwave extraction of essential oil from dried Cuminum cyminum L. and Zanthoxylum bungeanum Maxim. J. Chromatogr. A, 2006, 1102(1-2): 11-17
    [101] Deng C H, Xu X Q, Yao N, Li N, Zhang X M. Rapid determination of essentialoil compounds in Artemisia Selengensis Turcz by gas chromatography-mass spectrometry with microwave distillation and simultaneous solid-phase microextraction. Anal. Chim. Acta, 2006, 556(2): 289-294
    [102] Li N, Deng C H, Li Y, Ye H, Zhang X M. Gas chromatography–mass spectrometry following microwave distillation and headspace solid-phase microextraction for fast analysis of essential oil in dry traditional Chinese medicine. J. Chromatogr. A, 2006, 1133(1-2): 29-34
    [103] Deng C H, Mao Y, Hu F L, Zhang X M. Development of gas chromatography– mass spectrometry following headspace single-drop microextraction and simultaneous derivatization for fast determination of short-chain aliphatic amines in water samples. J. Chromatogr. A, 2006, 1131(1-2): 45-50
    [104] Deng C H, Mao Y, Hu F L, Zhang X M. Development of gas chromatography– mass spectrometry following microwave distillation and simultaneous headspace single-drop microextraction for fast determination of volatile fraction in Chinese herb. J. Chromatogr. A, 2007, 1152(1-2): 193–198
    [105] Yu Y J, Huang T M, Yang B, Liu X, Duan G L. Development of gas chromatography–mass spectrometry with microwave distillation and simultaneous solid-phase microextraction for rapid determination of volatile constituents in Ginger. J. Pharmaceut. Biomed. Anal., 2007, 43(1): 24–31
    [106]傅若农.色谱分析概论.化学工程出版社, 2005,163-200.
    [107] Wang H L, Zou H F, Kong L, Gao S, Guo B C. Fractionation and analysis of Artemisia capillaris Thunb. by affinity chromatography with human serum albumin as stationary phase . J. Chromatogr. A, 2000, 870(1-2): 501-510
    [108] Wang Y, Kong L, Lei X Y, Hu L H, Zou H F. Comprehensive two-dimensional high-performance liquid chromatography system with immobilized liposome chromatography column and reversed-phase column for separation of complex traditional Chinese medicine Longdan Xiegan Decoction. J. Chromatogr. A, 2008, in press
    [109] Su X Y, Hu H L, Kong L, Lei X Y, Zou H F. Affinity chromatography with immobilized DNA stationary phase for biological fingerprinting analysis of traditional Chinese medicines. J. Chromatogr. A, 2007, 1154(1-2): 132-137
    [110]朱丽荔.北京大学博士学位论文,北京, 2003
    [111] Yuan J B, Liu Q, Zhu W F, Ding L, Tang F, Yao S Z. Simultaneous analysis of six aristolochic acids and five aristolactams in herbal plants and their preparations by high-performance liquid chromatography–diode arraydetection–fluorescence detection. J. Chromatogr. A, 2008, 1182(1): 85-92
    [112]汪正范,杨树民,吴侔天等.色谱联用技术.北京:化学工业出版社, 2001, 6-19
    [113]许玲玲,安睿,王新宏.液质联用技术在中药分析中的应用,中成药, 2006, 28(2): 239-246
    [114] Shui G, Leong L P. Analysis of polyphenolic antioxidants in star fruit using liquid chromatography and mass spectrometry. J. Chromatogr. A, 2004, 1022(122): 67-75
    [115] Parejo I, Jauregui O, Sánchez R F, Viladomat F, Bastida J, Codina C. Separation and characterization of phenolic compounds in Fennel (Foeniculum vulgare) using liquid chromatography-negative electrospray ionization tandem mass spectrometry. J. Agr. Food Chem., 2004, 52(12): 3679-3687
    [116] Cui L, Abliz Z, Xia M, Zhao L Y, Gao S, He WY, Xiang Y, Liang F, Yu S S. On-line identification of phenanthroindolizidine alkaloids in a crude extract from Tylophora atrofolliculata by liquid chromatography combined with tandem mass spectrometry. Rapid Commun. Mass Spectrom., 2004, 18(2): 184-190
    [117] Plaza A, Montoro P, Benavides A, Pizza C, Piacente S. Phenylpropanoid glycosides from Tynanthus panurensis: characterization and LC-MS quantitative analysis. J. Agr. Food Chem., 2005, 53(8): 2853-2858
    [118] Montoro P, Piacente S, O’leszek W, Pizza C. Liquid chromatography/tandem mass spectrometry of unusual phenols from Yucca schidigera bark: comparison with other analytical techniques. J. Mass Spectrom., 2004, 39(10): 1131-1138
    [119] Ye M, Guo D A. Analysis of bufadienolides in the chinese drug ChanSu by high performance liquid chromatography-diode array detection-atmospheric pressure chemical ionization-tandem mass spectrometry. Rapid Commun. Mass Spectrom., 2005, 19(13): 1881-1892
    [120] Yuan J B, Liu Q, Wei G B, Ding L, Tang F, Yao S Z, Characterization and determination of six aristolochic acids and three aristololactams in medicinal plants and their preparations by high-performance liquid chromatography–photodiode array detection-mass spectrometry. Rapid Commun. Mass Spectrom., 2007, 21(14): 2332-2342
    [121] Yang M, Wang X M, Guan S H, Xia J M, Sun J H, Guo H, Guo D A. Analysis of triterpenoids in Ganoderma lucidum using liquid chromatography coupled with electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom., 2007,18(5): 927-939
    [122] Han J, Ye M, Guo H, Yang M, Wang B R, Guo D A. Analysis of multiple constituents in a Chinese herbal preparation Shuang-Huang-Lian oral liquid by HPLC-DAD-ESI-MSn. J. Pharmaceut. Biomed. Anal., 2008, 44(2): 430-438
    [123] Li C M, Xue X Y, Zhou D Y, Zhang F F, Xu Q, Ren L L, Liang X M. Analysis of iridoid glucosides in Hedyotis diffusa by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry. J. Pharmaceut. Biomed. Anal., 2008, 48(1): 205-211
    [124] Kang J, Zhou L, Sun J H, Han J, Guo D A. Chromatographic fingerprint analysis and characterization of furocoumarins in the roots of Angelica dahurica by HPLC/DAD/ESI-MSn technique. J. Pharmaceut. Biomed. Anal., 2008, 47(4-5): 778-785
    [125] Ji H Y, Lee H W, Kim H K, Kim H H, Chang S G, Sohn D H, Kim J, Lee H S. Simultaneous determination of ginsenoside Rb1 and Rg1 in human plasma by liquid chromatography-mass spectrometry. J. Pharmaceut. Biomed. Anal, 2004, 35(1): 207-212
    [126]贾晓斌,陈彦,蔡宝昌. HPLC-MS/TOF法测定家兔血浆中黄芪甲苷的浓度.中成药, 2005, 27(3): 323-325
    [127]车庆明,黄新立,李艳梅.黄芩苷的药物代谢产物研究.中国中药杂志, 2001, 26(11): 768-769
    [128] Gu Y L, Ma J Y, Liu Y L, Chen B, Yao S Z. Determination of andrographolide in human plasma by high-performance liquid chromatography/mass spectrometry. J. Chromatogr. B, 2007, 854(1-2): 328-331
    [129] Guo X R, Chen X H, Li L, Shen Z D, Wang X L, Zheng P , Duan F X, Ma Y F, Bi K S. LC–MS determination and pharmacokinetic study of six phenolic components in rat plasma after taking traditional Chinese medicinal preparation: Guanxinning lyophilized powder for injection. J. Chromatogr. B, 2008, 873(1): 51-58
    [130] Dai J N, Chen X H, Cheng W M, Liu X, Fan X, Shen Z D, Bi K S. A sensitive liquid chromatography-mass spectrometry method for simultaneous determination of two active chromones from Saposhnikovia root in rat plasma and urine. J. Chromatogr. B, 2008, 868(1-2): 13-19
    [131] Ran X R, Liang Q L, Luo G A, Liu Q F, Pan Y S, Wang B, Pang C H. Simultaneous determination of geniposide, baicalin, cholic acid and hyodeoxycholic acid in rat serum for the pharmacokinetic investigations byhigh performance liquid chromatography–tandem mass spectrometry. J. Chromatogr. B, 2006, 842(1): 22-27
    [132] Zhang Z C, Xu M, Sun S F, Qiao X, Wang B R, Han J, Guo D A. Metabolic analysis of four phenolic acids in rat by liquid chromatography–tandem mass spectrometry. J. Chromatogr. B, 2008, 871(1): 7-14
    [133] Cormack P A G, Elorza A Z. Molecularly imprinted polymers: synthesis and characterisation. J. Chromatogr. B, 2004, 804(1): 173-182
    [134] Haupt K, Dzgoev A, Mosbach K. Assay system for the herbicide 2, 4-dichlorphenoxyacetic acid using a molecularly imprinted polymer as an artificial recognition element. Anal. Chem., 1998, 70(3): 628-631
    [135] Sellergren B. Direct drug determination by selective sample enrichment on an Imprinted polymer. Anal Chem., 1994, 66(9): 1578-1582
    [136] Vlatakis G, Andersson L, Muller R, Mosbach K. Drug assay using antibody mimics made by molecular imprinted polymer. Nature, 1993, 361: 645-647
    [137] Sellergren B. Polymer- and template-related factors influencing the effciency in molecularly imprinted solid-phase extractions. Trends Anal. Chem., 1999, 18(3): 164-175
    [138] Mullett W M, Martin P, Pawliszyn J. In-tube molecularly imprinted polymer solid-phase microextraction for the selective determination of propranolol. Anal. Chem., 2001, 73(11): 2383-2389
    [139] Berggren C, Bayoudh S, Sherrington D, Ensing K. Use of molecularly imprinted solid-phase extraction for the selective clean-up of clenbuterol from calf urine. J. Chromatogr. A, 2000, 889(1-2): 105-110
    [140] Matsui J, Fujiwara K, Ugata S, Takeuchi T. Solid-phase extraction with a dibutylmelamine-imprinted polymer as triazine herbicide-selective sorbent. J. Chromatogr. A, 2000, 889(1-2): 25-31
    [141] Mullett W M, Edward P C. Molecularly imprinted solid phase extraction micro-column with differential pulsed elution for theophylline determination. Microchem. J., 1999, 61(2): 143-145
    [142] Jodlbauer J, Maier N M, Lindner W. Towards ochratoxin A selective molecularly imprinted polymers for solid-phase extraction. J. Chromatogr. A, 2002, 945(1-2): 45-63
    [143] Mena M L, Martínez-Ruiz P, Reviejo A J, Pingarrón J M. Molecularly imprinted polymers for on-line preconcentration by solid phase extraction of pirimicarb in water samples. Anal. Chim. Acta, 2002, 451(2): 297-304
    [144] Castro B, Whitcombe M J, Vulfson E N. Molecular imprinting for the selective adsorption of organosulphur compounds present in fuels. Anal. Chim. Acta, 2001, 435(1): 83-90
    [145] Xie J C, Zhu L L, Luo H P. Direct extraction of specific pharmacophoric flavonoids from gingko leaves using a molecularly imprinted polymer for quercetin. J. Chromatogr. A, 2001, 934(1-2): 1-11
    [146] Theodoridis G, Manesiotis P. Selective solid-phase extraction sorbent for caffeine made by molecular imprinting. J. Chromatogr. A, 2002, 948(1-2): 163-169
    [147] Caro E M R M, Cormack P A G, Sherrington D C. Molecularly imprinted solid- phase extraction of naphthalene sulfonates from water. J. Chromatogr. A, 2004, 1047(2): 175-180
    [148] Molinelli A, Weiss R, Mizaikoff, B. Advanced solid phase extraction using molecularly Imprinted polymers for the determination of quercetin in red wine. J. Agric. Food Chem., 2002, 50(7): 1804-1808
    [149] Wang H, Provan G J. Tea flavonoids: their functions, utilisation and analysis. Trends Food Sci. & Technol., 2000, 11(4-5): 152-160
    [150] Jankun J, Selman S H, Swiercz R. Why drinking green tea could prevent cancer. Nature, 1997, 387(6633): 561-567
    [151] Blot W J, Chow W H, McLaughlin J K. Tea and cancer: a review of the epidemiological evidence. Eur. J. Cancer Prev., 1996, 5(6): 425-438
    [152] Toschi T G, Bordoni A, Hrelia S, Bendini A, Lercker G. The protective role of different green tea extracts after oxidative damage is related to their catechin composition. J. Agric. Food Chem., 2000, 48(9): 3973-3978.
    [153] Miura Y, Chiba T, Tomita I, Koizumi H, Miura S, Umegaki K. Tea catechins prevent the development of atherosclerosis in apoprotein edeficient mice. J. Nutr., 2001, 131: 27-32
    [154] Wisseman S A, Balentine D A. Antioxidants in tea. Criti. Rev. Sci. Nutr., 1997, 37: 178-182
    [155] Yen G C, Chen H Y. Relationship between antimutagenic activity and major components of various teas. Mutagenesis, 1996, 11(1): 37-41
    [156] Azam S, Hadi N, Khan N U, Hadi S M. Prooxidant property of green tea polyphenols epicatechin and epigallocatechin-3-gallate: implications for anticancer properties. Toxicology in Vitro, 2004, 18(5): 555-561
    [157] Dalluge J J, Nelson B C, Joseph J D, Bryant C N. Determination of teacatechins. J. Chromatogr. A , 2000, 881(1-2): 411-424
    [158] Merken H M, Beecher G R. Measurement of food flavonoids by high-performance liquid chromatography: a review. J. Agric. Food Chem., 2000, 48(3): 577-599
    [159] Bonoli M, Colabufalo P, Pelillo M. Fast Determination of Catechins and Xanthines in Tea Beverages by Micellar Electrokinetic Chromatography. J. Agric. Food Chem., 2003, 51(5), 1141-1147
    [160] Wang H, Provan G J, Helliwell K. HPLC determination of catechins in tea leaves and tea extracts using relative response factors. Food Chem., 2003, 81(2): 307-312
    [161] Poon G K. Analysis of catechins in tea extracts by liquid chromatography–electrospray ionization mass spectrometry. J. Chromatogr. A, 1998, 794(1-2): 63-74
    [162] Lee B L, Ong C N. Comparative analysis of tea catechins and theaflavins by highperformance liquid chromatography and capillary electrophoresis. J. Chromatogr. A, 2000, 881(1-2): 439-447
    [163] Arts I C W, Hollman P C H. Catechin Contents of foods commonly consumed in the Netherlands. 2. tea, wine, fruit Juices, and chocolate Milk. J. Agric. Food Chem., 2000, 48(5): 1752-1757
    [164] Dietmar B, Sven A, Matthias H. A simple isolation method for the major catechins in green tea using high-speed countercurrent chromatography. J. Nat. Prod., 2001, 64(3): 353-355
    [165] Umpleby R J, Bode M, Shimizu K D. Measurement of the continuous distribution of binding sites in molecularly imprinted polymers. Analyst, 2000, 125: 1361-1265.
    [166] Yuan J B, Nie L H, Zeng D Y, Luo X B, Yao S Z. Simultaneous determination of nine aristolochic acid analogues in medicinal plants and preparations by high-performance liquid chromatography. Talanta, 2007, 73(4): 644-650
    [167] Han Q B, Yip Y K, Yang N Y, Wong L, Xu H X. Rapid analysis of pseudolaric acids in Cortex Pseudolaricis and related medicinal products by high performance liquid chromatography. Talanta, 73(4): 757-763
    [168]谢学建,张俊慧,马爱华.中药栀子研究进展.时珍国医国药,2000, 11(10): 943-945
    [169]王钢力,陈德昌,赵淑杰.栀子属植物化学成分研究进展.中国中药杂志, 1996, 21(2): 67-72
    [170]付红蕾,梁华正,廖夫生.栀子中京尼平甙的研究现状和应用前景.时珍国医国药, 2005, 16(1): 54-56
    [171]李葆华.栀子的研究概况.时珍国医国药, 2004, 15(6): 370-371
    [172] Tsaia T R, Tsengb T Y, Chenc C F, Tsai T H. Identification and determination of geniposide contained in Gardenia jasminoides and in two preparations of mixed traditional Chinese medicines. J. Chromatogr. A, 2002, 961(1): 83-88
    [173] Wang S C, Tseng T Y, Huang C M, Tsai T H. Gardenia herbal active constituents: applicable separation procedures. J. Chromatogr. B, 2004, 812(1-2): 193-202
    [174] Wu H K, Chuang W C, Sheu S J. Separation of nine iridoids by capillary electrophoresis and high-performance liquid chromatography. J. Chromatogr. A, 1998, 803(1-2): 179-187
    [175]徐娟,涂炳坤,邓先珍,宋政清,徐春永.栀子成分开发利用研究进展.湖北林业科技, 2005, 36: 42-45
    [176]朱福龙,李杰.穿心莲的研究及临床应用概况.医药学刊, 2007, 10(4): 163-164
    [177] Bensky D, Gamble A, Kaptchuk T. Chinese Herbal Medicine Materia Medica, Revised Edition, Eastland Press, Seattle, 1993, 95.
    [178] Singha P K, Roy S, Dey S. Antimicrobial activity of Andrographis paniculata Fitoterapia, 2003, 74(7-8): 692-694
    [179] Cheung H Y, Cheung C S, Kong C K. Determination of bioactive diterpenoids from Andrographis paniculata by micellar electrokinetic chromatography. J. Chromatogr. A, 2001, 930(1-2): 171-176
    [180] Srivastava A, Misra H, Verma R K. Chemical fingerprinting of Andrographis paniculata using HPLC, HPTLC and densitometry. Phytochem. Anal., 2004, 15(5): 280-285
    [181] Jain D C, Gupta M M, Saxena S, Kumar S. LC analysis of hepatoprotective diterpenoids from Andrographis paniculata. J. Pharm. Biomed. Anal., 2000, 22(4): 705-709
    [182] Du Q, Jerz G, Winterhalter P. Separation of andrographolide and neoandrographolide from the leaves of Andrographis paniculata using high-speed counter-current chromatography. J. Chromatogr. A, 2003, 984(1): 147-151
    [183] Zhao Y F, Luo X P, Zhai Z D, Chen L. Simultaneous determination of andrographolide and dehydroandrographolide in Andrographis paniculata andChinese medicinal preparations by microemulsion electrokinetic chromatography. J. Pharm. Biomed. Anal., 2006, 40(1): 157-161
    [184] Liu J J, Chen B, Yao S Z. Simultaneous analysis and identification of main bioactive constituents in extract of Zizyphus jujuba var. sapinosa (Zizyphi spinosi semen) by high-performance liquid chromatography–photodiode array detection–electrospray mass spectrometry. Talanta, 2007, 71(2): 668-675
    [185] van Acker F A, Schouten O, Haenen G R, Bast A. Flavonoids can replaceα-tocopherol as an antioxidant. FEBS Lett., 2000, 473(2): 145-148
    [186] Park J H, Keeley L L. The effect of biogenic amines and their analogs on carbohydrate metabolism in the fat body of the cockroach blaberus discoidalis. Endocrinology, 1998, 110(1): 88-95
    [187] Moro C O, Basile G. Obesity and medicinal plants. Fitoterapia, 2000, 71(1): S73-S82
    [188] Kawaii S, Tomono Y, Katase E, Ogawaa K, Yano M. HL-60 differentiating activity and flavonoid content of the readily extractable fraction prepared from Citrus Juices. J. Agric. Food Chem., 1999, 47(1): 128-135
    [189] Tang W, Eisenbrand G F. Chinese drugs of plant origin, Springer-Verlag, Berlin, 1992, 337-349
    [190] So F V, Guthrie N, Chambers A F, Moussa M, Carroll K K. Inhibition of human breast cancer cell proliferation and delay of mammary tumorigenesis by flavonoids and citrus juices. Nutr. Cancer, 1996, 26(2): 167-181
    [191] Bouskela E, Cyrino F Z, Lerond L. Effects of oral administration of different doses of purified micronized flavonoid fraction on microvascular reactivity after ischaemia/reperfusion in the hamster cheek pouch. Br. J. Pharmacol., 1997, 122(8):1611-1616
    [192] Borradaile N M, Carroll K K, Kurowska E M. Regulation of HepG2 cell apolipoprotein B metabolism by the citrus flavanones hesperetin and naringenin. Lipids, 1999, 34(6): 591-598
    [193] Morant J. Arzneimittel Kompendium der Schweiz, Documed AG, Basel, 1995, 1815-1816
    [194] Kanaze F I, Gabrieli C. Simultaneous reversed-phase high-performance liquid chromatographic method for the determination of diosmin, hesperidin and naringin in different citrus fruit juices and pharmaceutical formulations. J. Pharm. Biomed. Anal., 2003, 33(2): 243-249
    [195] Kanaze F I, Kokkalou E, Georgarakis M, Niopas I. A validated solid-phaseextraction HPLC method for the simultaneous determination of the citrus flavanone aglycones hesperetin and naringenin in urine. J. Pharm. Biomed.Anal., 2004, 36(1): 175-181
    [196] Anagnostopoulou M A, Kefalas P, Kokkalou E, Assimopoulou A N. Analysis of antioxidant compounds in sweet orange peel by HPLC-diode array detection-electrospray ionization mass spectrometry. Biomed. Chromatogr., 2005, 19(2): 138-148
    [197] Jin D, Hakamata H, Takahashi K, Kotani A, Kusu F. Separation of flavonoids by semi-micro high-performance liquid chromatography with electrochemical detection. Bull. Chem. Soc. Jpn., 2004, 77(6): 1147-1152
    [198] Xia J, Kotani A, Hakamat H, Kusu F. Determination of hesperidin in Pericarpium Citri Reticulatae by semi-micro HPLC with electrochemical detection. J. Pharm. Biomed.Anal., 2006, 41(4): 1401-1405
    [199] Peng Y Y, Liu F H. Quantitative and qualitative analysis of flavonoid markers in Frucus aurantii of different geographical origin by capillary electrophoresis with electrochemical detection. J. Chromatogr. B, 2006, 830(2): 224-330
    [200] Takei H, Yoshizaki F. Determination of flavanone glycosides in various peels of Citrus fruits, immature Citrus fruits and Chinese medicinal prescriptions containing these crude drugs by using capillary electrophoresis. Bunseki Kagaku, 2000, 49(8): 639-643
    [201] He X G, Lian L Z, Lin L Z, Bernart M W. High-performance liquid chromatography–electrospray mass spectrometry in phytochemical analysis of sour orange (Citrus aurantium L.). J. Chromatogr. A, 1997, 791(1–2): 127-134
    [202] Pellati F, Benvenuti S, Melegari M. Determination of adrenergic agonists from extracts and herbal products of Citrus aurantium L. var. amara by LC. J. Pharm. Biomed. Anal., 2002, 29(6): 1113-1119
    [203] Richard A N, Martha L G. Determination of ephedrine alkaloids and synephrine in dietary supplements by column-switching cation exchange high-performance liquid chromatography with scanning-wavelength ultraviolet and fluorescence detection. J. Agric. Food Chem., 2003, 51(19): 5630-5638
    [204] Ganzera M, Lanser C, Stuppner H. Simultaneous determination of Ephedra sinica and Citrus aurantium var. amara alkaloids by ion-pair chromatography. Talanta, 2005, 66(4): 889-894
    [205] Tang F, Luo X B, Ding L, Guo M L, Nie L H, Yao S Z. Determination of octopamine, synephrine and tyramine in Citrus herbs by ionic liquid improved‘green’chromatography. J. Chromatogr. A, 2006, 1125(2): 182-188
    [206] Li H, Chen B, Zhang Z H, Yao S Z. Focused microwave-assisted solvent extraction and HPLC determination of effective constituents in Eucommia ulmodies Oliv. (E. ulmodies). Talanta, 2004, 63(3): 659-665
    [207] Fenn J B, Mann M, Meng C K, Wong S F. Electrospray ionization-principles and practice. Mass Spectrom Rev., 1990, 9(1): 37-70
    [208] Smith R D, Loo J A, Edmonds C G, Barinaga H R, Udseth H R. New developments in biochemical mass spectrometry: electrospray ionization. Anal. Chem., 1990, 62(9): 882-889
    [209] Luo X B, Chen B, Ding L, Tang F, Yao S Z. HPLC-ESI-MS analysis of Vitamin B12 in food products and in multivitamins-multimineral tablets. Anal. Chim. Acta., 2006, 562(2): 185-189
    [210] Zhang H Z. Modern study of traditional Chinese medicine, Beijing: Xueyuan Press, 1997, 62-134
    [211]张树臣.中国人参.上海:上海科技教育出版社, 1992, 239-241.
    [212]赵瑜,陈波,罗旭彪,张斐,姚守拙.天然产物研究与开发, 2004 (16) 235-237.
    [213] Tatsuma T, Komori K, Yeoh H H, Oyama N. Disposable test plates with tyrosinase andβ-glucosidases for cyanide and cyanogenic glycosides. Anal. Chim. Acta., 2000, 408(1-2): 233-240
    [214] Vanhaelen-Fastre R J, Faes M L, Vanhaelen M H. High-performance thin-layer chromatographic determination of six major ginsenosides in Panax ginseng. J. Chromatogr. A, 2000, 868(2): 269-276
    [215] Liu C, Han J Y, Duan Y Q, Huang X, Wang H. Purification and quantification of ginsenoside Rb3 and Rc from crude extracts of caudexes and leaves of Panax notoginseng. Separ. Purif. Tech., 2007, 54(2): 198-203
    [216] Kwon H J, Jeong J S. A reversed-phase high-performance liquid chromatography method with pulsed amperometric detection for the determination of glycosides. J. Chromatogr. A, 2008, 1185(2):251-257
    [217] Shangguan D H, Han H W, Zhao R, Zhao Y X. New method for high-performance liquid chromatographic separation and fluorescence detection of ginsenosides. J. Chromatogr. A, 2001, 910(2): 367-372
    [218] Frazier R A, Ames J M, Nursten H E. The development and application of capillary electrophoresis methods for food analysis. Electrophoresis, 1999, 20(15): 3156-3180
    [219] Mazur W, Fotsis T, Wahala K, Ojala S, Salakka A, Adlercreutz H. Isotope dilution gas chromatographic–mass spectrometric method for the determination of isoflavonoids, coumestrol and lignans in food samples. Anal. Biochem., 1996, 233(2): 169-180
    [220] Kim S N, Ha Y W, Shin H, Son S H. Simultaneous quantification of 14 ginsenosides in Panax ginseng C.A. Meyer (Korean red ginseng) by HPLC-ELSD and its application to quality control. J. Pharm. Biomed. Anal., 2007, 45(1):164-170
    [221] Wang Y T, You J Y, Yu Y, Qu C L, et al. Analysis of ginsenosides in Panax ginseng in high pressure microwave-assisted extraction. Food Chem., 2008, 110(1): 161-167
    [222] Jian S G, Xie H T, Li H, Pan G Y. Simultaneous rapid quantification of ginsenoside Rg1 and its secondary glycoside Rh1 and aglycone protopanaxatriol in rat plasma by liquid chromatography–mass spectrometry after solid-phase extraction. J. Pharm. Biomed. Anal., 2005, 38(1): 126-132
    [223] Wang J, Sporns P. MALDI-TOF/MS analysis of food flavonol glycosides. J. Agric. Food Chem., 2000, 48(5): 1657-1662
    [224] Wang X, Sakuma T, Asafu-Adjaye E, Shiu G K. Determination of ginsenosides in plant extracts from Panax ginseng and Panax quinquefolius L. by LC/MS/MS. Anal. Chem., 1999; 71(8): 1579-1584
    [225] Chan T W D, But P P H, Cheng S W, Lau F W, Xu H X. Differentiation and authentication of Panax ginseng, Panax quinquefolius, and Ginseng products by using HPLC/MS. Anal. Chem., 2000, 72(6): 1281-1287
    [226] Miao X S, Metcalfe C D, Hao C Y, March R E. Electrospray ionization mass spectrometry of ginsenosides. J. Mass Spectrom., 2002, 37(5): 495-506
    [227] Chen C T, Chen Y C. Fe3O4/TiO2 core/shell nanoparticles as affinity probes for the analysis of phosphopeptides using TiO2 surface-assisted laser desorption/ ionization mass spectrometry. Anal. Chem., 2005, 77(18): 5912-5919
    [228] Song Y R, Zhao S L, Tchounwou P, Liu Y M. A nanoparticle-based solid-phase extraction method for liquid chromatography–electrospray ionization-tandem mass spectrometric analysis. J. Chromatogr. A., 2007, 1166(1-2): 79-84
    [229] Kirschvink J L. Microwave absorption by magnetite: A possible mechanism for coupling non-thermal levels of radiation to biological systems. Bioelectromagnetics, 1996, 17(3): 187-194
    [230] Kim D K, Amin M S, Elborai S, Lee S H, Koseoglu Y, Zahn M, Muhammed MJ. Energy absorption of superparamagnetic iron oxide nanoparticles by microwave irradiation. J. Appl. Physics., 2005, 97: 10J510-10J513
    [231] Chen W Y, Chen Y C. Acceleration of microwave-assisted enzymatic digestion reactions by magnetite beads. Anal. Chem., 2007, 79(6): 2394-2401
    [232] Chen W Y, Chen Y C. MALDI/MS analysis of oligonucleotides: desalting by functional magnetite beads using microwave-assisted extraction. Anal. Chem., 2007, 79(21): 8061-8066
    [233] Li H B, Jiang Y, Chen F. Separation methods used for Scutellaria baicalensis active Components. J. Chromatogr. B., 2004, 812(1-2): 277-290
    [234] Shen Y J. Pharmacology of traditional Chinese medicine People’s. Health Press, Beijing, 2000, 200
    [235] Shieh D E, Liu L T, Lin C C. Antioxidant and free radical scavenging effects of baicalein, baicalin and wogonin. Anticancer Res., 2000, 20(5A): 2861-2865
    [236] Ma S C, Du J, But P P H, Deng X L, Zhang Y W, Ooi V E C, Xu H X, Lee S H S, Lee S F. Antiviral Chinese medicinal herbs against respiratory syncytial virus. J. Ethnopharmacol., 2002, 79(2): 205-211
    [237] Zgorka G, Hajnos A. The application of solid-phase extraction and reversed phase high-performance liquid chromatography for simultaneous isolation and determination of plant flavonoids and phenolic acids. Chromatographia, 2003, 57: S77-S80
    [238] Li H B, Chen F. Isolation and purification of baicalein, wogonin and oroxylin A from the medicinal plant Scutellaria baicalensis by high-speed counter-current chromatography. J. Chromatogr. A, 2005, 1074 (1-2): 107-110
    [239] Yu K, Gong Y F, Lin Z Y, Cheng Y Y. Quantitative analysis and chromatographic fingerprinting for the quality evaluation of Scutellaria baicalensis Georgi using capillary electrophoresis. J. Pharm. Biomed. Anal., 2007, 43(2): 540-548
    [240] Zhang H G, Tian K, Tang J H, Qi S D, Chen X G, Hu Z. Analysis of baicalein, baicalin and wogonin in Scutellariae radix and its preparation by microemulsion electrokinetic chromatography with 1-butyl-3-methylimizolium tetrafluoborate ionic liquid as additive. J. Chromatogr. A, 2006, 1129 (2): 304-307
    [241] Wu W, Yan C, Li L, Liu Z, Liu S. Studies on the flavones using liquid chromatography–electrospray ionization tandem mass spectrometry. J. Chromatogr. A, 2004, 1047(2): 213-220
    [242] Han J, Ye M, Xu M, Sun J H, Wang B R, Guo D A. Characterization of flavonoids in the traditional Chinese herbal medicine-Huangqin by liquid chromatography coupled with electrospray ionization mass spectrometry. J. Chromatogr. B, 2007, 848(2): 355-362
    [243] Ong E S, Len S M. Pressurized hot water extraction of berberine, baicalein and glycyrrhizin in medicinal plants. Anal. Chim. Acta, 2003, 482(1): 81-89
    [244] Hu X L, You J Y, Bao C L, Zhang H R, Meng X Z, Xiao T T, Zhang H Q, Yu A M. Determination of total flavonoids in Scutellaria barbata D. Don by dynamic ultrasonic extraction coupled with on-line spectrophotometry. Anal. Chim. Acta, 2008, 610(2): 217-223
    [245] You J Y, Zhang H Z, Ding L, Xiao T T, Zhang H Q, Song D Q. Dynamic Microwave-assisted Extraction of Flavonoids from Radix Scutellariae. Chem. Res. Chinese Univ., 2007, 23(2): 148-153
    [246] Careri M, Corradini C, Elviri L, Mangia A. Selective pressurized liquid extraction for multi-residue analysis of organochlorine pesticides in soil. J. Chromatogr. A, 2007, 1152(1-2): 247-253
    [247] Wall M, Wani M, Cook C, Palmer K, McPhail A, Sim G A. Plan antitumour agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata. J. Am. Chem. Soc., 1966, 88(16): 3888–3889.
    [248] Creemers G J, Lung B, Verweij J. Topoisomerase I inhibitors: topotecan and irenotecan. Cancer Treat. Rev., 1994, 20(11): 73-96
    [249] Sadaie M R, Mayner R, Doniger J. A novel approach to develop anti-HIV drugs: adapting non-nucleoside anticancer chemotherapeutics. Antiviral Res., 2004, 61(1): 1-18
    [250] Rivory L P, Bowles M R, Robert J, Pond S M. Conversion of irinotecan (CPT-11) to its active metabolite, 7-ethyl-10-hydroxycamptothecin (SN-38), by human liver carboxylesterase. Biochem. Pharmacol., 1996, 52: 1103-1111
    [251] Potmesil M. Camptothecins: from bench research to hospital wards. Cancer Res., 1994, 54(6): 1431-1439
    [252] Rivory L P, Chatelut E, Canal P, Mathieu-Bou?A, Robert J. Kinetics of the in vivo interconversion of the carboxylate and lactone forms of irinotecan (CPT-11) and of its metabolite SN-38 in patients. Cancer Res., 1994, 54: 6330-6333.
    [253] Escoriaza J, Aldaz A, Castellanos C, Calvo E, Giraldez J. Simple and rapiddetermination of irinotecan and its metabolite SN-38 in plasma by high- performance liquid-chromatography: Application to clinical pharmacokinetic studies. J. Chromatogr. B, 2000, 740(2): 159–168
    [254] Floris A, De J, Ron H J, Mathijssen P B, Walter J, Loos J V. Determination of irinotecan (CPT-11) and SN-38 in human whole blood and red blood cells by liquid chromatography with fluorescence detection. J. Chromatogr. B, 2003, 795(2): 383-388
    [255] Ragot S, Marquet P, Rousseau A, Lacassie E, Gaulier J M, Dupuy J L. Sensitive determination of irinotecan (CPT-11) and its active metabolite SN-38 in human serum using liquid chromatography–electrospray mass spectrometry. J. Chromatogr. B, 1999, 736(1-2): 175-184
    [256] Bardin S, Guo W, Johnson J L, Khan S, Ahmad A, Duggan J X, Ayoub J, Ahmad I. Liquid chromatographic–tandem mass spectrometric assay for the simultaneous quantification of Camptosar? and its metabolite SN-38 in mouse plasma and tissues. J .Chromatogr. A, 2005, 1073(1-2): 249-255
    [257] King R, Bonfiglio R, et al. Mechanistic investigation of ionization suppression in electrospray ionization. J. Am. Soc. Mass. Spectrom., 2000, 11(11): 942-950
    [258] Moore J D, Valette G, Darque A, Zhou X J, Sommadossi J P. Simultaneous quantitation of the 5′-triphosphate metabolites of zidovudine, lamivudine, and stavudine in peripheral mononuclear blood cells of HIV infected patients by high-performance liquid chromatography tandem mass spectrometry. J. Am.Soc. Mass Spectrom., 2000, 11(12): 1134-1143
    [259] Lee A R, Wu W L, Chang W L, Lin H C, King M L. Isolation and Bioactivity of New Tanshinones. J. Nat. Prod., 1987, 50(2): 157-160
    [260] Breyer P U, Nill K. Stereoselective reversible ketone formation from 10-hydroxylated nortriptyline metabolites in human liver. Xenobiotica, 1995, 25(12): 1311-1325
    [261] Yuan S L, Wang X J, Wei Y Q, Zheng A. Anticancer effect of tanshinone and its mechanisms. Medic and health, 2003, 22(12): 1363-1366
    [262] Wang X, Wei Y, Yuan S, Liu G, Lu Y, Zhang J, Wang W. Potential anticancer activity of tanshinoneⅡA against human breast cancer. Int. J. Cancer., 2005, 116(5): 799-807
    [263] Cao E H, Liu X Q, Wang J J, Xu N F. Effect of natural antioxidant tanshinone II-A on DNA damage by lipid peroxidation in liver cells. Free Radic. Biol. Med., 1996, 20(6): 801-806
    [264] Zhao B L, Jiang W, Zhao Y, Hou J W, Xin W J. Scavenging effects of salvia miltiorrhiza on free radicals and its protection for myocardial mitochondrial membranes from ischemia-reperfusion injury. Biochem. Mol. Biol. Int., 1996, 38(6): 1171-1182
    [265] Yoon Y, Kim Y O, Jeon W K, Park H J, Sung H J. Immuno-stimulating effect of the endo-polysaccharide produced by submerged culture of Inonotus obliquus. J. Ethnopharmacol, 1999, 68(19): 121-127
    [266] Gao Y G, Song Y M, Yang Y Y, Tang J X, Liu W F. Pharmacology of tanshinone. Acta Pharm. Sin., 1979, 14(2): 75-81
    [267] Cao E H, Liu X Q, Li J F. Effect of natural antioxidant tanshinone II-A on interaction of lipid peroxidation products and in liver cells. Acta Biophys. Sin., 1996, 12(2): 339-343
    [268] Gao Y G, Wang L Z, Tang K S. Anti-inflammatory actions of tanshinone. J. Integr. Trad. West. Med., 1983, 3(5): 300-306
    [269] Shi Z, He J, Yao T, Chang W, Zhao M. Simultaneous determination of cryptotanshinone, tanshinone I and tanshinone IIA in traditional Chinese medicinal preparations containing Radix salvia miltiorrhiza by HPLC. J. Pharm. Biomed. Anal., 2005, 37(3): 481-486
    [270] Chen A, Li C, Gao W, Hu Z, Chen X. Application of non-aqueous micellar electrokinetic chromatography to the analysis of active components in radix Salviae miltiorrhizae and its medicinal preparations. J. Pharm. Biomed. Anal., 2005, 37(4): 811-816
    [271] Che A J, Zhang J Y, Li C H, Chen X F, Hu Z D, Chen X G. Separation and determination of active components in Radix Salviae miltiorrhizae and its medicinal preparations by nonaqueous capillary electrophoresis. J. Sep. Sci., 2004, 27(7-8):569-575
    [272] Li J, Wang G J, Li P, Hao H P. Simultaneous determination of tanshinone IIA and cryptotanshinone in rat plasma by liquid chromatography-electrospray ionisation-mass spectrometry. J. Chromatogr. B, 2005, 826(1-2): 26-30
    [273] Hao H P, Wang G J, Li P, Li J, Ding Z Q. Simultaneous quantification of cryptotanshinone and its active metabolite tanshinone IIA in plasma by liquid chromatography/tandem mass spectrometry (LC–MS/MS). J. Pharm. Biomed. Anal., 2006, 40(2): 382-388
    [274] Li P, Wang G J, Li J, Hao H P, Zheng C N. Identification of tanshinone IIA metabolites in rat liver microsomes by liquid chromatography–tandem massspectrometry. J. Chromatogr. A, 2006, 1104(1-2): 366-369
    [275] Kord A S, Khaledi M G. Controlling solvent strength and selectivity in micellar liquid chromatography: role of organic modifiers and micelles. Anal. Chem., 1992, 64(17): 1894-1900
    [276] Thomas D P, Foley J P. Efficiency enhancements in micellar liquid chromatography through selection of stationary phase and alcohol modifier. J. Chromatogr.A, 2007, 1149(2): 282-293

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700