用户名: 密码: 验证码:
高效液相色谱在线电生试剂化学发光检测技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高效液相色谱(High Performance Liquid Chromatography,简称HPLC)是一种具有高效、快速及应用广泛的现代分离技术。检测器作为HPLC系统的重要组成部分,充当着“眼睛”的角色。近年来,在众多的HPLC检测器当中,化学发光检测器(CLD)由于其具有灵敏度高,线形范围宽及仪器设备简单等优点,被越来越多地应用于各种复杂样品中pg或fg级含量化合物的检测,成为一种理想的分离分析方法,也是当今分析科学领域内研究非常活跃的热点之一。
     电生试剂化学发光(Chemiluminescence with electrogenerated reagents)法是利用电化学手段,使不稳定氧化剂在电极上在线产生后与被测物质或发光试剂反应产生化学发光,基于直接氧化还原反应、增敏反应或能量转移过程而建立起的一种新型化学发光分析方法,已用于流动注射化学发光分析。但如何提高该法的选择性,使其在实际应用中真正得到更好和更广泛的应用,仍然是存在的一个问题。围绕这一问题,本研究通过在线电生反应生成BrO~-,[Cu(HIO_6)_2]_5~-,B(OH)_3·OOH~-,Mn(Ⅲ),Co(Ⅲ)和Ag(Ⅱ)等具有高反应活性的初生态氧化剂,研究了他们的初生态氧化活性;在完成电解池设计、柱后接口、优化色谱分离和化学发光检测器条件的基础上,提出了一系列灵敏度高、选择性好的HPLC-CL检测新方法,为高效液相色谱增添了一种新的具有高灵敏度的检测器;并将这一新的电生试剂化学发光检测器应用于实际样品如食品中违禁添加剂(苏丹红)、药物残留(糖皮质激素、β_2激动剂)及人体血液和尿液某些药物浓度的检测中。现就HPLC-CL检测技术的研究进展(第1章)和具体研究工作(第2-5章)简述如下:
     第1章主要就HPLC-CL检测技术的基本原理、系统构建、典型化学发光反应体系(包括鲁米诺及其衍生物、过氧化草酸酯、三(2,2’-联吡啶)钌(Ⅱ)、高锰酸钾、铁氰化钾、四价铈化学发光体系等)及近10年来在生命科学、药学、临床医学、环境及食品等领域的应用和进展情况进行了评述。对这一检测技术在实际应用中存在的问题进行了分析,对其发展方向进行了展望。
     第2章就在线电生BrO~--luminol化学发光检测器与高效液相色谱分离技术的结合及其应用进行了研究,包括:
     (1)高效液相色谱在线电生BrO~--luminol化学发光法检测辣椒中的苏丹红研究发现,苏丹红(Ⅰ-Ⅳ)能够强烈增敏通过恒电流电解方法在线电生BrO~-和luminol之间产生的化学发光,提出了一种经高效液相色谱(HPLC)分离柱后同时检测4种苏丹红(Ⅰ-Ⅳ)的新方法。色谱分离以Nucleosil RP-C_(18)(250mm×4.6mmi.d.,5μm,pore size,100(?))为色谱柱,甲醇-0.2%甲酸水溶液(90:10,v/v)为流动相,柱温35℃.,流速1.0 mL min~(-1),同时分离检测四种苏丹红的总时间为25min。系统研究并优化了流动相、电生试剂化学发光检测的有关条件。该法检测四种苏丹红的线性范围分别为:1×10~(-3)~2.0,8×10~(-3)~2.0,5×10(-3)~2.0,8×10~(-3)~4.0μg mL~(-1);检出限(LOD)(3s)介于4~8μg kg~(-1),定量限(LOQ)(10s)为13~27μg kg~(-1)。苏丹红在实际样品中的平均加标回收率为94%~105%(添加水平为1.0,1.5mg/kg)。对含4种苏丹红浓度分别为0.01μg mL~(-1)、0.8μg mL~(-1)的样品溶液连续11次平行测定的相对标准偏差(R.S.D.)都小于3.0%,其日间精密度R.S.D.都小于4.4%。该方法已成功应用于辣椒或辣椒酱制品中苏丹红含量的分析。
     (2)高效液相色谱在线电生BrO~--luminol化学发光法检测牛奶中残留四环素类化合物的研究
     基于四环素类抗生素药物中的四环素(TC)、土霉素(OTC)、金霉素(CTC)和多西环素(DC)能够强烈增敏通过恒电流电解方法在线电生BrO~-和鲁米诺产生化学发光,提出了一种经高效液相色谱(HPLC)分离柱后同时检测4种四环素类抗生素药物的新方法。以Nucleosil RP-C_(18)(250mm×4.6mm,i.d.,5μm,pore size,100 (?))为色谱柱,0.05 mol L~(-1)磷酸二氢钾(pH 2.5)—乙腈(30:70,v/v)为流动相,流速1.2 mL min~(-1),柱温25℃,同时分离检测四种抗生素的总时间为11min。研究并优化了流动相、电生试剂化学发光检测的条件。四种抗生素的检出限为0.002~0.008μg mL~(-1)(3s),对0.01μg mL~(-1)的四种抗生素测定的相对标准偏差为2.0%~3.6%(n=11)。该检测器已成功应用于牛奶中残留四环素类抗生素含量的分析。
     第3章就在线电生[Cu(HIO_6)_2]~(5-)化学发光检测技术与高效液相色谱结合在兽药残留分析中的应用进行了研究,主要包括以下2个研究工作:
     (3)高效液相色谱在线电生[Cu(HIO_6)_2]~(5-)-luminol化学发光法检测猪肝组织中残留糖皮质激素类化合物的研究
     本文基于曲安西龙(TR)、泼尼松龙(PR)、氢化可的松(HC)、可的松(CO)、甲基强的松龙(MP)、地塞米松(DE)和曲安奈德(TA)等糖皮质激素能够增敏电生的三价铜配合物[Cu(HIO_6)_2]~(5-)和luminol之间产生的化学发光,提出了一种高效液相色谱(HPLC)分离柱后化学发光同时检测这些药物的新方法。HPLC分离是以40%的乙腈和60%的醋酸胺水溶液(1mmol L~(-1),pH 6.8)作为流动相进行等度沈脱,在流速为0.8 mL min~(-1),柱温20℃下,7中糖皮质激素在12min内能够很好的分离。猪肝样品中残留糖皮质激素的提取是采用酶法水解并经固相萃取完成的。在优化分离条件和电生试剂化学发光检测条件的基础上,7种糖皮质激素的检出限(LOD)(3s)介于0.08~1.0ng g~(-1),定量限(LOQ)(10s)为0.27~3.33 ng g~(-1)。日内、日间精密度的相对标准偏差(R.S.D.)都低于6.8%糖皮质激素在实际样品中的平均加标回收率为88%~106%。该法已成功应用于动物组织猪肝中残留糖皮质激素类药物的分析。
     (4)高效液相色谱在线电生[Cu(HIO_6)_2]~(5-)-luminol化学发光法检测β_2-激动剂的研究
     研究发现,β_2-激动剂类药物特布他林(terbutaline,TB)、沙丁胺醇(salbutamol,SB)和克仑特罗(clenbuterol,CB)等能够增敏电生的三价铜配合物[Cu(HIO_6)_2]~(5-)和luminol之间产生的化学发光,基于此,提出了一种高效液相色谱(HPLC)分离化学发光同时检测这些药物的新方法。HPLC分离是以90%的乙腈和10%的醋酸胺水溶液(20 mmol L~(-1),pH 4.0)作为流动相进行等度洗脱,在流速为1.0 mL min~(-1),柱温25℃下,TB、SB和CB在15min内能够很好的分离。猪肝样品中残留β_2-激动剂的提取是采用酶法水解并经固相萃取完成的。在优化分离条件和电生试剂化学发光检测条件的基础上,TB、SB和CB的检出限(LOD)(3s)介于0.007~0.01 ng g~(-1),定量限(LOQ)(10s)为0.023~0.033 ng g~(-1)。日内、日间精密度的相对标准偏差(R.S.D.)都低于4.5%。β_2-激动剂在实际样品中的平均加标回收率为84%~110%。
     第4章就在线电生初生态过硼酸盐、化学发光活性进行了系统研究,在此基础上,将这一化学发光检测技术与高效液相色谱联用,建立了左旋多巴(LDP)和盐酸苄丝肼、盐酸甲氧氯普胺等物质的HPLC-CL检测新方法。具体内容包括:
     (5)高效液相色谱电致初生态B(OH)_3·OOH~--luminol化学发光法同时检测左旋多巴和盐酸苄丝肼
     在流通体系中,采用恒电流电解硼砂、纯碱和氢氧化钠的水溶液,在Pt电极上在线产生具有初生态特性的B(OH)_3·OOH~-。基于左旋多巴(LDP)和盐酸苄丝肼(BSH)能抑制B(OH)_3·OOH~--luminol这一化学发光新体系,结合高效液相色谱分离技术,提出了一种同时测定LDP和BSH的化学发光检测新方法,并将其成功应用于复方片剂多巴丝肼及尿样中LDP和BSH的测定。系统研究了在线电生B(OH)_3·OOH~-的条件及该电生试剂的化学发光反应活性。该法测定LDP和BSH的线性范围分别为0.1~50μg mL~(-1)和0.05~20μg mL-1。检出限(3s)分别为0.04μg mL~(-1)和0.01μg mL~(-1)。
     (6)高效液相色谱电致初生态B(OH)_3·OOH~--luminol化学发光法检测人血清中的盐酸甲氧氯普胺
     基于盐酸甲氧氯普胺(MCP)能抑制初生态B(OH)_3·OOH~--luminol这一化学发光新体系,结合高效液相色谱分离技术,提出了一种测定盐酸甲氧氯普胺的高效液相色谱化学发光检测新方法,并将其成功应用于人血清中MCP的测定。优化了色谱分离及化学发光检测条件。该法测定MCP的线性范围分别为5~500ng mL~(-1),检出限(3s)为0.6 ng mL~(-1)。在一天内通过分别连续11次平行测定浓度为50ng mL~(-1) MCP标准溶液,R.S.D.为3.4%。日间精密度是通过测定含MCP浓度都为50 ng mL~(-1)的2个相同溶液进行的,每天进样6次,连续5天,并计算得日间R.S.D为4.2%。在实际样品中的回收率在94-103%之间。
     第5章就在线电生Mn(Ⅲ)、Ag(Ⅱ)及Co(Ⅲ)化学发光检测器与高效液相色谱分离技术的接口,电解池设计及其应用进行了研究,主要包括以下5项工作:
     (7)高效液相色谱电生Mn(Ⅲ)化学发光法检测吲哚美辛的研究
     基于非甾体抗炎药物吲哚美辛(Indomethacin,INM)可以被电生的Mn(Ⅲ)直接氧化产生化学发光的原理,设计了一个HPLC在线电生Mn(Ⅲ)化学发光检测器,并将其应用于药物制剂和一些生物样品中INM的检测。色谱分离是以Nucleosil RP-C_(18)(250mm×4.6mm i.d.,5μm,pore size,100 (?))为色谱柱,甲醇-水-冰醋酸(67:33:0.1,v/v/v)为流动相,柱温20℃.,流速1.0 mL min~(-1),分离检测INM的总时间为10min。系统研究并优化了流动相、电生试剂化学发光检测的有关条件。该法测定INM的线性范围为0.01~10μg mL~(-1)(R~2=0.9991),检出限(3s)为8ng mL~(-1)。日内相对标准偏差(R.S.D.)为2.2%(C=0.1μg mL~(-1),n=11),日间相对标准偏差(R.S.D.)为3.0%(C=0.1μg mL~(-1),n=6,5d)。INM在人尿样中的回收率大于92%。
     (8)高效液相色谱电生Mn(Ⅲ)化学发光法检测保健食品中的葛根素
     基于发现电生Mn(Ⅲ)可以直接氧化葛根素(Puerarin,PU)产生强的化学发光,提出了一种测定PU的高效液相色谱化学发光(HPLC-CL)检测新方法,并将该法成功应用于口服液、保健茶、胶囊及片剂等以葛根为原料的保健食品葛根素含量的分析。该法测定PU的线性范围为2×10~(-3)~1.0μg mL~(-1)(R~2=0.9991),检出限(3s)为7×10~(-4)μg mL~(-1)。对0.01μg mL~(-1)的PU连续11次平行测定,相对标准偏差为2.3%。PU在一些实际样品中的回收率介于93~108%之间。
     (9)高效液相色谱电生Mn(Ⅲ)化学发光法检测人体血清和尿样中的卡托普利
     设计了一个HPLC在线电生Mn(Ⅲ)化学发光检测器,即采用在线电化学反应产生氧化剂Mn(Ⅲ),通过改变电解电流实现在线控制其浓度和反应活性,来满足色谱柱后化学发光检测的最佳环境和反应条件。在研究和优化流动相及化学发光检测条件的基础上,将该检测器应用于人血清和尿液中卡托普利含量的分析。色谱分离是以Nucleosil RP-C_(18)(250mm×4.6mm i.d.,5μm,pore size,100 (?))为色谱柱,乙腈-1%醋酸水溶液(60:40,v/v)为流动相,柱温25℃.,流速1.2 mL min~(-1)。在选定的实验条件下,卡托普利浓度在5~800 ng mL~(-1)内与化学发光强度成良好的线性关系。对10.0ng/mL的卡托普利平行测定11次,其标准偏差为2.2%,根据IUPAC规定,计算方法的检出限为0.9 ng mL~(-1)。卡托普利在实际样品中的加标回收率为94.8%~103.2%。
     (10)高效液相色谱在线电生Ag(Ⅱ)化学发光法检测塞来昔布的研究
     基于Ag(Ⅱ)能够直接氧化塞来昔布(CEL)产生强烈的化学发光,首次提出了一种高效液相色谱(HPLC)在线电生Ag(Ⅱ)化学发光检测CEL的新方法。在流动体系中,采用恒电流电解技术氧化稳定的Ag(Ⅰ),在线产生不稳定的Ag(Ⅱ),并将其立即与经HPLC分离后的CEL混合,通过改变电解电流来调节Ag(Ⅱ)的浓度来满足色谱柱后化学发光反应的需求。系统研究和优化了在线电生Ag(Ⅱ)的条件、Ag(Ⅱ)的化学发光特性以及HPLC流动相与该发光体系匹配情况等。在此基础上,将该法应用于药物制剂和人体血清中CEL的测定,结果满意。
     (11)高效液相色谱在线电生Co(Ⅲ)化学发光法检测盐酸萘甲唑林
     基于拟肾上腺素药物盐酸萘甲唑林(Naphazoline Hydrochloride,NH)可以被电生的Co(Ⅲ)直接氧化产生化学发光的原理,设计了一个HPLC在线电生Co(Ⅲ)化学发光检测器,并将其应用于药物制剂中NH的检测。系统研究了在线电生Co(Ⅱ)的条件、Co(Ⅱ)的化学发光特性以及HPLC流动相对这一发光体系的影响等因素。该法测定NH的线性范围为0.1~80.0μg mL~(-1)(R~2=0.9992),检出限(3s)为0.05μg mL~(-1),对1.0μg mL~(-1)的NH连续11次平行测定,相对标准偏差为1.8%。
High Performance Liquid Chromatography (HPLC) as a powerfulmodern separation technique has been widely used for the analysis of many analytes indiverse fields. Detectors are one of the most important components of HPLC systemsince they produce a wealth of information about the separated components which canbe stored in computers and manipulated as desired to assist solute identification. Inrecent years, chemiluminescence (CL) as a detection technique of HPLC is veryattractive due to higher sensitivity, wider linear dynamic ranges and simplerinstrumentation. The advance of CL detection has greatly catalyzed the growth andpopularity of HPLC-CL application, and made trace analysis possible owing to itscapability of measuring pictogram or femtogram quantities of compounds in thecolumn eluate. The investigations and applications of HPLC-CL technology arecurrently also an important subject, and a hot point in analytical science.
     Chemiluminescence analysis with electrogenerated reagents, a novel methodbased on direct CL mechanism or energy-transfer mechanism, coupled with flowinjection analysis (FIA), has been applied in many analytes in certain fields, in whichunstable and nascent regents required for the CL reactions can be generatedelectrochemically on-line.
     However, a drawback of low selectivity of this method remains to be furtherstudied for better application and a wider use.
     For this purpose, such unstable and nascent reagents as BrO~-, [Cu(HIO_6)_2]_5~-,B(OH)_3·OOH~-, Mn(Ⅲ), Co(Ⅲ) and Ag(Ⅱ) for CL reactions have been on-line orin-situ electrogenerated, coupled with HPLC to provide a novel methodology for bothgood sensitivity and selectivity in detecting analytes in complex matrices. The effectsof several parameters on the HPLC resolution and CL emission were studiedsystematically. Several novel methods based on HPLC with chemiluminescencedetectetor using on-line or in-situ electrogenerated reagents have been developed forthe determination of Sudan dyes in hot chilli products, glucocorticoid andβ_2-agonistresidues in animal tissues, tetracyclines residues in milk and some drugs in pharmaceutical and biological samples.
     This dissertation consists of five chapters. Chapters 1 is a review and Chapters 2to 5 are research reports including 11 research works.
     In Chapter 1, the development and tendency of the HPLC with CL detection arereviewed. It covers the principles of the HPLC with CL detector, the design of CLdetectors, CL detection systems (including luminol, peroxyoxalatcs, Ru (bpy)_3~(2+),KMnO_4, K_3Fe(CN)_6 and Ce~(4+)) combined with HPLC, the applications of analyticalmethods for many kinds of inorganic, organic and biologic samples, and the trends ofHPLC-CL in environmental, life science, pharmacy and clinical medical science.
     In Chapter 2 to 5:
     (1) Development and optimization of an analytical method for thedetermination of Sudan dyes in hot chilli pepper by high-performance liquidchromatography with on-line electrogenerated BrO~--luminol chemiluminescencedetection.
     The determination of four Sudan dyes by means of high-performance liquidchromatography (HPLC) with chemiluminescence (CL) detection was proposed. Themethod was based on the enhancement effect of Sudan dyes on the chemiluminescencereaction between luminol and BrO~-, which was on-line electrogenerated by constantcurrent electrolysis. The separation was carded out on Nucleosil RP-C_(18) column(250mm×4.6mm i.d., 5μm, pore size, 100 (?)) at 35℃. The mobile phase consisted ofa V (methanol): V (0.2% aqueous formic acid)=90:10 solution. At a flow-rate of 1.0mL min~(-1), the total run time was 25 min. The effects of several parameters on theHPLC resolution and CL emission were studied systematically. For the four Sudandyes, the limits of detection (LOD) at a signal-to-noise of 3 ranged from 4 to 8μg kg~(-1)and the limits of quantification (LOQ) at a signal-to-noise of 10 ranged from 13 to 27μg kg~(-1). The relative standard deviations (R.S.D.) of intra- and inter-day precision werebelow 4.4%. The average recoveries for all four Sudan dyes (spiked at the levels of1.0 and 1.5 mg kg~(-1)) in chilli tomato sauce and hot chilli pepper ranged from 94% to105%, and the relative standard deviations of the quantitative results were from 2.5 to4.2%. The proposed method had been successfully applied to the determination of fourSudan dyes in hot chilli products.
     (2) Determination of tetracyclines residues in milk using high performanceliquid chromatography with on-line electrogenerated BrO~--luminol chemiluminescence detection.
     The determination of four tetracyclines (TCs) by means of high-performanceliquid chromatography (HPLC) with on-line electrogenerated BrO~--luminolchemiluminescence (CL) detection is proposed. The procedure is based on theenhancement effect of TCs on the chemiluminescence reaction between luminol andBrO~- in alkaline medium. The oxidant BrO~- was on-line electrogenerated by constantcurrent electrolysis. The separation was carried out on Nucleosil RP-C_(18) column(250mm×4.6mm i.d., 5μm, pore size, 100 (?)) at 25℃. The mobile phase consisted ofa V(acetonitrile):V(0.05 molL~(-1) potassium dihydrogen phosphate buffer, pH 2.5)=30:70 solution. At a flow-rate of 1.2 mL min~(-1), the total run time was 11 min. Theeffects of several parameters on the HPLC resolution and CL emission were studiedsystematically. For the four TCs, the detection limits at a signal-to-noise of 3 rangedfrom 0.002 to 0.008μg mL~(-1). The relative standard deviations for the determination ofTCs ranged from 2.0 to 3.6% (n=11, C=0.01μg mL~(-1)). The method has beensatisfactorily applied to the analysis of spiked raw milk samples.
     (3) Detection of glucocorticoid residues in pig liver by high-performanceliquid chromatography with on-line electrogenerated [Cu(HIO_6)_2]~(5-)-luminolchemiluminescence detection.
     A novel method was developed for the simultaneous determination ofglucocorticoid residues such as triamcinolone(TR), prednisolone(PR),hydrocortisone(HC), cortisone(CO), methylprednisolon(MP), dexamethasone (DE)and triamcinolone acetonide(TA) by high-performance liquid chromatographycoupled with chemiluminescence detection. The procedure was based on theenhancement effect of glucocorticoids on the chemiluminescence reaction betweenluminol and the complex of trivalent copper and periodate ([Cu(HIO_6)_2]~(5-)), which wason-line electrogenerated by constant current electrolysis. The HPLC separation used aNucleosil RP-C_(18) column (250mm×4.6mm i.d., 5μm, pore size, 100 (?)) with a mobilephase consisting of acetonitrile and 1.0 mmol L~(-1) ammonium acetate (pH 6.8,40:60, v/v) at a flow rate of 0.8 mL min~(-1).The effects of several parameters on theHPLC resolution and CL emission were studied systematically. Liver samples werehydrolyzed with Helix pomatia juice followed by a solid-phase extraction procedure.Under optimum conditions, the limits of detection (LOD) at a signal-to-noise of 3ranged from 0.08 to 1.0 ng g~(-1) and the limits of quantification (LOQ) at a signal-to-noise of 10 ranged from 0.27 to 3.33 ng g~(-1) for seven glucocorticoids. Therelative standard deviations (R.S.D.) of intra- and inter-day precision were below 6.8%.The average recoveries for glucocorticoids (spiked at the levels of 5 to 50 ng g~(-1)) in pigliver ranged from 88 to 106 %, and the relative standard deviations of the quantitativeresults were from 2.0 to 6.9 %. The proposed method had been successfully applied tothe determination of glucocorticoid residues in pig liver.
     (4) Development of an analytical method for the determination ofβ_2-agonistresidues in animal tissues by high-performance liquid chromatography withon-line electrogenerated [Cu(HIO_6)_2]~(5-)-luminol chemiluminescence detection.
     A novel method was developed for the simultaneous determination ofβ_2-agonistresidues such as terbutaline(TB), salbutamol(SB) and clenbuterol(CB) byhigh-performance liquid chromatography (HPLC) coupled with chemiluminescence(CL) detection. The procedure was based on the enhancement effect ofβ_2-agonists onthe chemiluminescence reaction between luminol and the complex of trivalent copperand periodate ([Cu(HIO_6)_2]~(5-)), which was on-line electrogenerated by constant currentelectrolysis. The HPLC separation used a Nucleosil RP-C_(18) column (250mm×4.6mmi.d., 5μm, pore size, 100(?)) with a mobile phase consisting of 90% acetonitrile and10% aqueous ammonium acetate (20 mmolL~(-1), pH 4.0) at a flow rate of 1.0 mLmin~(-1).The effects of several parameters on the HPLC resolution and CL emission werestudied systematically. Liver samples were hydrolyzed withβ-glucuronidase followedby a solid-phase extraction procedure using Waters OasisMCX cartridges. Underoptimum conditions, the limits of detection (LOD) at a signal-to-noise of 3 rangedfrom 0.007 to 0.01 ng g~(-1) and the limits of quantification (LOQ) at a signal-to-noise of10 ranged from 0.023 to 0.033 ng g~(-1) for threeβ_2-agonists. The relative standarddeviations (R.S.D.) of intra- and inter-day precision were below 4.5%. The averagerecoveries forβ_2-agonists (spiked at the levels of 0.05 to 5.0 ng g~(-1)) in pig liver rangedfrom 84% to 110%, and the relative standard deviations of the quantitative results werefrom 1.6 to 7.2%. The proposed method had been successfully applied to thedetermination ofβ_2-agonist residues in pig liver samples.
     (5) Simultaneous determination of levodopa and benserazide byhigh-performance liquid chromatography with on-line electrogenerated nascentB(OH)_3·OOH~--luminol chemiluminescence detection.
     The nascent perborate was on-line electrogenerated on the surface of platinumelectrode with constant current electrolytic method in the Na_2BO_4-Na_2CO_3-NaOHaqueous medium, and it was found that the strong chemiluminescence (CL) ofluminol reacting with nascent perborate (B(OH)_3·OOH~-) could be greatly inhibited bylevodopa and benserazide. Based on this finding, a novel chemiluminescence methodusing nascent electrogenerated perborate coupled with high-performance liquidchromatography for the simultaneous determination of levodopa and benserazide hasbeen developed. The effects of several parameters on the HPLC resolution and CLemission were studied systematically. Under the optimum experimental conditions,the calibration graphs were linear over the range 0.1-50μg mL~(-1) for levodopa and0.05-20μg mL~(-1) for benserazide. The limits of detection (LOD) (3s) for levodopa andbenserazide were 0.04μg mL~(-1), 0.01μg mL~(-1), respectively. The proposed HPLC-CLmethod had been applied to the determination of levodopa and benserazide inpharmaceutical and human urine samples.
     (6) Detection of metoclopramide by high-performance liquid chromatographywith on-line electrogenerated nascent B(OH)_3·OOH~--luminol chemiluminescencedetection.
     The determination of metoclopramide(MCP) in human serum samples by means ofhigh-performance liquid chromatography (HPLC) with on-line electrogeneratedB(OH)_3·OOH~- chemiluminescence (CL) detection was proposed. The method wasbased on the inhibition effect of MCP on the chemiluminescence reaction betweenluminol and B (OH)_3·OOH~-, which was on-line electrogenerated by constant currentelectrolysis. Under the optimal conditions, a linear range from 5 to 500 ngmL~(-1)(R~2=0.9991), and a detection limit of 0.6 ng mL~(-1) (3s) for MCP were achieved.The relative standard derivations (R.S.D.) for 50 ng mL~(-1) MCP were 3.4% within a day(n=11) and 4.2% on five consecutive days (n=6), respectively. The recovery of MCPfrom serum samples was more than 94%.
     (7) Detection of indomethacin by high-performance liquid chromatographywith in-situ electrogenerated Mn (Ⅲ) chemiluminescence detection.
     The determination of indomethacin (INM) in pharmaceutical and biologicalsamples by means of high-performance liquid chromatography (HPLC) with in situelectrogenerated Mn (Ⅲ) chemiluminescence (CL) detection was proposed. Themethod was based on the direct CL reaction of INM and Mn (Ⅲ), which was in-situ electrogenerated by constant current electrolysis. The chromatographic separation wascarded out on Nucleosil RP-C_(18) column (250mm×4.6 mm i.d., 5μm, pore size, 100(?))at 20℃. The mobile phase consisted of methanol: water: acetic acid=67:33:0.1solution. At a flow-rate of 1.0 mL min~(-1), the total run time was 10 min. The effects ofseveral parameters on the HPLC resolution and CL emission were studiedsystematically. Under the optimal conditions, a linear range from 0.01 to 10μgmL~(-1)(R~2=0.9991), and a detection limit of 8 ng mL~(-1) (signal-to-noise ratio=3) for INMwere achieved. The relative standard derivations (R.S.D.) for 0.1μg mL~(-1) INM were2.2% within a day (n=11) and 3.0% on five consecutive days (n=6), respectively. Therecovery of INM from urine samples was more than 92%. The applicability of themethod for the analysis of pharmaceutical and biological samples was examined.
     (8) Determination of puerarin in healthy food by high-performance liquidchromatography with on-line electrogenerated Mn(Ⅲ) chemiluminescencedetection
     Based on the direct chemiluminescence reaction of puerarin(PU) with on-lineelectrogenerated Mn(Ⅲ) in H_2SO_4 medium, a novel HPLC-CL detection method fordetermination of PU was developed. The proposed method has been appliedsatisfactorily to the determination of PU in healthy food. The chemiluminescenceintensity was linear with PU concentration in the range of 2×10~(-3)-1.0μg mL~(-1)(R~2=0.9991) and the limits of detection (LOD) were 7×10~(-4)μg mL~(-1). The relativestandard deviations (RSD) (n=11) for PU was 2.3%. The recoveries of PU fromhealthy food samples were 93-108%.
     (9) Determination of captopril in human serum and urine samples by highperformance liquid chromatography with on-line electrogenerated Mn (Ⅲ)chemiluminescence detection.
     The separation and determination of captopril in human serum and urine samplesby means of high performance liquid chromatography with on-line electrogeneratedMn (Ⅲ) chemiluminescence detection was proposed. The method was based on thedirect chemiluminescence reaction between captopril and Mn (Ⅲ), which was on-lineelectrogenerated by constant current electrolysis. The chromatographic separation wasperformed on a nucleosil RP-C_(18) (250mm×4.6mm i.d., 5μm) column with an isocraticmobile phase consisting of acetonitrile-1% aqueous acetic acid (60:40, v/v) at aflow-rate of 1.2 mL min~(-1). The temperature was 25℃. The effects of several parameters on the HPLC resolution and CL emission were studied systematically.Under the optimal conditions, the linear range and detection limit for captopril were5~800 ng mL~(-1) and 0.9 ng mL~(-1), respectively. The relative standard derivation for10.0 ng mL~(-1) captopril was 2.2% (n=11). The average recoveries for captopril inhuman serum and urine ranged from 94.8% to 103.2%, and the relative standarddeviations of the quantitative results were below 3.4%. The proposed method had beenapplied to the determination of captopril in human serum and urine samples.
     (10) Detection of celecoxib in human serum by high-performance liquidchromatography with on-line electrogenerated Ag(Ⅱ) chemiluminescencedetection.
     The determination of celecoxib (CEL) in pharmaceutical and biological samplesby means of high-performance liquid chromatography (HPLC) with on-lineelectrogenerated Ag(Ⅱ) chemiluminescence (CL) detection was proposed. The methodwas based on the direct CL reaction of CEL and Ag(Ⅱ), which was on-lineelectrogenerated by constant current electrolysis. The effects of several parameters onthe HPLC resolution and CL emission were studied systematically. The applicability ofthis method for the analysis of pharmaceutical and biological samples was examined.
     (11) Detection of naphazoline hydrochloride in pharmaceutical preparationsby high-performance liquid chromatography with on-line electrogenerated Co(Ⅲ)chemiluminescence detection.
     A novel chemiluminescence detector of the high performance liquidchromatography for the determination of the naphazoline hydrochloride (NH) wasdeveloped. Based on the direct chemiluminescence reaction of NH and Co(Ⅲ) whichwas on-line electrogenerated by constant current electrolysis in H_2SO_4 medium.. Toobtain the highest NH sensitivity, the CL reaction conditions (including the design offlow cell, the effects of H_2SO_4 concentration in electrolyte, CoSO_4, electrolytic currentand flow rate) and HPLC mobile phase composition in the HPLC-CL system wereoptimized. Under the optimal conditions, the linear range and detection limit for NHwere 0.1~80.0μg mL~(-1) (R~2=0.9992) and 0.05μg mL~(-1), respectively. The relativestandard derivation for 1.0μg mL~(-1) NH was 1.8% (n=11). The proposed method hadbeen applied to the determination of NH in in pharmaceutical preparations.
引文
[1] R. L. William, O. D. Catherine. Column liquid chromatography: Equipment and instrumentation [J]. Anal, Chem. 1998, 70(12): 37R-52R.
    [2] R. L. William. Column liquid chromatography: Equipment and instrumentation [J]. Anal, Chem. 2000, 72(12), 37R-51R.
    [3] 王佛松,王夔,陈新滋,彭旭明.展望21世纪化学[M].北京:化学工业出版社,2000:58.
    [4] 张玉奎,张维冰,邹汉法.分析化学手册(第六分册,液相色谱分析)[M].第2版.北京:化学工业出版社,2000:76-78.
    [5] Mary T. Gilbert. High performance liquid chromatography [M]. Bristol: Wright, c1987: 29-30.
    [6] W. R. Jones, P. Jandik, Various approaches to analysis of difficult sample matrices of anions using capillary ion electrophoresis [J]. J.Chromatogr. A 1992, 608(1-2): 385-393.
    [7] B. Huang, J. Li, L. Zhang, J. Cheng. On-line chemiluminescence detection for capillary ion analysis [J]. Anal. Chem. 1996, 68(14), 2366-2369.
    [8] L. Gamiz-Gracia, A. M. Garcia-Campana, J. J. Soto-Chinchilla, J. F.Huertas-Perez, A. Gonzalez-Casado. Analysis of pesticides chemiluminescence detection in the liquid phase[J]. Trends Anal, Chem. 2005, 24(11): 927-942.
    [9] X. J. Huang, Z. L. Fang. Chemiluminescence detection in capillary electrophoresis [J].Anal. Chim. Acta. 2000, 414: 1-14.
    [10] Y. M. Liu, J. K. Cheng. Ultrasensitive chemiluminescence detection in capillary electrophoresis [J], J. Chromatogr. A, 2002, 959(1-2): 1-13.
    [11] E. Nalewajko, A. Wiszowata, A. Kojlo. Determination of catecholamines by flow-injection analysis and high-performance liquid chromatography with chemiluminescence detection [J]. J. Pharm. Biomed. Anal 2007, 4(5): 1673-1681.
    [12] T. Vilkner, D. Janasek, A. Manz. Micro total analysis systems, recent developments [J].Anal. Chem. 2004, 76, 3373-3386.
    [13] A. M. Garcia-Campana, L. Gamiz-Gracia, W. R. G. Baeyens, F. A. Barrero. Derivatization of biomolecules for chemiluminescent detection in capillary. electrophoresis[J]. J. Chromatogr. B, 2003, 793, 49-74.
    [14] A. Hartkopf, R. Delumyea. Use of the luminol reaction for metal ion detection in liquid chromatography[J]. Anal Lett. 1974, (1): 9-88.
    [15] F. Tagliaro, D. Franchi, R. Dorizzi, M. Marigo. High performance liquid chromatographic determination of morphine in biological samples: An overview of separation methods and detection techniques[J].J. Chromatogr. B 1989, 488(1): 215-228.
    [16] K. Imai, Y. Matsunaga, Y. Tsukamoto, A. Nishitani. Application of bis [4-nitro-2-(3, 6, 9-trioxadecyloxycarbonyl)-phenyl] oxalate to post-column chemiluminescence detection in high-performance liquid chromatography[J]. J. Chromatogr. A 1987, 400: 169-176.
    [17] 章竹君,武竟存,液相色谱化学发光检测法的进展[J].陕西师范大学学报(分析化学专辑).1989,17:1-7.
    [18] 武竟存,章竹君,吕九如.液相色谱化学发光检测法的新进展[J].分析化学.1994,22(4):396-405.
    [19] 武竟存,耿征,吕九如,过氧化草酸酯化学发光反应及其在液相色谱检测技术中的应用[J].化学试剂.1994,16(1):35-39.
    [20] P. B. Oldham, L. B. McGown, I. M. Warner, M. E. McCarroll. Molecular fluorescence, phosphorescence, and chemiluminescence spectrometry review[J].Anal. Chem. 2000, 72(12): 197R-209R.
    [21] A. M. Powe, K. A. Fletcher, N. N. St. Luce, M. Lowry, S. Neal, M. E. McCarroll, P. B. Oldham, L. B. McGown, I. M. Warner. Molecular fluorescence, phosphorescence, and chemiluminescence spectrometry[J]. Anal. Chem. 2004, 76(16): 4614-4634.
    [22] K. A. Fletcher, S. O. Fakayode, M. Lowry, S. A. Tucker, S. L. Neal, I. W. Kimaru, M. E. McCarroll, G. Patonay, P. B. Oldham, O. Rusin, R. M. Strongin, I. M. Warner, Molecular fluorescence, phosphorescence, and chemiluminescence spectrometry[J]. Anal Chem. 2006, 78: 4047-4068.
    [23] Book reviews, J. Am. Chem. Soc. 2005, 127: 2012-2016.
    [24] Book reviews, J. Am. Chem. Soc. 2001, 123(50): 12745-12748.
    [25] 周延秀,朱果逸,液相色谱-化学发光检测法的最新进展,色谱,1997,15(4):296-300.
    [26] W. R. G. Baeyens, S. G. Schulman, A. C. Calokerinos. Y. Zhao, Garcia, A. M. Campana, K. Nakashima, D. De Keukeleire. Chemiluminescence-based detection: principles and analytical applications in flowing streams and in immunoassays[J]. J. Pharm. Biomed. Anal 1998,1(6-7): 941-953.
    [27] R. Zhu, W. T. Kok. Post-column derivation for fluorescence and Chemiluminescence detection in capillary electrophoresis[J]. J. P harm. Biomed. A nal. 1998,17(6-7): 985-999.
    [28] A. M. Jimeenez, M. J. Navas. Chemiluminescence detection systems in supercritical fluid methods[J].Trends Anal. Chem. 1999,18(5):353-361.
    [29] R. D. Gerardi, N. W. Barnett. S. W. Lewis. Analytical applications of tris(2,2'-bipyridyl)ruthenium(III) as a chemiluminescent reagent[J]. Anal. Chim. Acta. 1999, 378:1-41.
    [30] X. Yan. Detection by ozone-induced chemiluminescence in chromatography [J]. J. Chromatogr. A. 1999, 842:267-308.
    [31] M. J. Navas, A. M. Jimenez. Chemiluminescent methods in petroleum products analysis[J]. Crit. Rev. Anal. Chem. 2000, 30(2):153-162.
    [32] T. Miyazawa, Analysis of lipid hydroperoxide formation in food and biological systems [J]. J. Jap. Oil Chem. Soc. 2000, 49(11-12) :1377-1382..
    [33] C. Dodeigne , L. Thunus, R. Lejeune. Chemiluminescence as diagnostic tool. A review [J]. Talanta. 2000,51:415-439.
    [34] A. M. Garcia-Campana, W. R. G. Baeyens. Principles and recent analytical applications of chemiluminescence [J].Analusis. 2000, 28(8):686-698.
    [35] B. J. Hindson, N. W. Barnett. Analytical applications of acidic potassium permanganate as a chemiluminescence reagent [J]. Anal. Chim. Acta. 2001,445: 1-19.
    [36] Y. Ohbaa, N. Kuroda, K. Nakashim. Liquid chromatography of fatty acids with chemiluminescence detection[J].Ana. Chim. Acta. 2002,465 :101-109.
    [37] M. Yamaguchi, H. Yoshida, H.Nohta. Luminol-type chemiluminescence derivatization reagents for liquid chromatography and capillary electrophoresis [J]. J. Chromatogr. A 2002,950: 1-19.
    [38] X. Yan. Sulfur and nitrogen chemiluminescence detection in gas chromatographic analysis[J]. J. Chromatogr. A 2002,976 :3-10.
    [39] L. J. Kricka. Clinical applications of chemiluminescence. Anal. Chim. Acta 2003, 500: 279-286.
    [40] 林金明.化学发光色谱柱后检测技术及其应用[J].色谱2003,21(4):324-331.
    [41] X. B. Yin, S. J. Dong, E. Wang. Analytical applications of the electrochemiluminescence of tris(2, 2'-bipyridiy) ruthenium and its derivatives [J]. Trends Anal Chem. 2004, 23(6): 432-440.
    [42] A. M. Jimenez, M. J. Navas. Chemiluminescence detection systems for the analysis of explosives [J]. J. Hazard. Mater. 2004, 106(1): 1-8.
    [43] M. Tsunodaa, K. Imai. Analytical applications of peroxyoxalate chemiluminescence [J]. Anal Chim. Acta 2005, 541(1-2): 13-23.
    [44] 卫洪清,刘二保,张敏.高效液相色谱-化学发光法在药物分析中的运用[J].山西师范大学学报(自然科学版).2005,19(2):58-60.
    [45] C. Lu, G. Song, J. M. Lin. Reactive oxygen species and their chemiluminescence-detection methods [J]. Trends Anal. Chem. 2006, 25(10): 985-995.
    [46] T. Forster, Intermolecular energy migration and fluorescence[J]. Ann. Phys. 1948, 2: 55-75.
    [47] M. Kaschke, K. Vogler. Picosecond study of energy transfer deviations from Forster theory-evidence for an inhomogeneous spatial distribution of molecules [J]. Chem. Phys. 1986, 102(1-2): 229-240.
    [48] T. Forster. Transfer mechanisms of electronic excitation [J]. Disc. Faraday Soc. 1959, 27: 7-17.
    [49] A. K. Campbell, A. Patel. A homogeneous immunoassay for cyclic nucleotides based on chemiluminescence energy transfer [J]. Biochem. J. 1983, 216(1): 185-194.
    [50] L. Stryer. Fluorescence energy transfer as a spectroscopic ruler[J]. Annu. Rev. Biochem. 1978, 47: 819-846.
    [51] A. K. Campbell, P. A. Roberts, A. Patel. Chemiluminescence energy transfer: a technique for homogeneous immunoassay, in: W. P. Collins (Ed.), Alternative Immunoassays, Wiley, Chichester, 1986: 153-183.
    [52] 陆刚,吕小虎,分子光谱分析新法引论[M].合肥:中国科学技术出版社,1992:134.
    [53] 张新荣,吕九如,薛玉萍,章竹君.无机偶合反应化学发光分析研究Ⅵ.钼(Ⅵ.)催碘酸钾-碘化钾体系反应动力学化学发光法测定痕量钼[J].陕西师范大学学 报.1987,2(2):66-70.
    [54] 章竹君,张新荣,吕九如,潘长顺.无机偶合反应化学发光分析研究Ⅴ.化学发光动力学分析法测定微量钒[J].冶金分析.1987,7(4):6-8.
    [55] 马望百,张炜,章竹君.无机偶合反应化学发光分析Ⅱ H_2O_2-Na_2SO_3-鲁米诺体系测定痕量钼[J].分析化学.1988,16(9):818-820.
    [56] 章竹君.偶合反应的生物和化学发光分析[J].基础医学与临床.1993,13(2):6-12.
    [57] 章竹君.电化学发光分析的新进展[J].陕西师范大学学报(自然科学版).2000,28(3):79-83.
    [58] Z. J. Zhang, B. X. Li, X. W. Zheng, Investigation of chemiluminescence with electrogenerated reagents and its analytical application [J]. Chin. J. Chem. 2003, 21(11): 1403-1409.
    [59] R. L. Benner, D. H. Stedman. Universal sulfur detection by chemiluminescence [J]. Anal Chem. 1989, 61(11): 1186-1132.
    [60] A. M. Garcia-Campana, W. R. G. Baeyens. Chemiluminescence in Analytical Chemistry [M], New: Marcel Dekker, Inc. 2001: 398.
    [61] 张琰图,杨维平,章竹君.反相高效液相色谱-化学发光法测定复合维生素片剂中的维生素B_1和B_2.色谱,2003,21(4):391-393.
    [62] J. L. Burguera, A. Townshend. Flow injection analysis for monitoring chemiluminescent reactions[J]. Anal. Chim. Acta 1980, 114: 209-214.
    [63] R. W. Frei, L. Michel, W. Santi. Post-column fluorescence derivatization of peptides. Problems and potential in high-performance liquid chromatography[J]. J. Chromatogr. 1976, 126: 665-667.
    [64] S. Katz, W. W. Pitt Jr, G. Jones, Jr. Sensitive fluorescence monitoring of aromatic acids after anion-exchange chromatography of body fluids[J]. Clin.Chem. 1973, 19: 817-820.
    [65] U. A. Th. Brinkman, R. W. Frei and H. Lingeman. Post-column reactors for sensitive and selective detection in high-performance liquid chromatography: Categorization and applications[J]. J. Chromatogr. B: Biomed. Sci. Appl. 1989, 492: 251-298.
    [66] M. Sugiura, S. Kanda, K. Imai. Development of a chemiluminescence detection system using bis[4-nitro-2-(3, 6, 9-trioxadecyloxycarbonyl)phenyl] oxalate for the sensitive determination of the fluorescent compounds separated with an acidic mobile phase[J]. Biomed. Chromatogr. 1993, 7: 149-154.
    [67] 林金明,苏荣国.发光分析用流动注射化学发光流通池芯片[P].中国实用新型专利,No.ZL02238063.9.受权公告号:CN2549458Y.2003.
    [68] G. Z. Tsogas, D. L. Giokas, A. G. Vlessidis, N. P. Evmiridis. Sensitivity enhancement of liquid chromatographic-direct chemiluminescence detection by on-line post-column solvent mediated pre-oxidative chemiluminescence[J]. J. Chromatogr. A 2006, 1110(1-2): 208-215.
    [69] R. Weinberger. Solvent and pH effects on peroxyolxalate chemiluminescence detection for liquid chromatography[J]. J. Chromatogr. A 1984, 314: 155-165.
    [70] 林金明.化学发光基础理论与应用[M].北京:化学工业出版社,2004:33-63.
    [71] H. G. Beere, P. Jones. Investigation of chromium(Ⅲ) and chromium(Ⅵ) speciation in water by ion chromatography with chemiluminescence detection[J]. Anal, Chim. Acta., 1994, 293(3): 237-243.
    [72] P. Jones, T. Williams, L. Ebdon. Development of a novel multi-element detection system for trace metal determination based on chemiluminescence after separation by ion chromatography[J]. Anal. Chim. Acta 1990, 237: 291-298.
    [73] C. B. Xiao, D. A. Palmer, D. J. Wesolowski. D. W. King. Study of enhancement effects in the chemiluminescence method for Cr(Ⅲ) in the ng L(-1) range[J]. Anal. Chim. Acta. 2000, 415, (1-2): 209-219.
    [74] T. Williams, P. Jones, L. Ebdon. Simultaneous determination of Cr(Ⅲ) and Cr(Ⅵ) at ultra-trace levels using ion chromatography with chemiluminescence detection[J]. J. Chromatogr. 1989, 482: 361-366.
    [75] B. Gammelgaard, O. Jons, B. Nielsen. Simultaneous determination of chromium(Ⅲ) and chromium(Ⅵ) in aqueous solutions by ion chromatography and chemiluminescence detection[J]. Analyst, 1992, 117: 637-640.
    [76] B. Gammelgaard, Y. Liao, O. Jons. Improvement on simultaneous determination of chromium species in aqueous solution by ion chromatography and chemiluminescence detection [J]. Anal Chim. Acta, 1997, 354: 107-113.
    [77] M. Derbyshire, A. Lamberty, P. H. E. Gardiner. Optimization of the simultaneous determination of Cr(Ⅲ) and Cr(Ⅵ) by ion Chromatography with chemiluminescence detection[J]. Anal Chem. 1999, 71(19): 4203-4207.
    [78] D. Badocco, P. Pastore, G. Favaro, Carlo Macca. Talanta. Effect of eluent composition and pH and chemiluminescent reagent pH on ion chromatographic selectivity and luminol-based chemiluminescence detection of Co~(2+), Mn~(2+)and Fe~(2+) at trace levels [J]. Talanta. 2007, 72(1): 249-255.
    [79] 刘玲,周光明,张新申低压离子色谱-化学发光联用在线检测水中痕量铜[J].分析化学.2002,30(4):478-481.
    [80] 周光明;沈祥;游水英;王莉;黄成;环境化学低压离子色谱分离-吐温-20增敏偶合化学发光检测Cr(Ⅵ)[J].环境化学,2006,25(4):511-512.
    [81] 周光明,刘玲,杨光明,张新申色谱低压离子色谱分离-化学发光在线检测过渡金属离子[J].色谱,2002,20(5):265-268.
    [82] 谢兵,胡双修,周光明.无机流动相低压离子色谱分离-化学发光在线检测痕量锰[J].分析试验室.2005,24(11):1-4.
    [83] 游水英;周光明;沈祥;低压离子色谱分离化学发光在线检测NO~(2-)和S~(2-)[J].环境科学与技术.2006,29(11):46-47.
    [84] 胡双修,周光明,杨光明 低压离子色谱-化学发光联用在线检测痕量钙[J].西南师范大学学报(自然科学版).2004,29(2):255-259.
    [85] 李桂新,郑行望,熊海涛,章竹君.基于一次性薄层色谱电极高选择电化学发光分析法测定Ni(Ⅱ)的研究[J].化学学报.2006,64(15):1553-1558.
    [86] A. MacDonald, T. A. Nieman. Flow injection and liquid chromatography detector for amino acids based on a post-column reaction with luminol [J]. Anal. Chem. 1985, 57(4): 936-940.
    [87] 李正平,章竹君,万秀琴.高效液相色谱化学发光检测法测定氨基酸[J].分析化学,1995,23(7):751-755.
    [88] 章竹君,李正平,万秀琴,铜-有机配位体不饱和配合物的催化化学发光活性及其分析应用[J].化学学报,1996,54:685-690.
    [89] Z. P. Li, K. A. Li, S. Y. Tong. Study of the catalytic effect of copper (Ⅱ)-protein complexes on luminol-H_2O_2 chemiluminescence reaction and its analytical application[J]. Anal Lett. 1999, 32(5): 901-913.
    [90] S. Hanaoka, J. M. Lin, M. Yamada. Chemiluminescence behavior of the decomposition of hydrogen peroxide catalyzed by copper(Ⅱ)-amino acid complexes and its application to the determination of tryptophanand phenylalanine[J]. Anal Chim. Acta. 2000, 409(1-2): 65-73.
    [91] T. Toyo'oka, T. Kashiwazaki, M. Kato. On-line screening methods for antioxidants scavenging superoxide anion radical and hydrogen peroxide by liquid chromatography with indirect chemiluminescence detection [J]. Talanta, 2003, 60: 467-475.
    [92] A. Dapkevicius, T. A. Van Beek, H. A. G Niederlander. Evaluation and comparison of two improved techniques for the on-linedetection of antioxidants in liquid chromatography eluates [J]. J. Chromatogr. 2001, 912(1):73-82.
    [93] A. Dapkevicius, H. A. G Niederlander. A. De Groot, T. A. Van Beek. On-line detection of antioxidative activity in high-performance liquid chromatography eluates by chemiluminescence[J].Anal. Chem. 1999, 71(3):736-740.
    [94] S. Baj, T. Krawczyk. Chemiluminescence detection of organic peroxides in a two-phase system [J]. Anal. Chim.Acta, 2007,585(1):147-153.
    [95] Y. Iglesias, C. Fente, B. I. Vazquez, C.Franco, A. Cepeda, S. Mayo.Application of the luminol chemiluminescence reaction for the determinationof nine corticosteroids[J] .Anal. Chim.Acta, 2002,468(1):43-52.
    [96] Y. Iglesias, C. Fente, S. Mayo, B. Vazquez, C. Francoa , A. Cepeda, Chemiluminescence detection of nine corticosteroids in liver[J]. Analyst. 2000, 125:2071-2074.
    [97] I. Vazquez, X. Feas, M. Lolo, C. A. Fente, C. M. Franco, A. Cepeda, Detection of synthetic corticosteroids in bovine urine by chemiluminescence high-performance liquid chromatography [J]. Luminescence. 2005, 20,197-204.
    [98] Y. Iglesias, C. A. Fente, B. Vazquez, C. Franco, A. Cepeda. Determination of dexamethasone in bovine liver by chemiluminescence high-performance liquid chromatography[J]. J. Agric. Food Chem. 1999, 47:4275-427.
    [99] J. Zhou, H. Xua, G H. Wan. Enhancing and inhibiting effects of aromatic compoundds on luminol-dimethylsulfoxide-OH~- chemiluminescence and determination of intermediates in oxidative hair dyes by HPLC With chemiluminescence detection [J]. Talanta, 2004, 64: 467-477.
    [100] H. Xu, C. F. Duan, C. Z. Lai, M. Lian, Z. F. Zhang, L. J. Liu, H. Cui. Inhibition and enhancement by organic compounds of chemiluminescence[J]. Luminescence. 2006, 21(3): 195-201.
    [101] V. G Maltsev, T. M. Zimina, A.B. Khvatov, B. G. Belenkii, Determination of myoglobin in human serum by high-performance liquid chromatography with chemiluminescence detection[J]. J. Chromatogr. 1987, 416(11):45-52.
    [102] T. Kawasaki, M. Maeda, A. Tsuji. Chemiluminescence high-performance liquid chromatography using N-(4-aminobutyl)-N-ethylisoluminol as a precolumn labelling reagent[J]. J Chromatogr. 1985, 328:121-126.
    [103] O. M. Steijger, H. Lingeman, U. A. Th Brinkman, J. J. M. Holthuis, A. K Smilde, D. A. Doornbos. Liquid chromatographic analysis of carboxylic acids using N-(4-aminobutyl)-N-ethylisoluminol as chemiluminescent label: determination of ibuprofen in saliva[J]. J. Chromatogr. 1993 ,615(1) : 97-110.
    [104] K. Nakashima, K. Suetsugu, S. Akiyama , M. Yoshida. High-performance liquid chromatography-chemiluminescence determination of methamphetamine in human serum using N-(4-aminobutyl)-N-ethylisoluminol as a chemiluminogen[J]. J. Chromatogr , 1990 , 530(1):154-159.
    [105] S. Yoshida, K. Urakami, M. Kito, S. Takeshima, S. Hirose. Chemiluminescence HPLC for determination of ribonucleoside and digoxin using periodate oxidation and N-(4-aminobutyl)-N-ethylisoluminol as prelabelling reagent[J]. Bunseki Kagaku 1990 , 39 : 481-485.
    [106] A. Sano, H. Nakamura. Chemiluminescence detection of thiols by high-performance liquid chromatography using o-phthalaldehyde and N-(4-Aminobutyl)-N-ethylisoluminol as precolumn derivatization Reagents[J]. Anal Sci, 1998 , 14:731-735.
    [107] J. Ishida, S. Sonezaki, M. Yamaguchi, T. Yoshitake. Determination of dexamethasone in plasma by high-performance liquid chromatography with chemiluminescence detection[J].Anal. Sci. 1993, 9:319-322.
    [108] L. Ma, M. Nakazono, Y. Ohba, K. Zaitsu. Determination of polyphenols with HPLC-sensitized chemiluminescence[J].Anal. Sci. 2002, 18:1163-1165.
    [109] K. Nakashima, K. Suetsugu, K. Yoshida, K. Imai, S. Akiyama. High-performance liquid chromatography with chemiluminescence detection of methamphetamine and amphetamine in human urine [J]. Anal. Sci. 1991, 7(5): 815-816.
    [110] H. Goto, J. M. Lin, M. Yamada, Postcolumn detection of isoluminol-labelled bile acids on bariumperoxide as chemiluminescence reaction media[J].Bunseki kagaku 1999,48(10 ):945-948.
    [111] J. Z. Lu, C. Lau, M. Morizono, K. Ohta, M. A. Kai. A chemiluminescence reaction between hydrogen peroxide and acetonitrile and its applications[J]. Anal. Chem. 2001, 73 (24):5979-5983.
    [112] J. Du, Y. Li, J. Lu. Flow injection chemiluminescence determination of polyhydroxy phenols using luminal-ferricyanide/ferrocyanide system [J]. Talanta, 2001,559(6):1055-1058.
    [113] R. A.Wheatley, M. Sariahmetolu, Enhancement of luminol chemiluminescence by cysteine and glutathione [J]. Analyst, 2000,125 (11):1902 -1904.
    [114] F. D. Marquele, A. R. M. Oliveira, P. S. Bonato, M. G Lara, M. J. V. Fonseca. Propolis extract release evaluation from topical formulations by chemiluminescence and HPLC [J]. J. Pharm. Biomed. Anal. 2006, 41( 2-3): 461- 468.
    [115] L. Liu, Y.Liu, J. Lin, N. Tang, K. Hayakawa, T. Maeda.Development of analytical methods for polycyclic aromatic hydrocarbons (PAHs) in airborne particulates: A review[J]. J. Environ. Sci. 2007,19(1):1-11.
    [116] K. W. Sigvardson, J. W. Birks. Peroxyoxalate chemiluminescence detection of polycyclic aromatic hydrocarbons in liquid chromatography[J]. Anal Chem. 1983, 55(3): 432-435.
    [117] K. W. Sigvardson, J. M. Kennish, J. W. Birks. Peroxyoxalate chemiluminescence detection of polycyclic aromatic amines in liquid chromatography[J].Anal. Chem. 1984, 56(7):1096-1102.
    [118] A. Robbat, N. P. Corso, P. J. Doherty, M. H. Wolf. Gas chromatographic chemiluminescent detection and evaluation of predictive models for identifying nitrated polycyclic aromatic hydrocarbons in a diesel fuel particulate extract [J]. Anal Chem, 1986, 58(10): 2078-2084.
    [119] A. J. Weber, M. L.Grayeski. Peroxyoxalate chemiluminescence detection with capillary liquid chromatography[J].Anal. Chem. 1987, 59(10):1452-1457.
    [120] N. Imaizumi, K. Hayakawa, M. Miyazaki, K. Imai. Stability of bis (2, 4, 6-trichlorophenyl) oxalate in high-performance liquid chromatography for chemiluminescence detection [J]. Analyst, 1989,114(2): 161-164.
    [121] K. Hayakawa, R. Kitamura, M. Butoh, N. Imaizumi, M. Miyazaki, Determination of diamino- and aminopyrenes by high performance liquid chromatography with chemiluminescence detection[J]. Anal. Sci. 1991, 7:573-577.
    [122] J. Cepas, M. Silva, D. Perez-Bendito. Zero-Dead-Volume Peroxyoxalate chemiluminescence detection in liquid chromatography[J]. Anal. Chem. 1995, 67(23):4376-4379.
    [123] K. Hayakawa, M. Butoh, M. Miyazaki. Determination of dinitro-and nitropyrenes in emission particulates from diesel and gasoline engine, vehicles by liquid chromatography with chemiluminescence detection after precolumn reduction[J].Anal. Chim.Acta 1992, 266:251-256.
    [124] N. Imaizumi, K. Hayakawa, Y. Suzuki, M. Miyazaki, Determination of nitrated pyrenes and their derivatives by high-performance liquid chromatography with chemiluminescence detection after on-line electrochemical reduction[J]. Biomed Chromatogr. 1990 ,4:108-112.
    [125] K. Hayakawa, T. Terai, P.G. Dinning, K. Akutsu, Y. Iwamoto, R. Etoh, T. Murahashi. An on-line reduction HPLC/chemiluminescence detection system for nitropolycyclic aromatic hydrocarbons and metabolites [J]. Biomed. Chromatogr. 1996,10 (6) 346-350.
    [126] H. Li, R. Westerholm, Determination of mono- and di-nitro polycyclicaromatic Hydrocarbons (nitro-PAH) by On-line Reduction and High Performance Liquid Chromatography with chemiluminescence detection [J]. J. Chromatogr. A 1994, 664:177-182.
    [127] K. Hayakawa, K. Noji, N. Tang, A. Toriba, R. Kizu, S. Sakai, Y. Matsumoto, A high-performance liquid chromatographic system equipped with on-line reducer, clean-up and concentrator columns for determination of trace levels of nitropolycyclic aromatic hydrocarbons in airborne particulates[J]. Anal. Chim. Acta. 2001, 445:205-212.
    [128] T. Murahashi, R. Kizu, H. Kakimoto, A. Toriba, K. Hayakawa. 2-nitrofluoranthene, 1-, 2- and 4-nitropyrenes and 6-nitrochrysene in die-, sel-engine exhaust and airborne particulates[J]. J. Health Sci. 1999, 45: 244-250.
    [129] K. Hayakawa, T. Murahashi, K. Akutsu, T. Kanda, N. Tang, H Kakimoto, A. Toriba, R. Kizu, Comparison of polycyclic aromatic hydro-Carbons and nitropolycyclic aromatic hydrocarbons in airborne and automobile exhaust particulates[J]. Polycycl. Aromat. Compd. 2000, 20:179-190.
    [130] K. Hayakawa, N. Tang, K. Akutsu, T. Murahashi, H. Kakimoto, R. Kizu, A. Toriba. Comparison of polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons in airborne particulates collected in downtown and suburban Kanazawa [J].Jap. Atmos. Environ. 2002, 36(35):5535-5541.
    [131] T. Murahashi, K. Hayakawa, A sensitive method for the determination of 6-nitrochrysene, 2-nitrofluoranthene and 1-, 2- and 4-nitropyrenes in airborne particulates using high-performance liquid chromatography with chemiluminescence detection[J]. Anal. Chim. Acta. 1997, 343: 251-257.
    [132] N. Tang, A. Toriba, R. Kizu, K. Hayakawa, Improvement of an automatic HPLC system for nitropolycyclic aromatic hydrocarbons: removal of an interfering peak and increase in the number of analytes[J]. Anal Sci, 2003, 19: 249-253.
    [133] N. Tang, R. Taga, T. Hattori, K. Tamura, A. Toriba, R. Kizu, K. Hayakawa, Determination of atmospheric nitrobenzanthrones by high-performance liquid chromatography with chemiluminescence detection[J]. Anal. Sci. 2004, 20: 119-123.
    [134] N. Tanga, T. Hattoria, R. Tagaa, K. lgarashia, X. Yang, K. yakawa. Polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons in urban air particulates and their relationship to emission sources in the Pan-Japan Sea countries[J]. Atmos. Enviro. 2005, 39(32): 5817-5826.
    [135] 唐宁,鸟羽阳,木津良一,早川和一,化学发光检测/HPLC法测定大气中硝基多环芳烃[J].世界科技研究与发展.2004,26(4):113-118.
    [136] K. Hayakawa, C. Lu, S. Mizukami, A. Toriba N. Tang. Determination of 1-nitropyrene metabolites by high-performance liquid chromatography with chemiluminescence detection [J]. J. Chromatogr. A, 2007, 1107(1-2): 86-289.
    [137] G. H. Ragab. H. Nohta, K. Zaits. Chemiluminescence determination of catecholamines in human blood plasma using 1, 2-bis(3-chlorophenyl) ethylenediamine as pre-column derivatizing reagent for liquid chromatography[J]. Anal Chim. Acta 2000, 403(1-2): 155-160.
    [138] K. Takezawa, M. Tsunoda, K. Murayama, T. Santa, K. Imai. Automatic semi-microcolumn liquid chromatographic determination of catecholamines in rat plasma utilizing peroxyoxalate chemiluminescence reaction[J]. Analyst, 2000, 125 (2): 293-296.
    [139] M. Tsunoda, M. Nagayama, T. Funatsu, S. Hosoda, K. Imai. Catecholamine analysis with microcolumn LC-peroxyoxalate chemiluminescence reaction detection[J]. Clin. Chim. Acta, 2006, 366(1-2): 168-173.
    [140] S. lgarashi, T. Nagoshi, T. Kotake. Properties of water-soluble porphyrin as a sensitizer in peroxyoxalate-hydrogen peroxide chemiluminescence system and its application to the quenching fluorometric determination of copper(Ⅱ)[J]. Anal. Lett. 2000, 33(15), 3271-3283.
    [141] K. Honda, K. Miyaguchi, K. Imai. Evaluation of fluorescent compounds for peroxyoxalate chemiluminescence detection[J]. Anal. Chim. Acta. 1985, 177:111-120.
    [142] B. Mann, M. L. Grayeski. New Chemiluminescent derivatizing agent for the analysis of aldehydes and ketones by high performance liquid chromatography with peroxyoxalate chemiluminescenece[J].J. Chromatogr. 1987 ,386 :149-158.
    [143] M. L. Grayeski, J. K. DeVasto. Coumarin derivatizing agents for carboxylic acid detection using peroxyoxalate chemiluminescence with liquid chromatography [J].Anal.Chem. 1987 ,59:1203-1206.
    [144] P. J. M. Kwakman, H. P. V. Schaik, U. A. T. Brinkman, G J. D. Jong. N -(Bromoacetyl) - N'- [ 5 - ( dimethylamino) naphthalene - 1 - sulphonyl ] piperazine as a sensitive labeling reagent for the determination of carboxylic -acids by liquid chromatography with peroxyoxalate chemiluminescence and fluorescence detection[J]. Analyst, 1991,116:1385-1390.
    [145] A. Gachanja , P. Worsfold. Determination of aliphatic carboxylic acids in nonaqueous matrices by liquid chromatography with peroxyoxalate chemiluminescence detection[J]. Anal. Chim. Acta ,1994 ,290 .226-232.
    [146] S. Boyatozis, J. Nikokavouras. Chemiluminescence of lophines inmicellar media irradiation induced regeneration of p-dimethyl-laminolophine during the light reaction[J]. J. Photochem. Photobio. A 1988 ,44 :335-347.
    [147] Y. Sun, M. Wada, O. Al-Dirbashi, N.Kuroda, H. Nakazawa. K.Nakashima. High-performance liquid chromatography with peroxyoxalate chemilumlnescnece detection of bisphenoi A migrated from polycarbonate baby bottles using 4-(4, 5-diphenyl-1H-imidazol-2-yl)benzoyl chloride as a label[J]. J. Chromatogr. B, 2000,749:49-56.
    [148] K. Sato, Y. Tobita. Chemiluminescence determination of tranexamic acid and. vitamin[J].J. Anal. Sci. 1997, 13(supplement), 471-474.
    [149] P. Prados, S. Higashidate, K. Imai. A fully automated HPLC method for the determination of catecholamines in biological samples utilizing ethylenediamine condensation and peroxyoxalate chemiluminescence detection[J]. Biomed. Chromatogr. 1994 , 8(1):1-8.
    [150] Sato K, Otake J, Tanaka S. Determination of methamphetamine by HPLC with chemiluminescence detection [J].Bunseki Kagaku, 1997,46(12):991-994.
    [151] J. Ishida, M. Takada, N. Hitoshi, R. Iizuka, M. Yamaguchi. 4-Dimethylaminobenzylamine as a sensitive chemiluminescence derivatization reagent for 5-hydroxyindoles and its application to their quantification in human platelet-poor plasma [J]. J. Chromatogr. B 2000, 738(2):199-206.
    [152] J. J. Soto-Chinchilla, L. Gamiz-Gracia, A. M. Garcia-Campana, K. Imai, L. E. Garcia-Ayuso. High performance liquid chromatography post-column chemiluminescence determination of sulfonamide residues in milk at low concentration levels using bis[4-nitro-2-(3,6,9-trioxadecy- loxycarbonyl) phenyl]oxalate as chemiluminescent reagent[J]. J. Chromatogr. A, 2005, 1095, 60-67.
    [153] K. Miyaguchi ,K. Honda, K. Imai. Sub - picomol chemiluminescence detection of Dns - amino acids separated by high performance liquid chromatography with gradient elution[J]. J. Chromatogr. 1984, 303:173-176.
    [154] K. Miyaguchi, K. Honda, and K. Imai. Microbore high performance liquid chromatography and chemiluminescence detection of DNS-amino acids[J]. J. Chromatogr. 1984, 316:501-505.
    [155] K. Miyaguchi, K. Honda, T. Toyo'oka, K. Imai. Application of a microbore high performance liquid chromatography chemiluminescent detection system to the N -terminal amino acid analysis of bradykinin [J]. J. Chromatogr, 1986, 352:255-263.
    [156] K. Hayakawa, N. Imaizumi, H. Ishikura, E. Minogawa, N. Takayama, H. Kobayashi, M. Miyazaki. Determination of methamphetamine, amphetamine and piperidine in human urine by high-performance liquid chromatography with chemiluminescence detection[J]. J. Chromatogr. 1990,515 :459-466.
    [157] P. J. M. Kwakman, D. A. Kamminga, U. A. Th. Brinkman, and G J. de Jong. Sensitive liquid chromatographic determination of alkylphenols, nitro - phenols and chlorophenols by precolumn derivatization with dansyl chloride, postcolumn photolysis and peroxyoxalate chemiluminescence detection [J]. J . Chromatogr. 1991,553 :345-356.
    [158] O. Nozaki, Y. Ohba, K. Imai. Determination of serum estradiol by normal-phase high performance liquid chromatography with peroxyoxalate chemiluminescence detection[J].Anal. Chim.Acta ,1988,205 :255-260.
    [159] H. Yamada, Y. Kuwahara, Y. Takamatsu, T. Hayase. A new sensitive determination method of estradiol in plasma using peroxyoxalate ester chemiluminescence combined with an HPLC system [J]. Biomed. Chromatogr. 2000,14(5):333-337.
    [160] S. M. Lloret ,C. M. Legua ,J . V. Andres , P. C. Falco. Sensitive determination of aliphatic amines in water by HPCL with chemiluminescent detection[J]. J . Chromatogr. A, 2004,1035:75-82.
    [161] S. Meseguer-Lloret, C. Molins-Legua, P. Campins-Falco. Selective determination of ammonium in water based on HPLC and chemiluminescence detection [J]. Anal. Chim. Acta, 2005, 536:121-127.
    [162] O. Nozaki, T. Iwaeda, Y. Kato. Detection of substances with alcoholic or phenolic hydroxyl groups by generation of hydrogen peroxide with imidazole and peroxyoxalate chemiluminescence [J]. J. Biolumin. Chemilumin .1995, 10(6): 339-344.
    [163] E. Ponten, C.Viklund, K. Irgum, S.T. Bogen, A. N. Lindgrenpp, Solid phase chemiluminescence detection reactors based on in situ polymerized methacrylate materials[J]. Anal. Chem. 1996, 68(24):4389-4396.
    [164] M. Wada, K. Inoue, A. Ihara, N. Kishikawa, K. Nakashima, N. Kuroda. Determination of organic peroxides by liquid chromatography with on-line post-column ultraviolet irradiation and peroxyoxalate chemiluminescence detection[J]. J. Chromatogr. A, 2003, 987(1-2):189-195.
    [165] S. Ahmed, S. Fujii, N. Kishikawa, Y. Ohba, K. Nakashima, N. Kuroda. Selective determination of quinones by high-performance liquid chromatography with on-line post column ultraviolet irradiation and peroxyoxalate chemiluminescence detection[J]. J. Chromatogr. A, 2006, 1113(1-2):76-82.
    [166] A. Amponsaa-Karikari, N. Kishikawa, Y. Ohba, K. Nakashima, N. Kuroda Determination of artemisinin in human serum by high-performance liquid chromatography with on-line UV irradiation and peroxyoxalate chemiluminescence detection[J]. Biomed. Chromatogr. 2006, 20(11): 1157-1162.
    [167] K. Nakashima, N. Kuroda, S.Kawaguchi, M. Wada, S.Akiyama. Peroxyoxalate chemiluminescent assay for oxidase activities based on detecting enzymatically formed hydrogen peroxide[J]. J. Biolumin. Chemilumin .2005,10(3):185 - 191.
    [168] P. I. Van Zoonen, C.Gooijer, N.H.Velthorest, R.W. Frei, J.H. Wolf, J, Gerrits, F. Flentge. HPLC detection of choline and acetylcholine in serum and urine by an immobilized enzyme reactor followed by chemiluminescence detection [J]. J. Pharm. Biomed. Anal. 1987, 5(5):485-492
    [169] P. Van Zoonen, I. Deherder, C. Gooijer, N. H. Velthorst. R. W. Frei. Detection of oxidase generated hydrogen - peroxide by a solid - state peroxyoxalate chemiluminescence detector [J]. Anal. Lett. 1986,19:1949-1961.
    [170] H. Jansen, U. A. T. Brinkman, R W.Frei. Stereoselective determination of L-amino acids using column liquid chromatography with an enzymatic solid-phase reactor and chemiluminescence detection [J]. J. Chromatogr. 1988, 440:217-223.
    [171] J. H. Mike, R. J. Veraell, F. Hutterer. HPLC determination of hepatic cholesterol 7a-hydroxylase activity using immobilized cholesterol oxidase and chemiluminescence detection[J]. J. Liq. Chromatogr. 1990, 13(6):1215-1236.
    [172] S. Kamei, A. Ohkubo, S. Saito, S. Takagi. Polyamine detection system for high-performance liquid chromatography involving enzymic and chemiluminescent reactions[J].Anal.Chem. 1989, 61(17):1921-1924.
    [173] Katayama, M. et al. determination of cyclosporine a by high-performance liquid chromatography with aryl oxalate chemiluminescence detection [J]. Anal. Lett. 1998, 31(4): 621-629.
    [174] A. Ellingson, H. T.Karnes. Investigation of far red dyes for use in peroxyoxalate chemiluminescencedetection and analysis of the cy5 derivative of amantadine hydrochloride in human plasma[J].Biomed.Chromatogr.1998,12(1):8-12.
    [175] Z. Zhang, W. R. G. Baeyens, X. Zhang, Y. Zhao and G. Van Der Weken. Chemiluminescence detection coupled to liquid chromatography for the determination of penicillamine in human urine[J]. Anal.Chim. Acta. 1997, 347(3):325-332
    [176] S. Tsukada, H. Miki, J. M. Lin, T. Suzuki, M. Yamada. Chemiluminescence from fluorescent organic compounds induced by cobalt(II)catalyzed decomposition of peroxomonosulfate[J].Anal.Chim.Acta. 1998, 371 (2-3) :163-170.
    [177] M. Cobo, M. Silva. Continuous solid-phase extraction and dansylation of low-molecular-mass amines coupled on-line with liquid chromatography and peroxyoxalate chemiluminescence-based detection [J]. J. Chromatogr. A, 1999, 848,(1-2):105-115.
    [178] N. W.Barnett, R. Bos, S. W. Lewis, Rational design and preliminary analytical evaluation of two novel oxamide reagents for aqueous peroxyoxalate chemiluminescence[J]. Analyst. 1998,123 (6):1239-1245.
    [179] M. Shamsipur, M. J. Chaichi, A. R. Karami. A study of peroxyoxalate-chemiluminescence of acriflavine[J]. Spectrochim. Acta.(Part A), 2003, 59(3) :511-517.
    [180] N. Hanaoka. Post-column adjustment of conditions for peroxyoxalate chemiluminescene detection for high-performance liquid chromatography[J]. J.Chromatogro. A, 1990,503(1):155-165.
    [181] R. D. Gerardi, N. W. Barnett, S. W. Lewis. Analytical applications of tris (2, 2'-bipyridyl) ruthenium(III) as a chemiluminescent reagent[J].Anal. Chim. Acta, 1999, 378(1): 1-41.
    [182] M. M. Richter. Electrochemiluminescence (ECL)[J]. Chem. Rev. 2004, 104: 3003-3036.
    [183] F. Li, Y. Q. Pang, X .Q. Lin, H. Cui, Determination of noradrenaline and dopamine in pharmaceutical injection samples by inhibition flow injection electrochemiluminescence of ruthenium complexes[J]. Talanta, 2003, 59 (3):627-636.
    [184] T. Perez-Ruiz, C. Martinez-Lozano, M. D. Garcia. Determination of propoxur in environmental samples by automated solid-phase extraction followed by flow-injection analysis with tris(2,2'-bipyridyl)ruthenium(II) chemiluminescence detection [J]. Ana. Chim. Acta 2007, 584(2): 275-280.
    [185] B. A. Gorman, N. W. Barnett, R. Bos.Detection of pyrrolizidine alkaloids using flow analysis with both acidic potassium permanganate and tris(2,2'-bipyridyl) ruthenium(H)chemiluminescence[J].Anal. Chim. Acta 2005, 541(1-2):117-122.
    [186] X. H. Sun, J. F. Liu, W.D. Cao, X. R. Yang, E. K. Wang, Y. S. Fung. Capillary electrophoresis with electrochemiluminescence detection of procyclidine in human urine pretreated by ion-exchange cartridge[J]. Anal. Chim. Acta, 2002, 470(2): 137-145.
    [187] K. Tsukagoshi, N. Okuzono, R. Nakajima, Separation and determination of emetine dithiocarbamate metal complexes by capillary electrophoresis with chemiluminescence detection of the tris(2,2'-bipyridine)- ruthenium(II) complex [J]. J. Chromatogr. A 2002, 958 (1-2): 283-289.
    
    [188] J. F. Liu, X. R.Yang, E. K. Wang. Direct tris (2, 2'-bipyridyl) ruthenium (II) electrochemiluminescence detection of polyamines separated by capillary electrophoresis [J]. Electrophoresis, 2002, 24 (18): 3131-3138.
    [189] S. P. Forry, R. M. Wightman. Electrogenerated chemiluminescence detection in reversed-phase liquid chromatography [J]. Anal. Chem. 2002, 74(3): 528-532.
    [190] X. B. Yin, S. J. Dong, E. K. Wang. Analytical applications of the electrochemiluminescence of tris (2, 2'-bipyridyl) ruthenium and its derivatives[J]. Trends Anal. Chem. 2004, 23(6):32-441.
    [191 H. N. Choi, S.H. Cho, W. Y. Lee. Electrogenerated chemiluminescence from tris(2,2'-bipyridyl) ruthenium(II) immobilized in titania-perfluorosulfonated ionomer composite films [J]. Anal. Chem. 2003, 75(16):4250-4256.
    [192] H. N. Choi, S. H. Cho, Y. J. Park, D. W. Lee, W. Y. Lee. Sol-gel-immobilized Tris(2,2'-bipyridyl)ruthenium(II) electrogenerated chemiluminescence sensor for high-performance liquid chromatography [J]. Anal. ChimActa. 2005, 541(1-2):47-54.
    [193] H. Morita, M. Konishi. Electrogenerated chemiluminescence derivatization reagents for carboxylic acids and amines in high performance liquid chromatography using tris(2,2'-bipyridine)ruthenium(II) [J]. Anal. Chem. 2002, 74(7):1584-1589.
    [194] H. Morita, M. Konishi. Electrogenerated chemiluminescence derivatization reagent, 3-isobutyl-9,10-dimethoxy-1,3,4,6,7,11b- hexahydro-2H-pyrido[2,1 -a] isoquinolin-2-ylamine, for carboxylic acid in high-performance liquid chromatography using tris(2,2'-bipyridine)ruthenium(II) [J]. Anal. Chem. 2003, 75(4): 940-946.
    [195] C. Blatchford, D. J. Malcolme-Lawes, Electrochemiluminescence as a detection technique for reversed-phase high-performance liquid chromatography [J]. J. Chromator. A, 1985, 321:227-234.
    [196] H. Kodamatani, H. Shimizu, K. Saito, S. Yamazaki , Y. Tanaka. High performance liquid chromatography of aromatic compounds with photochemical decomposition and tris(2,2'-bipyridine)ruthenium(III) chemiluminescence detection [J]. J. Chromatogr. A, 2006, 1102(1-2):200-205.
    [197] Y. J. Park, D. W. Lee, W. Y. Lee. Determination of beta-blockers in pharmaceutical preparations and humanurine by high-performance liquid chromatography with tris(2,2'-bipyridyl)ruthenium(II) electrogenerated chemiluminescence detection [J], Anal. Chim. Acta. 2002,471(1):51-59.
    [198] X. Chen, C. Q. Yi, M. J. Li, X. Lu, Z. Li, P. W. Li, X. R. Wang. Determination of sophoridine and related lupin alkaloids using tris(2,2'-bipyridine)ruthenium electrogenerated chemiluminescence [J]. Anal. Chim. Acta 2002, 466 (1):79-86.
    [199] K. Yokota, K. Saito, S. Yamazaki, A. Muromatsu. New detection method of alpha-, beta-, and gamma-amino acids coupled with an on-line photochemical oxidation and tri(2,2'-bipyridine)-ruthenium(III) chemiluminescence [J]. Anal. Lett. 2002, 35 (1):185:188.
    [200] S. Yamazaki, K. Hara, K. Yokota, T. Ikegami, D. Konari, K. Saito. Detection of polyols by HPLC coupled with an on-line photochemical oxidation reactor and chemiluminescence detection [J]. J. High Re. Chromator. 2000, 23 (2): 127-130.
    [201] K. Uchikura. Determination of aromatic and branched-chain amino acids in plasma by HPLC with electrogenerated Ru(bpy)_3~(3+) chemiluminescence detection [J]. Chem. Pharm. Bull. 2003, 51 (9): 1092-1094.
    [202] K. Uchikura, K.Sakurada, K. Tezuka, K. Koike, Determination of free hydroxyproline and proline in serum by HPLC with electrogenerated chemiluminescence detection using tris(2,2'-bipyridine)ruthenium(Il) [J] , Bunseki Kagaku. 2002, 51 (10): 953-957.
    [203] T. Ikehara, N. Habu, I. Nishino, H. Kamimori. Determination of hydroxyproline in rat urine by high-performance liquid chromatography with electrogenerated chemiluminescence detection using tris(2,2'-bipyridyl) ruthenium(11) [J]. Anal. Chim.Acta. 2005, 536(1-2):129-133.
    [204] T. Hori, H. Hashimoto, M. Konishi. Determination of erythromycin A in rat plasma and urine by high performance liquid chromatography with chemiluminescence detection using Tris(2,2'-bipyridine)ruthenium(II)[J]. Biomed. Chromatogr. 2006, 20(9):917-923.
    [205] K. Uchikura, N. Satou. Determination of sparteine in human serum by column-switching HPLC with electrogenerated chemiluminescence detection using tris (2, 2'-bipyridine) ruthenium(II) [J]. Bunseki Kagaku. 2003, 52 (8): 641-645.
    
    [206] N. Niina, H. Kodamatani, K. Saito, S. Yamazaki, Detection of tetramethylthiuram disulfide and related compounds using the chemiluminescence of tris (2,2'-bipyridyl) ruthenium(III) canon[J], Bunseki Kagaku, 2003,52 (9): 763 -767.
    [207] M. Zorzi, P. Pastore, F. Magno, A single calibration graph for the direct determination of ascorbic and dehydroascorbic acids by electrogenerated luminescence based on Ru(bpy)_3~(2+) in aqueous solution[J]. Anal. Chem. 2000, 72 (20): 494-4939.
    [208] K. Uchikura, Ru(bpy)_3~(3+) electrochemiluminescence detection of aliphatic and aromatic amines with diketene[J]. Chem. Lett. 2003, 32 (1): 98-99.
    [209] H. Yoshida, K. Hidaka, J. Ishida, K. Yoshikuni, H. Nohta, M. Yamaguchi. Highly selective and sensitive determination of tricyclic antidepressants in human plasma using high-performance liquid chromatography with post-column tris(2,2'-bipyridyl) ruthenium(III) chemiluminescence detection[J]. Anal .Chim Acta. 2000, 413 (1-2):137-145.
    [210] H. Kodamatani, K. Saito, N. Niina, S. Yamazaki, Y. Tanaka. Simple and sensitive method for determination of glycoalkaloids in potato tubers by high-performance liquid chromatography with chemiluminescence detection [J]. J. Chromatogr. A, 2005, 1100(1):26-31.
    [211] T. Perez-Ruiz, C. Martinez-Lozano, V. Tomas , J. Martin.Automated solid-phase extraction and high-performance liquid chromatographic determination of using post-column photolysis and tris(2,2'-bipyridyl) ruthenium(III) chemiluminescence[J]. J. Chromatogr. A 2005,1077(1): 49-56.
    [212] H. Y. Han, Z. K. He ,Y. E. Zeng. Chemiluminescence Method for the Determination of glutathione in human serum using the Ru(phen)_3~(2+) - KMnO_4 system[J]. Microchimi Acta. 2006, 155(3-4):431-434.
    [213] H. Kodamatani, Y. Komatsu, S. Yamazaki, K. Saito. Highly sensitive and simple method for measurement of pipecolic acid using reverse-phase ion-pair high performance liquid chromatography with tris(2,2'-bipyridine)ruthenium(III) chemiluminescence detection[J]. J. Chromatogr. A 2007,1140(1-2):88-94.
    [214] R. W. Abbott, A. Townshend, R. Gill. Determination of morphine in body fluids by high-performance liquid chromatography with chemiluminescence detection[J]. Analyst 1987, 112: 397-406.
    [215] E. Amiott, A. R. J. Andrews, Morphine determination by HPLC with improved chemiluminescence detection using a conventional silica based column [J]. J. Liq. Chromatogr. Relat. Technol. 1997, 20(2): 311-325.
    [216] 朱龙,封满良等.HPLC分离化学发光检测药物中的马钱子碱、士的宁和麻黄类生物碱[J].高等学校化学学报,1996,17(11):1693-1696.
    [217] 朱龙,封满良,万秀琴,吕九如,吗啡和海洛因等生物碱的高效液相色谱化学发光测定[J].分析化学,1996,24(11):1295-1297.
    [218] 范顺利,张立科,魏彦林,林金明.高效液相色谱-高锰酸钾氧化化学发光法测定水中的痕量苯二酚[J].色谱,2006,24(2):148-151.
    [219] S. L. Fan, L. K. Zhang, J. M. Lin. Post-column detection of benzenediols and 1, 2, 4-benzenetriol based on acidic potassium permanganate chemiluminescence [J]. Talanta 2006, 68 (3): 646-652.
    [220] 卫洪清,刘二保,任荣芳,赵秀丽,李晓霞,江凤仙.高效液相色谱化学发光测定中药制剂中2,3,5,4’-四羟基二苯乙烯-2-O-β-D-葡萄糖苷[J].光谱学与光谱分析.2005,25(6):844-847.
    [221] 沈祥,周光明,游水英,黄成,王莉,高智席.低压离子色谱分离-次黄嘌呤增敏化学发光联用检测亚硫酸盐[J].食品科学.2006,27(3):185-187.
    [222] 孙永华,张琰图,章竹君.高液相色谱/化学发光法测定盐酸青藤碱[J].分析测试学报.2006,25(2):87-89.
    [223] G. H. Wan, H. Cui, H. S. Zheng, J. Zhou, L. J. Liu, X. F. Yu. Determination of tetracyclines residues in honey using high-performance liquid chromatography with potassium permanganate-sodium sulfite-β-cyclodextrin chemiluminescence detection[J]. J. Chromatogr. B 2005, 824 (1-2): 57-64.
    [224] Y. Huang, W. Liu. Flow-injection chemiluminescence determination of phentolamine based on its enhancing effect on the luminal-potassium ferricyanide system[J]. J. Pharm. Biomed. Anal 2005, 38(3): 537-542.
    [225] Z. Wang, Z. Zhang, X. Zhang, Z. Fu. Flow-injection inhibition chemiluminescence determination of indapamide based on luminol-ferricyanide reaction[J]. J. Pharm. Biomed. Anal 2004, 35(1): 1-7.
    [226] J. Du, Y. Li, J. Lu. Flow injection chemiluminescence determination of polyhydroxy phenols using luminol-ferricyanide/ferrocyanide system[J]. Talanta. 2001, 55(6): 1055-1058.
    [227] J. Du, L. Shen, J. Lu. Flow injection chemiluminescence determination of epinephrine using epinephrine-imprinted polymer as recognition material[J]. Anal. Chim.Acta. 2003, 489(2):183-189.
    [228] Z. H. Song, L. Wang. Chemiluminescence inhibition assay for folic acid using flow injectionanalysis[J]. Phytochemical Anal. 2003,14(4):216-220.
    [229] A. Mani, M. R. Ebrahimkhani, S. Ippolito, R. Ollosson, K. P. Moore. Metalloprotein-dependent decomposition of S-nitrosothiols:Studies on the stabilization and measurement of S-nitrosothiols in tissues[J]. Free Radical Biology and Medicine. 2006, 40(9): 1654-1663.
    [230] Y. F. Mestre, L. L. Zamora, J. M. Calatayud, B. F. Band. Flow injection analysis direct chemiluminescence determination of ergonovine maleate enhanced by hexadecylpyridinium chloride [J].Analyst.l999,124(3):413-416.
    [231] S. Han, E. Liu, H. Li. On-line chemiluminescence determination protocatechuic aldehyde and protocatechuic acid in pharmaceutical preparations by capillary electrophoresis[J]. J. Pharm. Biomed. Anal. 2005, 37(4):733-738.
    [232] W. W. Hea, X. W. Zhou, J. Q. Lu. Simultaneous determination of benserazide and levodopa by capillary electrophoresis-chemiluminescence using an improved interface[J]. J. Chromatogr. A 2006,131: 289-292.
    [233] D. He, Z. Zhang, H. Zhou, Y. Huang. Micro flow sensor on a chip for the determination of terbutaline in human serum based on chemiluminescence and a molecularly imprinted polymer[J]. Talanta. 2006, 69(5):1215-1220.
    [234] H. Zhou, Z. Zhang, D. He, Y. Xiong. Flow through chemiluminescence sensor using molecularly imprinted polymer as recognition elements for detection of salbutamol[J]. Sensors and Actuators B: Chemical, 2005, 107(2): 798-804.
    [235] D. He, Z. Zhang, Y. Huang,Y. Hu .Chemiluminescence microflow injection analysis system on a chip for the determination of nitrite in food[J]. Food Chem. 2007, 101(2): 667-672.
    [236] A. Pena, C. M. Lino, M. I. Silveira, A. C. Calokerinos, L. P. Palilis. Determination of tetracycline and its major degradation products by chemiluminescence[J].Anal. Chim.Acta., 2000, 405(1-2):51-56.
    [237] J. Ishida, M.Yamaguehi, T. Nakaha, M. Nakamura. 4, 5-Diaminophthalhy drazide as a highly sensitive chemiluminescence reagent for a-keto acids in liquid chromatography[J].Anal. Chim.Acta. 1990, 231(1):1-6.
    [238] H. Cui, C. He, G. Zhao. Determination of polyphenols by high-performance liquid chromatography with inhibited chemiluminescence detection [J]. J. Chromatogr. A, 1999, 855(1): 171-179.
    [239] 崔华,贺彩霞,赵贵文.苯二酚异构体的高效液相色谱化学发光检测法研究[J].高等学校化学学报,2000,21(6):876-878.
    [240] J. Zhou, H. Cui, G. Wan, H. Xu, Y. Pang, C. Duan. Direct analysis of trans-resveratrol in red wine by high performance liquid chromatography with chemiluminescent detection[J]. Food Chemistry. 2004, 88(4): 613-620.
    [241] 贺彩霞,崔华,孙玉刚,赵化章,邵学广,赵贵文.高效液相色谱化学发光抑制检测法测定烟草中的绿原酸和芸香苷[J].分析化学1999,27(9):1110.
    [242] 杨光明,周光明,胡君梅.高效液相色谱—抑制化学发光法检测药物中的扑热息痛[J].西南师范大学学报(自然科学版).2003,28(3):500-503.
    [243] 张迎雪,陈福南,章竹君.高效液相色谱与微超滤技术联用化学发光检测人体血清中的盐酸多巴酚丁胺[J].分析化学.2004,32(6):769-771.
    [244] 陈福南,张迎雪,章竹君,何德勇.高效液相色谱化学发光检测人体血清及尿样中的盐酸肾上腺素[J].分析化学.2005,33(12):1771-1774.
    [245] 杨维平,张琰图,章竹君.高效液相色谱.化学发光法研究异烟肼和利福平[J].化学学报.2003,61(2):303-306.
    [246] 张琰图,杨维平,章竹君.反相高效液相色谱-化学发光法测定复合维生素片剂中的维生素B_1和B_2[J].色谱.2003,21(4):391-393.
    [247] M. M. Galera, M. D. Gil Garcia, R. S. Valverde, Determination of nine pyrethroid insecticides by high-performance liquid chromatography with post-column photoderivatization and detection based on acetonitrile chemiluminescence[J]. J. Chromatogr. A, 2006, 1113, (1-2): 191-197.
    [248] H. Han, Z. He, X. Li, Y. Zeng. Chemiluminescence determination of gluconic Acid in pharmaceutical formulations using Ru(bipy)_3 ~(2+)-KIO_4-Ce(Ⅳ) system[J]. Anal. Lett. 1999, 32(11): 2297-2310.
    [249] I. I. Koukli, A. C. Calokerinos. Continuous - flow chemiluminescence. determination of some corticosteroids [J]. Analyst.1990, 115: 1553-1557.
    [250] 吴迎春,刘谦光,王亦群,赖普辉,孙文基.HPLC-化学发光法测定注射液中的氢化可的松[J],分析试验室,2000,19(6):30-32.
    [251] I. M. Psarellis, E. G. Sarantonis, A. C. Calokerinos. Flow injection chemiluminometric determination of sodium cyclamate[J]. Anal. Chim. Acta. 1993,272 (2): 265-270.
    [252] Z. Zhang, W. R. G Baeyens, X. Zhang, Y. Zhao, G VanDerWeken. Chemiluminescence detection coupled to liquid chromatography for the determination of penicillamine in human urine [J]. Anal .Chim. Acta. 1997, 347(3):325-332.
    [253] Y. Zhao, W. R. G Baeyens, X.R.Zhang, A. C. Calokerinos, K. Nakashima, G Van Der Weken, A. Van Overbeke. Chemiluminescence determination of tiopronin and its metabolite 2-mercaptopropionic acid in human urine by HPLC coupled with flow injection[J]. Chromatographia, 1997, 44(1-2), 31-36.
    [254] J. Ouyang, W. R. G Baeyens, J. Delanghe, G Van Der Weken, W. Van Daele, D. De Keukeleire. Chemiluminescence-based liquid chromatographic determination of hydrochlorothiazide and captopril [J].. Anal. Chim. Acta. 1999, 386(3):257-264.
    [255] Q. Zhang, M. Lian, L. Liu, H. Cui. High-performance liquid chromatographic assay of parabens in wash-off cosmetic products and foods using chemiluminescence detection [J].Ana. Chim. Acta.2005, 537(1-2):31-39.
    [256] Q. Zhang, A. Myint, L. Liu, H.Cui. Chemiluminescent detection of p-hydroxybenzoic acid in apple juice [J]. Journalof University of Science and Technology of China. 2006, 36 (4):426-431.
    [257] Q. Zhang, H. Cui. Simultaneous determination of quercetin, kaempferol, and isorhamnetin in phytopharmaceuticals of Hippophae rhamnoides L. by high-performance liquid chromatography with chemiluminescence detection [J]. J. .Sep. Sci. 2005, 28 (11):1171-1178.
    [258] Q. Zhang, H. Cui, A. Myint, M. Lian,L. Liu. Sensitive determination of phenolic compounds using high-performance liquid chromatography with cerium(IV)-rhodamine 6G-phenolic compound chemiluminescence detection[J]. J. Chromatogr. A, 2005,109(1-2):94-101.
    [259] G. H. Wan, H. Cui, Y. L. Pan, P. Zheng, L. J. Liu. Determination of quinolones residues in prawn using high-performance liquid chromatography with chemiluminescence detection [J]. J. Chromatogr. B, 2006, 843(1): 1-9.
    [260] H. Cui, J. Zhou, F. Xu, C. Lai, G H. Wan. Determination of phenolic compounds using high-performance liquid chromatography with Ce~(4+)-Tween 20 chemiluminescence detection[J].Anal. Chim.Acta 2004,511:273-279.
    [261] J. M. Lin, M. Yamada. Chemiluminescent reaction of fluorescent organic compounds with KHSO_5 using cobalt(II) as catalyst and its first application to molecular imprinting[J]. Anal. Chem. 2000, 72(6): 1148-1155.
    [262] S. Tsukada, H. Miki , J. M. Lin, T. Suzuki, M. Yamada. Chemiluminescence from fluorescent organic compounds induced by Cobalt(II) catalyzed decomposition of peroxomonosulfate[J].Anal. Chim.Acta 1998,371 : 163-171.
    [263] H. Goto, J.M. Lin, M. Yamada, Post-column detection of isoluminol-labelled bile acids on barium peroxide as chemiluminescence reaction media[J], Bunseki Kagaku.1999,48(10): 945-948.
    [264] J. M. Lin, S. Hanaoka, M. Yamada, Post-column detection of amino acids based on the chemiluminescent decomposition of H_2O_2 catalyzed by copper(II)-amino acids complexes[J]. Chromatography. 1999, 20(4), 342-343.
    [265] S. Hanaoka, J. M. Lin, M. Yamada. Chemiluminescence behavior of the decomposition of hydrogen peroxide catalyzed by copper(II)-amino acid complexes and its application to the determination of tryptophan and phenylalanine[J].Anal. Chim. Acta, 2000, 409(1/2): 65-73.
    [266] K. Nakagawa, T. Miyazawa. Chmiluminescemcence high performance liquid chromatographic detennlration of tea catechino (-) - epigallocatechin- 3 - gallate at picomole levels in rat and human plasma [J]. Anal Biochem. 1997, 248: 41-49.
    [267] J. M. Lin, M. Yamada, Investigation of the oxidation between periodate and polyhydroxyl compounds and its application to chemiluminescence [J]. Anal. Chem. 1999, 71(9): 1760-1766.
    [268] J. M. Lin, M. Yamada. Post-column chemiluminescent detection of catechins based on the periodate oxidation[J]. Chromatography, 2001,22: 57-68.
    [269] Y. Nohara, T. Hanai, T. Kinoshita, M. Watanabe. Chemiluminescence-HPLC for the assay of guanidino compounds [J]. Chem. Pharm. Bull. 2000, 48 (11): 1841 - 1842.
    [270] C. N. Lunardi, J. B.S. Bonilha, A. C.Tedesco. Stern-Volmer quenching and binding constants of 10-alkyl-9(10H)-acridoneprobes in SDS and BSA[J]. J. Lumin. 2002, 99(1):61-71.
    [271] C. Zhang, H. Qi. Highly Sensitive determination of riboflavin based on the enhanced electrogenerated chemiluminescence of lucigenin at a platinum electrode in a neutral aqueous solution [J]. Anal. Sci. 2002,18(7): 819-822.
    
    [272] 李光浩.光泽精化学发光体系的研究与应用[J].光谱实验室,2002,19 (6): 736 - 740.
    [273] K. Nakashima. Lophine derivatives as versatile analytical tools [J]. Biomed. Chromatogr. 2003,17(2/3):83-95.
    [274] A. J. Brown, C. E. Lenehan, P. S. Francis, D. E. Dunstan,N. W. Barnett. Soluble manganese(IV) as a chemiluminescence reagent for the determination of opiate alkaloids, indoles and analytes of forensic interest [J]. Talanta. 2007, 71(5): 1951-1957.
    [275] C. Lau, J. Lu, M. Kai. Chemiluminescence determination of tetracycline based on radical production in a basic acetonitrile-hydrogen peroxide reaction [J]. Anal. Chim. Acta. 2002,455:193-198.
    [276] J. Lu, C. Lau, M. K.Lee, M. Kai.Simple and convenient chemiluminescence method for the determination of melatonin[J]. Anal. Chim. Acta. 2004, 503:235-239.
    [277] J. Lu, C. Lau, M. Morizono, K. Ohta, M. Kai.A chemiluminescence reaction between hydrogen peroxide and acetonitrile and its applications[J]. Anal. Chem. 2001,73:5979-5983.
    [278] P. McCord, S. L.Yau, A. J. Bard. Chemiluminescence of anodized and etched silicon : evidence for a luminescent siloxene - like layer on porous silicon[J]. Science, 1992 ,257 :68-69.
    [279] L. Konig, I. Rabin, W. Schulze. Chemiluminescence in the agglomeration of metal clusters [J]. Science, 1996, 274 (5291): 1353-1355.
    [280] Y. F. Zhu, J. J. Shi, Z. Y. Zhang, X. R. Zhang. Development of a gas sensor utilizing chemiluminescence on nanosized titanium dioxide [J]. Anal. Chem. 2002 ,74 (1) :120-124.
    [281] J. J. Shi, Y. F. Zhu, X. R. Zhang, W. Baeyens, A. M. Garcia Campana. Recent developments in nanomaterial optical sensors[J]. Trends Anal. Chem. 2004, 23 (5): 351-360.
    [282] Y. Lv, S. Zhang, G. Liu, M. Huang, X. Zhang. Development of a detector for liquid chromatography based on aerosol chemiluminescence on porous alumina[J]. Anal Chem. 2005, 77(5): 1518-1525.
    [283] G. M. Huang, J. Ouyang, W. R. G. Baeyens, Y. Yang, C. Tao. High-performance liquid chromatographic assay of dichlorvos, isocarbophosand methyl parathion from plant leaves using chemiluminescence detection[J]. Anal. Chim. Acta. 2002, 474 (1-2): 21-29.
    [284] J. M. Serrano, M. Silva. Rapid and sensitive determination of aminoglycoside antibiotics in water samples using a strong cation-exchange chromatography non-derivatisation method with chemiluminescence detection [J]. J. Chromatogr. A 2006, 1117 (2): 176-184.
    [285] 王莉,周光明,邓传跃,黄成,游水英,沈祥,高智席.反相高效液相色谱-增敏化学发光同时测定VB_1和V_C[J].分析科学学报,2006,22(5):533-536.
    [286] 魏月,章竹君,孙永华,张琰图.高效液相色谱化学发光法测定淫羊藿甙[J].陕西师范大学学报(自然科学版),2006,34(3):62-64.
    [287] A. Ogawa, H. Tanizawa, T. Miyahara, T. Toyo'oka, H. Arai, On-line screening method for antioxidants by liquid chromatography with chemiluminescence detection [J]. Anal Chim. Acta.1999, 383(3):221-230.
    [288] 周光明,杨光明,齐东梅,邓传跃,彭敬东.高效液相色谱钴离子催化化学发光抑制法测定茶叶中的茶氨酸[J].色谱.2002,20(6):550-553.
    [289] M. Fukumoto, M. Saitoh, H. Kubo, Chemiluminescence dermination of busulfan in human serum by HPLC[J]. Anal. Sci. 2000, 16(1):97-100.
    [290] R.Yamauchi, Y. Hara, H. Murase, K. Kato. Analysis of the addition products of alpha-tocopherol with phosphatidylcholine-peroxyl radicals by high-performance liquid chromatography with chemiluminescent detection[J]. Lipids, 2000, 35 (12): 1405-1410.
    [291] M. Tsunoda, K. Takezawa, T. Santa, K. Imai. Simultaneous automatic determination of catecholamines and their 3-O-methyl metabolites in rat plasma by high-performance liquid chromatography using peroxyoxalate chemiluminescence reaction[J]. Anal Biochem..1999, 269(2):386-392.
    [292] M. Cobo, M. Silva. LC analysis of biogenic polyamines in table olives using on-line dansylation and peroxyoxalate chemiluminescence detection[J]. Chromatographia. 2000, 51 (11-12): 706-712.
    [293] C. Molins-Legua, P. Campns-Falco.Off-line dansylation of amines using C_(18) solid-phase packings: study of the fluorescence and chemiluminescence detection by post-column derivatization with oxalic acid his(2, 4, 6-trichloro phenyl ester)/H_2O_2 in liquid chromatography. Determination of amphetamines in urine samples[J]. Anal. Chim.Acta 1999, 378(1):83-93.
    [294] Y. Hamachi, M. N. Nakashima, K. Nakashima.High-performance liquid chromatography with peroxyoxalate chemiluminescence determination of propentofylline concentrations in rat brain microdialysate[J]. J. Chromatogr. B. 1999, 724(1): 189-194.
    [295] Orejuela E, Silva M. Monitoring some phenoxyl-type N-methylcarbamate pesticide residues in fruit juices using high-performance liquid chromatography with peroxyoxalate chemiluminescence detection[J]. J. Chromatogr. A 2003, 1007: 197-201.
    [296] M. D. Gil Garcia, M.M. Galera, R.S. Valverde. New method for the photo-chemiluminometric determination of benzoylurea insecticides based on acetonitrile chemiluminescence[J]. Anal. Bioanal. Chem. 2007, 387(6): 1618-2642.
    [297] H. Yoshida, R. Nakao, T. Matsuo,H. Nohta, M. Yamaguchi. 4-(6, 7-Dihydro-5, 8-dioxothiazolo [4, 5-g] phthalazin-2-yl) benzoic acid N-hydroxysuccinimie ester as a highly sensitive chemiluminescence derivatization reagent for amines in liquid chromatography [J]. J. Chromatogr. A 2001, 907(1-2): 39-46.
    [298] F. Chen, Z. Zhang, Y. Zhang, D. He. Microdialysis sampling and high-performance liquid chromatography with chemiluminescence detection for in-vivo on-line determination and study of the pharmacokinetics of levodopa in blood [J]. Ana. Bioanal. Chem. 2005, 382(1):211-215.
    [299] X.Y. Li, L S. Ling, Z. K. He.Development of a chemiluminescence method for the simultaneous determination of pyruvic and tartaric acids in human serum based upon their reaction with cerium(Ⅳ) in the presence of rutheniumtrispyridine[J]. Microchem. J. 2000, 64(1): 9-13.
    [300] 王莉,周光明,游水英,沈祥.反相高效液相色谱-增敏化学发光测定VB_6[J].食品工业科技.2006,27(3):181-183.
    [301] C. Yi, P. Li, Y. Tao, X. Chen. High performance liquid chromatographic determination of quinolizidine alkaloids in radix sophora flavescens using tris(2,2'-bipyridyl)ruthenium(Ⅱ) electrochemiluminescence[J]. Microchim. Acta. 2004,47(4):237-243.
    [302] Y. Quan, Y.Zhang, S. Wang, N. Lee, I. R. Kennedy. A rapid and sensitive chemiluminescence enzyme-linked immunosorbent assay for the determination of fumonisin B_1 in food samples[J]. Anal. Chim. Acta. 2006, 580(1): 1-8.
    [303] J. A.Ocana, et al. Sensitized chemiluminescence determination of grepafloxacin intablets and human urine[J]. Anal Chim.Acta. 2003, 482(1):105-113.
    [304] 杨红兵,张成孝.高效液相色谱电化学发光法测定丙酮酸[J].分析试验室,2004,23(8):58-61.
    [305] Y. Deng, J. T. WU, H. Zhang, T. Vo Olah. Quantitation of drug metabolites in the absence of pure metabolite standards by high-performance liquid chromatography coupled with a chemiluminescence nitrogen detector and mass spectrometer[J]. Rapid Commun. Mass Spectro. 2004, 18(15): 1681-1685.
    [306] C. A. Lucy, C. R. Harrison. Chemiluminescence nitrogen detection in ion chromatography for the determination of nitrogen-containing anions [J]. J. Chromatogr. A, 2001, 920(1-2): 135-141.
    [1] M. Stiborova, V. Martinek, H. Rydlova, P. Hodek, E. Frei, Sudan I is a potential carcinogen for humans evidence for its metabolic activation and detoxication by human recombinant cytochrome P450 1A1 and liver microsomes[J]. Cancer Res. 2002, 62(20): 5678-5684.
    [2] EC regulation No. 178/2002[S], OJ L. 31 (1-2-2002).
    [3] Commission Decision of 20 June 2003 on emergency measures regarding hot chilli and hot chilli products, notified under document Number C(2003) 1970, (2003/460/EC)[S], OJ L. 154/114 (21-6-2003).
    [4] Food Standards Agency: http://www.foodstandards.gov.uk.
    [5] X. Huang, H. Wu, F. Huang, X. Lin, X. Deng, Rapid determination of Sudan Ⅰ-Ⅳ in food by GC—MS/SIM[J]. Chin. J. Instru. Anal. 2005, 24 (4) 1-5.
    [6] H. G. Daood, P. A. Biacs, Simultaneous determination of sudan dyes and carotenoids in red pepper and tomato products by HPLC[J]. J. Chromatogr. Sci. 2005, 43: 461-465.
    [7] L.D. Donna, L. Maiuolo, F. Mazzotti, D.D. Luca, G. Sindona, Assay of Sudan I contamination of foodstuff by atmospheric pressure chemical ionization tandem mass spectrometry and isotope dilution[J].Anal. Chem.2004,76(17) :5104-5108..
    [8] A. Pielesz, I. Baranowska, A. Rybak, A. Wlochowicz, Detection and determination of aromatic amines as products of reductive splitting from selected azo dyes[J].Ecotoxicol. Environ. Saf. 2002, 53: 42-47.
    [9] F. Calbiani, M. Careri, L. Elviri, A. Mangia, L. Pistara, I. Zagnoni, Development and in-house validation of a liquid chromatography-electrospray-tandem mass spectrometry method for the simultaneous determination of Sudan I, Sudan II, Sudan III and Sudan IV in hot chilli products[J]. J. Chromatogr. A, 2004, 1042:123-130.
    [10] M. Yamaguchi, H. Yoshida, H.Nohta. Luminol-type chemiluminescence derivatization reagents for liquid chromatography and capillary electrophoresis [J]. J. Chromatogr. A 2002, 950: 1-19.
    [11] Y. Lv, S. Zhang, G. Liu, M. Huang, X. Zhang. Development of a detector for liquid chromatography based on aerosol chemiluminescence on porous alumina[J]. Anal. Chem. 2005,77(5):1518-1525.
    [12] Z. J. Zhang, B. X. Li, X. W. Zheng. Investigation of chemiluminescence with electrogenerated reagents and its analytical application. Chin. J. Chem. 2003, 21(11):1403-1409
    [13] X. W. Zheng, M. Yang, Z. J. Zhang, Flow-injection chemiluminescence determination of tetracyclines with in situ electrogenerated bromine as the oxidant [J]. Anal. Chim. Acta. 2001, 440 (2):143-149.
    [14] C. Zhang, Z. Zhang, J. Huang, M. Aizawa. Flow injection chemiluminescence determination of catecholamines with electrogenerated hypochlorite [J]. Anal. Chim. Acta. 1998, 374 (1) 105-110.
    [15] F. Tateo, M. Bononi, Fast determination of Sudan I by HPLC/APCI-MS in hot chilli spices, and Oven-Baked Foods [J]. J. Agric. Food Chem.2004, 52 (4) : 655-658.
    [16] Y. P, Zhang, Y .J. Zhang, W. J. Gong, A. I. Gopalan, K. Lee, Rapid separation of Sudan dyes by reverse-phase high performance liquid chromatography through statistically designed experiments[J]. J. Chromatogra. A 2005,1098 :183-187.
    [17] Standardization Administration of China, GB/T19681-2005[S]. http:// www. sac. gov. cn/home.asp.
    [18] F. Calbiani, M. Careri, L. Elviri, A. Mangia, L. Pistara, I. Zagnoni, Accurate mass measurements for the confirmation of Sudan azo-dyes in hot chilli products by capillary liquid chromatography-electrospray tandem quadrupole orthogonal-acceleration time of flight mass spectrometry[J]. J. Chromatogr. A, 2004,1058:127-135.
    [19] Y. Zhang, Y. Luan, X. Wang, H. Li. Determination of Sudan I, Sudan II, Sudan III and Sudan IV in food by RP-HPLC -UV method[J]. Chin. J. Health. Lab.Technol.2005, 15 (7):807-808.
    
    [1] J. S. Li, Y. M. Qiu, C. Wang, Analytical Method for Veterinary Drug Residue[M], Shanghai Science and Technology Press, Shanghai, 2002, p 365-390 (in Chinese).
    [2] J. Nouws, H. V. Egmond, I. Smulders, G Loeffen, J. Schouten, H. Stegeman. A microbiological assay system for assessment of raw milk exceeding EU maximum residue levels [J]. International Dairy Journal, 1999, 9(2):85-90.
    [3] H. Oka, Y. Ikai, N. Kawamura, K. Uno, M. Yamada, K. I. Harada, M. Uchiyama, H. Asukabe, M. Suzuki. Improvement of chemical analysis of antibiotics X. Determination of eight tetracyclines using thin-layer and high-performance liquid chromatography[J] J. Chromatogr. A 1987, 393(2): 285-296.
    [4] J. J. Pesek, M. T. Matyska. Separation of tetracyclines by high-performance capillary electrophoresis and capillary electrochromatography [J]. J. Chromatogr. A. 1996, 736 (1-2):313-320.
    [5] A. L. Cinquina, F. Longo, G Anastasi, L. Giannetti, R. Cozzani. Validation of a high-performance liquid chromatography method for the determination of oxytetracycline, tetracycline, chlortetracycline and doxycycline in bovine milk and muscle[J]. J. Chromatogr. A 2003, 987(1-2), 227-223.
    [6] S. Croubels, W. Baeyens, C. Van Peteghem. Post-column zirconium chelation and fluorescence detection for the liquid Chromatographie determination of tetracyclines [J].Anal. Chim.Acta 1995, 303(1):11-16.
    [7] F. N. Zhao, X. Z. Zhang, Y. R. Gan. Determination of tetracyclines in ovine milk by high-performance liquid chromatography with a coulometric electrode array system[J]. J. Chromatogr. A 2004, 1055(1-2):109-114.
    [8] H. Nakazawa. S. Ino, K. Kato, T. Watanabe, Y. Ito, H. Oka. Simultaneous determination of residual tetracyclines in foods by high-performance liquid chromatography with atmospheric pressure chemical ionization tandem mass spectrometry[J]. J. Chromatogr. B 1999, 732(1), 55-64.
    [9] M. Yamaguchi, H. Yoshida, H. Nohta. Luminol-type chemiluminescence derivatization reagents for liquid chromatography and capillary electrophoresis[J]. J. Chromatogr. A. 2002, 950: 1-19.
    [10] X. W. Zheng, M. Yang, Z. J. Zhang. Flow-injection chemiluminescence determination of tetracyclines with in situ electrogenerated bromine as the oxidant [J]. Anal. Chim. Acta. 2001, 440 (2): 143-149..
    [11] A. Townshend, W. Ruengsitagoon, C. Thongpoon, S. Liawruangrath. Flow injection chemiluminescence determination of tetracycline[J]. Anal. Chim. Acta 2005, 541(1-2), 103-109.
    [12] G. H. Wan, H. Cui, H. S. Zheng, J. Zhou, L. J. Liu, X. F. Yu. Determination of tetracyclines residues in honey using high-performance liquid chromatography with potassium permanganate-sodium sulfite-β-cyclodextrin chemiluminescence detection[J]. J. Chromatogr. B 2005, 824(1-2): 57-64.
    [13] B. J. Hindson, N. W. Barnett, W. Neil. Analytical applications of acidic potassium permanganate as a chemiluminescence reagent[J].Anal. Chim. Acta. 2001, 445(1), 1-19.
    [14] Z. J. Zhang, B. X. Li, X. W. Zheng. Investigation of chemiluminescence with electrogenerated reagents and its analytical application. Chin. J. Chem. 2003, 21(11): 1403-1409.
    [15] 郑行望,杨梅,章竹君.电致初生态氧化剂的化学发光行为研究及其应用[J].化学学报,2001,59(6):945-949.
    [16] 田益玲,贾英民,祝彦忠,田洪涛,刘卫华.牛乳中四环素和氯霉素残留快速测定方法研究[J].中国卫生检验杂志.2005,15(4),423-424.
    [17] W. J. Blanchflower, R. J. McCracken, A. S. Haggan, D. G. Kennedy. Gonfirmatory assay for the determination of tetracycline, oxytetracycline, chlortetracycline and its isomers in muscle and kidney using liquid chromatography-mass spectrometry[J]. J. Chromatogr. B 1997, 692: 351-360.
    [18] G. Stubbings, J. A. Tarbin, G. Shearer. On-line metal chelate affinity chromatography clean-up for the high-performance liquid chromatographic determination of tetracycline antibiotics in animal tissues [J]. J. Chromatogr. B 1996, 679(1-2): 137-145.
    [19] X. Ding, S. Mou. Ion chromatographic analysis of tetracyclines using polymeric column and acidic eluent [J]. J. Chromatogr. A 2000, 897(1-2):205-214.
    [20] L. Monser, F. Darghouth. Rapid liquid chromatographic method for simultaneous determination of tetracyclines antibiotics and 6-Epi-doxycycline in pharmaceutical products using porous graphitic carbon column [J]. J. Pharm. Biomed. Anal. 2000, 23,(2-3):353-362.
    [21] A. G. Kazemifarda, D. E. Mooreb. Evaluation of amperometric detection for the liquid-chromatographic determination of tetracycline antibiotics and their common contaminants in pharmaceutical formulations[J]. J. Pharm. Biomed. Anal. 1997,16(4): 689-696.
    [1] B. P. Schimmer, K. L. Parker, in: Goodman & A. Gilman's: The Pharmacological Basis of Therapeutics[M], 9th ed., McGraw-Hill, New York, 1996, p.1459.
    
    [2] S. B. Schumacher, O. Van den hauwe, C. H. V. Peteghem, H. Naegeli.Development of a dual luciferase reporter screening assay for the detection of synthetic glucocorticoids in animal tissues [J]. Analyst 2003, 128: 1406-1412.
    [3] O. Van den hauwe, K. Campbell, S. R. H. Crooks, R. Schilt, C. H. V. Peteghem, Confirmation of synthetic glucocorticoids with liquid chromatography/mass spectrometry: organization and results of an international interlaboratory comparison test [J]. J. AOAC Int. 2005, 88 (1):87-94.
    [4] Announcement of the Ministry of agriculture of the P.R.China (No.235). The Maximum Residue Limit in Food of Animal Origin, http:// www. ivdc.gov. cn/announcement/gg/t20030103_1770.htm.
    [5] EEC Council Directive No. 96/22/EC, Off. J. Eur. Commun., 1996, p. L125.
    [6] EEC C ouncil Regulation No. 2535/00, Off. J. Eur. Commun., 2000, p. L291.
    [7] EEC Council Regulation No. 77/02, Off. J. Eur. Commun., 2002, p. L16
    [8] J. P. Antignac, F. Monteau, J. Negriolli, F. Andre, B. Le Bizec, Application of hyphenated MS techniques to the determination of corticosteroid residues in biological matrices [J].Chromatographia.2004,59 :S13-S22.
    [9] A. A. M. Stolker, U. A. T. Brinkman. Analytical strategies for residue analysis of veterinary drugs and growth-promoting agents in food-producing animals—a review [J], J. Chromatogra. A 2005, 1067 (1-2) :15-53.
    [10] L. Amendola, F. Garribba, F.Botre, Determination of endogenous and synthetic glucocorticoids in human urine by gas chromatography-mass spectrometry following microwave-assisted derivatization [J]. Anal. Chim. Acta. 2003, 489 (2) : 233-243.
    [11] D. Courtheyn, J. Vercammen, H. De Brabander, 1. Vandenreyt, P. Batjoens, K. Vanoosthuyze, C. V. Peteghem, Determination of dexamethasone in urine and faeces of treated cattle with negative chemical ionization-mass spectrometry[J]. Analys.t 1994,119 (12):2557-2564.
    [12] T. E. Mallinson, J. S. Dreas, R. T. Wilson, A. C. Henry. Determination of dexamethasone in liver and muscle by liquid chromatography and gas chromatography/mass spectrometry[J]. J. Agric. Food Chem.1995, 43(1) 140-145.
    [13] L. G. McLaughlin, J. D. Henion, Determination of dexamethasone in bovine tissues by coupled-column normal-phase high-performance liquid chromatography and capillary gas chromatography-mass spectrometry [J]. J. Chromatogr.1990, 529:1-19.
    [14] P. Shearan, M. O'Keeffe, M .R. Smyth. Reversed-phase high-performance liquid chromatographic determination of dexamethasone in bovine tissues[J] Analyst 1991,116(12)1365-1368.
    [15] P. Volin. Simple and specific reversed-phase liquid chromatographic method with diode-array detection for simultaneous determination of serum hydroxychloroquine, chloroquine and some corticosteroids [J]. J. Chromatogr. B. 1995, 666 (2) :347-353.
    [16] O. Huetos, M. Ramos, M. Martin de Pozuelo, M. San Andres, T.B.A. Reuvers, Determination of dexamethasone in feed by TLC and HPLC [J]. Analyst. 1999,124(11):1583-1587.
    [17] O. Van den Hauwe, F. Dumoulin, C. Elliott, C. Van Pe teghem. Detection of synthetic gmcocorticoid residues in cattle tissue and hair samples after a single dose administration using LC-MS/MS[J]. J. Chromatogr. B. 2005, 817(2):215-223.
    [18] X. Cui, B. Shao, R. Zhang, J. Meng , X. Tu, Simulta neous determination of twelve glucocorticoids residues in milk by ultra performance liquid chromatograpy-electrospray tandem mass spectrometry[J]. Chin. J. Chromatogr. 2006, 24 (3) 213-217.
    [19] O. Van den hauwea, F. Dumoulin, J. P. Antignac, M. P. Bouche, C. Elliott, C. V. Peteghema, Liquid chromatographic-mass spectrometric analysis of 11 glucocorticoid residues and an optimization of enzymatic hydrolysis conditions in bovine liver[J]. Anal. Chim. Acta . 2002, 473 (1-2) :127-134.
    [20] K. Fluri, L. Rivier, A. Dienes-Nagy, C. You, A. Maitre,C. Schweizer, M. Saugy, P. Mangin, Method for confirmation of synthetic corticosteroids in doping urine samples by liquid chromatography-electrospray ionisation mass spectrometry[J]. J. Chromatogra. A. 2001, 926 (1) 87-95.
    [21] Y. Lv, S. Zhang, G Liu, M. Huang, X. Zhang. Development of a detector for liquid chromatography based on aerosol chemiluminescence on porous alumina[J].Anal. Chem. 2005,77, 1518-1525.
    [22] M. Yamaguchi, H. Yoshida, H. Nohta, Luminol-type chemiluminescence derivatization reagents for liquid chromatography and capillary electrophoresis[J]. J. Chromatogr. A 2002, 950:1-19..
    [23] Y. T. Zhang, Z. J. Zhang, Y. H. Sun, Development and optimization of an analytical method for the determination of Sudan dyes in hot chilli pepper by high-performance liquid chromatography with on-line electrogenerated BrO~--luminol chemiluminescence detection [J], J. Chromatogr. A 2006, 1129 (1): 34-40.
    [24] M. Takeda, M. Maeda, A. Tsuji, Chemiluminescence high performance liquid chromatography of corticosteroids using lucigenin as post-column reagent[J]. Biomed. Chromatogr. 1990.4(3):119-122.
    [25] P. Appelblad, E. Ponten, H. Jaegfeldt, T. Backtrom, K. Irgum, Derivatization of steroids with dansylhydrazine using trifluoromethanesulfonic acid as catalyst[J]. Anal. Chem. 1997, 69 (23): 4905-4911.
    [26] Y. Iglesias, C. A. Fente, B. Vazquez, C. Franco, A. Cepeda, S. Mayo. P. G. Gigosos, Determination of dexamethasone in bovine liver by chemiluminescence high-performance liquid chromatography[J]. J. Agric. Food Chem. 1999, 47(10): 4275-4279.
    [27] Y. Iglesias, C. Fente, S. Mayo, B. Vazquez, C. Francoa , A. Cepeda, Chemiluminescence detection of nine corticosteroids in liver [J]. Analyst 2000,125:2071-2074.
    [28] X. W. Zheng, M. Yang, Z. J. Zhang. Flow-injection chemiluminescence determination of tetracyclines with in situ electrogenerated bromine as the oxidant [J]. Anal. Chim. Acta. 2001, 440 (2):143-149.
    [29] C. Zhang, Z. Zhang, J. Huang, M. Aizawa, Flow injection chemiluminescence determination of catecholamines with electrogenerated hypochlorite [J] Anal. Chim. Acta. 1998, 374 (1): 105-110.
    [30] B. Li, Z. Zhang,W. Liu. Flow-injection chemiluminescence determination of chlortetracycline using on-line electrogenerated [Cu(HIO_6)_2]~(5-) as the oxidant[J].Talanta. 2001,55(6):1097-1102.
    [31] A. W. Knight, G. M. Greenway, Occurrence,mechanisms and analytical applications of electrogenerated chemiluminescence.A review[J]. Analyst 1994, 119:879-890.
    [32] M. Wu, Q. Su, Y. Ren, G. Hu, S. Du, X. Cao, Z. Wu, Preparation of periodatocuprate(III) and telluratocuprate(III) by electrochemical and ozone oxidation [J]. Polyhedron. 1994,13(17):2489-2493.
    [33] Z. Wu, Z. Zhang, L. Liu, Electrochemical studies of a Cu(II)-Cu(III) couple: Cyclic voltammetry and chronoamperometry in a strong alkaline medium anions and in the presence of periodate[J]. Electrochimica Acta 1997,42(17) 2719-2723.
    [34] I. Vazquez, X. Feas, M. Lolo, C. A. Fente, C. M. Franco, A. Cepeda, Detection of synthetic corticosteroids in bovine urine by chemiluminescence high-performance liquid chromatography[J]. Luminescence. 2005, 20:197-204.
    [35] Y. Iglesias, C. Fente, B.I. Vazquez, C. Franco, A. Cepeda, S. Mayo. Application of the luminol chemiluminescence reaction for the determination of nine corticosteroids[J].Anal. Chim. Acta. 2002, 468:43-52.
    [36] V. Cirimele, P. Kintz , V. Dumestre, J.P. Goulle, B. Ludes, Identification of ten corticosteroids in human hair by liquid chromatography-ionspray mass spectrometry[J].Forensic Science International. 2000, 107:381-388.
    [1] J. H. W. Lau, C. S. Khoo. Determination of clenbuterol, salbutamol, and cimaterol in bovine retina by electrospray ionization-liquid chromatography-tandem mass spectrometry[J]. J.AOAC. Int. 2004, 87:31-38.
    
    [2] D. R. Doerge, M. I. Churchwell, C. L. Holder, L. Rowe, S. Bajic. Detection and confirmation of β-agonists in bovine retina using LC/APCI-MS[J]. Anal. Chem. 1996,68:1918-1923.
    [3] H. A. Kuiper, M. Y. Noordam, M. M. H. van Dooren-Flipsen, R. Schilt, A. H. Roos. Illegal use of β-adrenergic agonists: European Community[J]. J. Anim. Sci. 1998, 76:195-207.
    [4] G. A. Mitchell, G. Dunnavan. Illegal use of β-adrenergic agonists in the United States[J]. J. Anim. Sci. 1998, 76:208-211.
    [5] A. Polettini. Bioanalysis of β_2-agonists by hyphenated chromatographic and mass spectrometric techniques[J]. J. Chromatogr. B 1996, 687:27-42.
    [6] A. A. M. Stolker, U. A. T. Brinkman. Analytical strategies for residue analysis of veterinary drugs and growth-promoting agents in food-producing animals[J]. J. Chromatogr. A 2005, 1067: 15-53.
    [7] L. Damasceno, R. Ventura, J. Ortuno, J. Segura. Derivatization procedures for the detection of β_2-agonists by gas chromatographic/mass spectrometric analysis [J]. J. Mass Spectrom. 2000, 35:1285-1294.
    [8] J. F. Lawrence, C. Menard. Determination of clenbuterol in beef liver and muscle tissue using immunoaffinity chromatographic cleanup and liquid chromatography with ultraviolet absorbance detection[J].J. Chromatogr. B 1997, 696:291-297.
    [9] P. T. McCarthy, S. Atwal, A. P. Sykes, J. G Ayres. Measurement of terbutaline and salbutamol in plasma by high performance liquid chromatography with fluorescence detection[J]. Biomed. Chromatogr. 1993, 7: 25-28.
    
    [10] L. A .Lin, J. A.Tomlinson, R. D. Satzger. Detection of clenbuterol in bovine retinal tissue by high-performance liquid chromatography with electrochemical detection[J]. J. Chromatogr. A 1997, 762:275-280.
    
    [11] A. C. Fesser, L. C. Dickson, J. D. MacNeil, J. R. Patterson, S. Lee, R. Gedir. Determination of beta-agonists in liver and retina by liquid chromatography-tandem mass spectrometry [J]. J. AOAC Int. 2005, 88:61-69.
    [12] D. C. Jones, K. Dost, G Davidson, W. George. The analysis of 6-agonists by packed-columnsupercritical fluid chromatography with ultraviolet and atmospheric pressure chemical ionisation mass spectrometric detection[J]. Analyst, 1999,124:827-831.
    [13] Y. Lv, Z. Zhang, Y. Hu, D. He, S. He. A novel chemiluminescence method for determination of terbutaline sulfate based on potassium ferricyanide oxidation sensitized by rhodamine 6G[J]. J. Pharm. Biomed.Anal 2003, 32:555-561.
    [14] H. Zhou, Z. Zhang, D. He, Y. Hu, Y. Huang, D. Chen. Flow chemiluminescence sensor for determination of clenbuterol based on molecularly imprinted polymer[J].Anal. Chim.Acta, 2004,523:237-242.
    [15] N. W. Barnett, B. J. Hindson, S. W. Lewis. Determination of ranitidine and salbutamol by flow injection analysis with chemiluminescence detection[J]. Anal. Chim.Acta, 1999, 384:151-158.
    [16] Y. Lv, S. Zhang, G Liu, M. Huang, X. Zhang. Development of a detector for liquid chromatography based on aerosol chemiluminescence on porous alumina [J]. Anal. Chem. 2005, 77:1518-1525.
    [17] M. Yamaguchi, H. Yoshida, H. Nohta. Luminol-type chemiluminescence derivatization reagents for liquid chromatography and capillary electrophoresis[J]. J. Chromatogr. A 2002, 950:1-19.
    [18] Y. Zhang, Z. Zhang, Y. Sun. Development and optimization of an analytical method for the determination of Sudan dyes in hot chilli pepper by high-performance liquid chromatography with on-line electrogenerated BrO—luminol chemiluminescence detection [J]. J. Chromatogr. A 2006, 1129: 34-40.
    [19] X. W. Zheng, M. Yang, Z. J. Zhang. Flow-injection chemiluminescence determination of tetracylines with in situ electrogenerated bromine as the oxidant[J].Anal. Chim. Acta, 2001, 440:143-149.
    [20] Z. J. Zhang, B. X. Li, X. W. Zheng. Investigation of chemiluminescence with electrogenerated reagents and its analysis application [J]. Chin. J. Chem. 2003, 11: 1403-1409.
    
    [21] B. Li, Z. Zhang,W. Liu. Flow-injection chemiluminescence determination of chlortetracycline using on-line electrogenerated [Cu(HIO_6)_2]~(5-) as the oxidant[J]. Talanta 2001, 55(6): 1097-1102.
    [22] Y. Kong, Y. Qiu, P. Li, J. Shen. Simultaneous determination of four β_2-agonist residues in pork meat by solid-phase extraction and gas chromatography-mass spectrometry [J]. Chin. J. Instru. Anal. 2006, 25:63-66.
    [23] M. Wu, Q. Su, Y. Ren, G Hu, S. Du, X. Cao, Z. Wu. Preparation of periodatocuprate[III) and telluratocuprate [III) by electrochemical and ozone oxidation[J].Polyhedron 1994,13:2489-2493.
    [24] Z. Wu, Z. Zhang, L. Liu. Electrochemical studies of a Cu[II)-Cu[III) couple: Cyclic voltammetry and chronoamperometry in a strong alkaline medium and in the presence of periodate anions[J]. Electrochim. Acta 1997, 42:2719-2723.
    [25] G. V. Vyncht, S. Preece, P. Gaspa, G. Maghum-Roglster, E. DePauw. Gas and liquid chromatography coupled to tandem mass spectrometry for the multiresidue analysis of β-agonists in biological matrices[J]. J. Chromatogr. A 1996, 750:43-49.
    
    [26] M. W. F. Nielen, C. T. Elliott, S. A. Boyd, D. Courtheyn, M. L. Essers, H. H. Hooijerink, E. O. Van Bennekom, R. E. M. Fuchs. Identification of an unknown β-agonist in feed by liquid chromatography-bioassay-quadrupole time-of-flight tandem mass spectrometry with accurate mass measurement[J]. Rapid Commun. Mass Spectrom. 2003, 17:1633-1641.
    [27] Y. Yamini, C. T. Reimanna, A. Vatanara, J.A. Jonsson. Extraction and preconcentration of salbutamol and terbutaline from aqueous samples using hollow fiber supported liquid membrane containing anionic carrier[J]. J. Chromatogr. A 2006, 1124:57-67.
    [28] I. M. Traynor, S. R. H. Crooks, J. Bowers, C. T. Elliott.Detection of multi-β-agonist residues in liver matrix by use of a surface plasma resonance biosensor[J].Anal. Chim. Acta 2003, 483:187-191.
    [29] K. A. Sagar, M. T. Kelly, M .R.Smyth.Simultaneous determination of salbutamol and terbutaline at overdose levels in human plasma by high performance liquid chromatography with electrochemical detection[J]. Biomed. Chromatogr. 1993, 7:29-33.
    [30] E. I. V. Kristina, J. M. A. Cor H. V. P. Carlos. Development of a fast and simple method for determination of β-Agonists in urine by extraction on empore membranes and detection by a test strip immunoassay[J]. J. Agric. Food Chem. 1997, 45:3129-3137.
    [31] P. Zuo, B. Ye.Small molecule microarrays for drug residue detection in foodstuffs [J]. J. Agric. Food Chem. 2006, 54:6978-6983.
    [1] Z. Ding, B. M. Quinn, S. K. Haram, L. E. Pell, B. A. Korgel, A. J. Bard. Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots[J]. Science. 2002, 296: 1293-1297.
    [2] C. Huang, K. Zhang,Y. Ci Sensitization of surfactants on the chemiluminescence reaction of fluorescein isothiocyanate labeled proteins[J]. J. Biochem. Bioph. Methods. 2007, 7(3):341-347.
    [3] H. Cui, S. Li, X. Lin, Chemiluminescence of Ce(IV) and surfactant Tween 20[J]. Analyst, 2001, (5):553-554.
    [4] G. H. Ragab, H. Nohta, K. Zaitsu. Chemiluminescence determination of catecholamines in human blood plasma using 1, 2-bis (3-chlorophenyl) ethylenediamine as pre-column derivatizing reagent for liquid chromatography[J]. Anal. Chim.Acta. 2000, 403(1-2): 155-160.
    [5] Y. Quan, Y. Zhang, S. Wang, N. Lee, I. R. Kennedy. A rapid and sensitive chemiluminescence enzyme-linked immunosorbent assay for the determination of fumonisin B_1 in food samples [J]. Anal. Chim. Acta, 2006, 580(1): 1-8.
    [6] X. W. Zheng, M. Yang, Z.Zhang. The investigation of chemiluminescence reaction characteristic of the in situ electrogenerated Br_2 and its analytical application for isoniazid[J].Acta Chim. Sinica. 2001, 59(6):945-949.
    [7] Z. J. Zhang, B. X. Li, X. W. Zheng, Investigation of chemiluminescence with electrogenerated reagents and its analytical application[J]. Chin. J. Chem. 2003, 21(11):1403-1409.
    [8] S. Kocakusuak, H. J. Kolroglu, O. T. Savasucui, R. Tolun. Production of Sodium Perborate Monohydrate by Microwave Heating [J]. Ind. Eng. Chem. Res. 1998, 37(6):2426-2429.
    [9] A. MeKillop, W. R. Sanderson. Sodium perborate and sodium percarbonate: cheap, safe and versatile oxidising agents for organic synthesis[J]. Tetrahedron.1995,51 (22) : 6145-6166.
    [10] J. O. Edwards. Detection of anionic complexes by pH measurements. II. Some evidence for peroxyborates[J].J. Am. Chem. Soc..1953,75:6154-6155.
    [11] J. Nunes de Carvalho, J. A. S. Cleaver, I. Hayati. Formation and stability of effervescent sodium perborate[J], Ind. Eng. Chem. Res. 2005,44: 5434-5438.
    [12] U. Fritsche. Chemiluminescence method for the determination of nanogram amounts of highly toxic alkylphosphates [J]. Anal. Chim. Acta, 1980, 118(1): 179-183.
    [13] P. M. v. d. Wiel, L. J. J. Janssen, J. G. Hoogland. Electrolysis of a carbonate-borate solution with a platinum anode [J]. Electrochim. Acta.1971,16(8): 1217-1234.
    [14] D. M. Kern. A polarographic study of the perborate complex [J]. J. Am. Chem. Soc. 1955, 77(21): 5458 - 5462.
    [15] R. Zanetti, S. Rosso. Levodopa and the risk of melanoma [J]. Lancet.2007, 369(9558): 257-258.
    [16] R. Zanetti, D.I. Loria, S Rosso, Melanoma, Parkinson's disease and levodopa: causal or spurious link? A review of the literature[J], Melanoma. Res. 2006,16 (3):201-206.
    [17] B. Tousi, T. Subramanian. The effect of levetiracetam on levodopa induced dyskinesia in patients with Parkinson's disease[J] .Parkinsonism Relat. D. 2005, 11(5): 333-334.
    [18] K. A. Sagar, M. R. Smyth. Bioavailability studies of oral dosage forms containing levodopa and carbidopa using column-switching chromatography followed by electrochemical detection [J]. Analyst, 2000,125 (3):439-445.
    [19] S. Muhlack, D. Woitalla, J. Welnic, S. Twiehaus, H. Przuntek, T. Muller. Chronic levodopa intake increases levodopa plasma bioavailability in patients with Parkinson's disease[J]. Neurosci. Lett. 2004,363(3):284-287.
    [20] J. Karpinska, J. Smyk, E.Wolyniec, A spectroscopic study on applicability of spectral analysis for simultaneous quantification of L-dopa, benserazide and ascorbic acid in batch and flow systems[J]. Spectrochim. Acta (Part A) 2005, 62: 213-220.
    [21] J. Coello, S. Maspoch, N. Villegas. Simultaneous kinetic-spectrophotometric determination of levodopa and benserazide by bi- and three-way partial least squares calibration [J]. Talanta, 2000, 53(3, 4):627-637.
    [22] M. Pistonesi, M. E. Centurion, B. S. F. Band, P. C. Damiani, A. C. Olivieri. Simultaneous determination of levodopa and benserazide by stopped-flow injection analysis and three-way multivariate calibration of kinetic-spectrophotometric data [J]. J. Pharm. Biomed. Anal. 2004, 36:541-547.
    [23] The State Pharmacopoeia Commission of People's Republic of China, Pharmacopoeia of People's Republic of China[M], Vol. 2, Chemical Industry Press, Beijing, 2005, pp. 513-514.
    [24] C. L.Wang, P. F. Huang, Y. W. Liu. Simultaneous determination of levodopa and benserazide in madopar tablets by HPLC-ECD [J]. Chin. Hosp. Pharm. J. 2003, 23(9): 517-519.
    [25] S. Fanali, V. Pucci, C. Sabbioni, M.A. Raggi, Quality control of benserazide-levodopa and carbidopa-levodopa tablets by capillary zone electrophoresis[J]. Electrophoresis.2000, 21(12): 2432- 2437.
    [26] J. Wang, Y. Zhou, J. Liang, P. G. He, Y. Z. Fang, Determination of levodopa and benserazide hydrochloride in pharmaceutical formulations by CZE with amperometric detection[J]. Chromatographia. 2005, 61 (7-8) 265-270.
    [27] W. W. He, X. W. Zhou,J. Q. Lu. Simultaneous determination of benserazide and levodopa by capillary electrophoresis-chemiluminescence using an improved interface[J]. J.Chromatogr. A, 2006, 1131(1-2):289-292.
    [28] W. W. He, X. W. Zhou, J. Q. Lu. Capillary electrophoresis-chemiluminecence detection of levodopa and benserazide in Medopar tablet[J]. Chin. Chem. Letters, 2007, 18(1):91-93.
    [29] L. J. Kricka. Clinical applications of chemiluminescence[J]. Anal. Chim. Acta. 2003, 500(1-2):279-286.
    [30] Y. Lv, S. Zhang, G. Liu, M. Huang, X. Zhang. Development of a detector for liquid chromatography based on aerosol chemiluminescence on porous alumina[J].Anal. Chem. 2005, 77(5):1518-1525.
    [31] Y. Zhang, Z. Zhang, Y. Sun. Development and optimization of an analytical method for the determination of Sudan dyes in hot chilli pepper by high-performance liquid chromatography with on-line electrogenerated BrO~--luminol chemiluminescence detection[J]. J. Chromatogr. A, 2006, 1129 (1):34-40.
    [32] Y. Zhang, Z. Zhang, Y. Sun. Determination of tetracyclines residues in milk using high performance liquid chromatography with chemiluminescence detection[J]. Acta Chim. Sinica. 2006, 64 (24):2461-2466.
    [33] Y. Zhang, Z. Zhang, G Qi, Y. Sun, Y. Wei. H. Ma. Detection of indomethacin by high-performance liquid chromatography with in situ electrogenerated Mn(III) chemiluminescence detection[J]. Anal. Chim. Acta. 2007,58 (2):229-234.
    [34] S. Kocakusuak, H. J. Kolroglu, K. Akcay, O. T. Savasucui, R. Tolun. Production of Sodium Perborate Monohydrate by fluidized-bed dehydration[J]. Ind. Eng. Chem. Res. 1997,36(7), 2862-2865.
    [35] L. Y. Tao, X. J. Zheng. Production and application of boron compounds [M]. Chengdu university of science and technology press, Chengdu (in Chinese), 1992, pp. 159-167.
    [36] Z. C. Pan, Y. Y. Pen. Electrosynthesis of sodium perborate using air cathode[J]. J. Chem. Ind. Eng. (China).1996, 47(6) 712-717.
    
    [1] M. R. Herrero, A. M. Romero, J. M. Calatayud, Flow injection-spectrophotometric determination of metoclopramide hydrochloride [J]. Talanta. 1998, 47 (1):-223-228.
    [2] American Hospital Formulary Service, Drug Information, American Society of Hospital Pharmacists, Inc., Bethesda, MD, 1989, p. 1622.
    [3] J. Q. Zhang, J. S. Wu, P. Cheng. Drug Manual[M]. 2nd Ed, Beijing: People's Medical Publishing Press, 2000, p536.
    [4] O. A. Farghaly, M. A. Taher, A. H. Naggar, A. Y. El-Sayed. Square wave anodic stripping voltammetric determination of metoclopramide in tablet and urine at carbon paste electrode[J]. J. Pharm. Biomed. Anal. 2005,38:14-20.
    [5] M.A. Radwan. Determination of metoclopramide in serum by HPLC assay and its application to pharmacokinetic study in rat [J] . Anal. Lett. 1998,31(14):2 397-2410.
    [6] L. Wang, G. Cheng, M. J. Zou,X. H. Hao,C. Shao. RP-HPLC determination of metoclopramide in dog plasma[J]. Chin. J. Pharm. Anal. 2005, 25(4):432-435.
    [7] A. Chmielewska, L. Konieczna, A. Plenis, H. Lamparczyk. Sensitive quantification of chosen drugs by reversed-phase chromatography with electrochemical detection at a glassy carbon electrode[J]. J. Chromatogr. B. 2006,839:102-111.
    [8] T. G. Venkateshwaran, J. T Stewart. HPLC determination of a metoclopramide and ondansetron mixture in 0.9% sodium chloride injection[J]. J. Liq. Chromatogr.1995,18: 117-226.
    
    [9] K. W. Riggs, A. Szeitz, D. W. Rurak, A. E. Mutlib, F. S. Abbott, J. E. Axelson, Determination of metoclopramide and two of its metabolites using a sensitive and selective gas chromatographic-mass spectrometric assay[J]. J. Chromatogr. B. Biomed. Appl.1994,660 (2) 315-325.
    
    [10] Y. S. Chang, Y. R. Ku, K. C. Wen, L. K. Ho. An alysis of synthetic gastrointestinal drugs in adulterated traditional Chinese medicines by HPCE[J]. J. Liq. Chromatogr. Relat.Technol. 2000, 23 (13): 2009-2019.
    [11] B. A. Moussa. Determination of some aminobenzoic acid derivatives : glafenine and metoclopramide [J]. J. Pharm. Biomed. Anal. 2000, 23 (6) :1045-1055.
    [12] J. Fan, Y.H. Chen, C.L. Ye, S.L. Feng, Flow injection spectrophotometric determination of metoclopramide[J]. Chin. J. Anal. Chem. 2001,29(2):216-218.
    [13] J. Fan, A. Wang, S. Feng, J. Wang. Non-equilibrium determination of metoclopramide and tetracaine hydrochloride by sequential injection spectrophotometry[J]. Talanta 2005, 66:236-243.
    [14] M. Buna, J. J. Aaron, P. Prognon, G Mahuzier, Effects of pH and solvent on the fluorescence properties of biomedically important benzamides. Application to determination in drugs and in human urine [J]. Analyst 1996, 121 (11): 1551-5556.
    [15] N. A. Al-Arfaj. Flow-injection chemiluminescent determination of metoclopramide hydrochloride in pharmaceutical formulations and biological fluids using the [Ru(dipy)_3~(2+)]-permanganate system[J]. Talanta 2004, 62 (2):255-263.
    [16] S. L. Fan, Z. H. Wu, L. Zhang, C. Lv. Chemiluminescence determination of metoclopramide[J] .Anal. Lett. 2002 , 35 (9): 1479-1489.
    [17] L. J. Kricka. Clinical applications of chemiluminescence[J]. Anal. Chim. Acta. 2003, 500(1-2) : 279-286.
    [18] M. Yamaguchi, H. Yoshida, H. Nohta. Luminol-type chemiluminescence derivatization reagents for liquid chromatography and capillary electrophoresis [J]. J. Chromatogr. A 2002, 950: 1-19.
    [19] B. Li, Z. Zhang , M. Wu. Flow-injection chemiluminescence determination of sulfite using on-line electrogenerated silver(II) as the oxidant[J].Anal. Chim. Acta, 2001, 432(2): 311-316.
    [20] C. Zhang, J. Huang, Z. Zhang, M. Aizawa. Flow injection chemiluminescence determination of catecholamines with electrogenerated hypochlorite[J]. Anal. Chim. Acta, 1998, 374(1): 105-110.
    [21] B. Li, Z. Zhang , M. Wu.Flow-injection chemiluminescence determination of quinine using on-line electrogenerated cobalt(III) as oxidant[J]. Talanta, 2000, 51(3): 515-521.
    [22] X. Zheng, Y. Mei, Z. Zhang.Flow-injection chemiluminescence determination of tetracyclines with in situ electrogenerated bromine as the oxidant[J]. Anal. Chim. Acta 2001,440(2) : 143-149.
    [23] X. Zheng, Z. Zhang. Flow-injection chemiluminescence detecting sulfite with in situ electrogenerated Mn~(3+) as the oxidant[J]. Sens. Actuators, B. 2002, 84(2-3): 142-147.
    [24] Y. Zhang, Z.Zhang, G. Qi, Y. Sun, Y. Wei. H. Ma. Detection of indomethacin by high-performance liquid chromatography with in situ electrogenerated Mn(III) chemiluminescence detection[J].Anal. Chim. Acta. 2007, 58 (2):229-234.
    [25] Y. Zhang, Z. Zhang, Y. Sun. Determination of tetracyclines residues in milk using high performance liquid chromatography with chemiluminescence detection[J].Acta Chim. Sinica. 2006, 64 (24): 2461-2466.
    [26] Y. Zhang, Z. Zhang, Y. Sun. Development and optimization of an analytical method for the determination of Sudan dyes in hot chilli pepper by high-performance liquid chromatography with on-line electrogenerated BrO~--luminol chemiluminescence detection [J]. J. Chromatogr. A, 2006,1129 (1): 34-40.
    [27] C. M. Riley. The determination of metoclopramide in plasma by reversed-phase ion-pair high-performance liquid chromatography [J.] J. Pharm. Biomed.l Anal. 1984, 2(1): 81-89.
    [1] R. O. Day, G. G. Graham, K. M. Williams, G. D. Champion, J. D. Jager, Clinical pharmacology of non-steroidal anti-inflammatory drugs[J]. Pharmacol. Ther. 1987, 33 (2-3):383-433.
    [2] P. Nagaraja, R.A. Vasantha, H.S. Yathirajan, Sensitive spectrophotometric method for the detennination of indomethacin in capsules[J]. J. Pharma. Biomed. Anal. 2003, 31 (3):563-569.
    [3] C. S. Sastry, D. S. Mangala, K. E. Rao. Spectrophotometric and fluorimetric methods for the determination of indomethacin[J]. Analyst 1986, 111(3):323-325.
    [4] P. C. A. G Pinto, M. L. M. F. S. Saraiva, J. L. M. Santos, J. L. F. C. Lima. A pulsed sequential injection analysis flow system for the fluorimetric detennination of indomethacin in pharmaceutical preparations[J]. Anal. Chim. Acta 2005, 539 (1-2):173-179.
    [5] F. Nie, J. Lu, Y. He, J. Du, Detennination of indomethacin in urine using molecule imprinting-chemiluminescence method[J]. Talanta. 2005, 66 (3):728-733.
    [6] S.J. Lin, Y.R. Chen, Y.H. Su, H.I. Tseng, S.H. Chen. Determination of indomethacin in plasma by micellar electrokinetic chromatography with UV detection for premature infants with patent ducts arteriosus [J]. J. Chromatogr. B. 2006, 830 (2):306-313.
    [7] A. Macia, F. Borrull, C. Aguilar, M. Calull, Application of capillary electrophoresis with different sample stacking strategies for the determination of a group of nonsteroidal anti-inflammatory drugs in the low micro gxL(-1) concentration range[J] Electrophoresis 2004, 25 (3) :428-438.
    [8] B. Plazonnet, W. J. A. Vandenheuvel, Preparation, gas chromatography and mass spectrometry of methyl and trimethylsilyl esters of indomethacin[J]. J. Chromatogr. 1977,142:587-596.
    [9] M. E. Abdel-Hamid, L. Novotny, H. Hamza, Determination of diclofenac sodium, flufenamic acid, indomethacin and ketoprofen by LC-APCI-MS[J]. J. Pharma. Biomed. Anal. 2001, 24 (4): 587-594.
    
    [10] M. A. Al Zaabi, G. H. Dehghanzadeh, R. L. G. Norris, B. G. Charles. A rapid and sensitive microscale HPLC method for the determination of indomethacin in plasma of premature neonates with patent ductus arteriousus[J]. J. Chromatogr. B.2006, 830 (2):364-367.
    
    [11] J. Sato, T. Amizuka, Y. Niida, M. Umetsu. K. Ito, Simple, rapid and sensitive method for the determination of indomethacin in plasma by high-performance liquid chromatography with ultraviolet detection[J]. J. Chromatogr. B 1997,692 (1):241-244.
    [12] A. Ferrari, G. Savino, D. Gallesi, D. Pinetti, A. Bertolini, G, Sances, C.P.R. Coccia, G. Pasciullo, S. Leone, M. Loi, E. Sternieri. Effect of overuse of the antimigraine combination of indomethacin, prochlorperazine and caffeine (IPC) on the disposition of its components in chronic headache patients [J]. Pharm. Res. 2006, 54 (2): 142-149.
    [13] M. Yamaguchi, H. Yoshida, H.Nohta. Luminol-type chemiluminescence derivatization reagents for liquid chromatography and capillary electrophoresis[J]. J. Chromatogr. A 2002, 950: 1-19.
    [14] Y. Lv, S. Zhang, G. Liu, M. Huang, X. Zhang. Development of a detector for liquid chromatography based on aerosol chemiluminescence on porous alumina[J]. Anal Chem. 2005,77(5):1518-1525.
    [15] Z. J. Zhang, B. X. Li, X. W. Zheng, Investigation of chemiluminescence with electrogenerated reagents and its analytical application. Chin. J. Chem. 2003, 21(11):1403-1409.
    [16] X. W. Zheng, M. Yang, Z. J. Zhang, Flow-injection chemiluminescence determination of tetracyclines with in situ electrogenerated bromine as the oxidant [J].Anal. Chim. Acta. 2001, 440 (2):143-149.
    [17] B. X. Li, Z. J. Zhang, M. L. Wu. Flow injection chemiluminescence determination of quinine using on-line electrogenerated cobalt(Ⅲ) asoxidant[J]. Talanta 2000, 51: 515-521.
    [1] J. H. Zhu, X. X. Wang, J. Z. Chen. Effects of puerarin on number and activity of endothelial progenitor cells from peripheral blood [J]. Acta Pharmacol. Sin. 2004, 25(8): 1045-1051.
    [2] R. Cervellati, C. Renzulli, M. C. Guerra, E. Speroni, Evaluation of antioxidant activity of some natural polyphenolic compounds using the Briggs-Rauscher reaction method[J]. J. Agric. Food Chem. 2002, 50(26):7504-7509.
    [3] D. Huo, C. Hou. The Development and Utilization of Pueraria Lobate(Willd.) Ohwi Food for Health Use [J]. Resource Development & Market. 2000, 16 (1): 27-28.
    [4] 杨振林,寇玉玺,李红举.紫外分光光度法测定葛根冲剂中葛根素含量.医药论 坛杂志. 2006,26(6):57-58.
    [5] Z. T. Zhang, Q. G. Liu, Q. He, Z. W. Gao, Determination of puerarin based on the method of new version thin layer chromatographic iternal standard[J],Chin. J. Anal. Chem. 2002,30,327-330.
    [6] S. B. Chen, H. P. Liu, R. T. Tian, D. J. Yang, S. L. Chen, H. X. Xu, A. S. C. Chan, P. S. Xie. High-performance thin-layer chromatographic fingerprints of isoflavonoids for distinguishing between Radix Puerariae Lobate and Radix Puerariae Thomsonii [J]. J. Chromatogr. A, 2006,1121(1):114-119.
    [7] C. Y. Wang, H. Y. Huang, K. L. Kuo, Y. Z. Hsieh, Analysis of Puerariae radix and its medicinal preparations by capillary electrophoresis[J]. J. Chromatogr. A 1998, 802 (1):225-231.
    [8] G. Chen, J. X. Zhang, J. N. Ye, Determination of puerarin, daidzein and rutin in Pueraria lobata (Wild.) Ohwi by capillary electrophoresis with electrochemical detection [J] J. Chromatogr. A 2001, 923(1-2):255-262.
    [9] H. Y. Huang, Y. Z. Hsieh. Determination of puerarin, daidzein, paeoniflorin, cinnamic acid, glycyrrhizin, ephedrine, and [6]-gingerol in Ge-gen-tang by micellar electrokinetic chromatography [J]. Anal. Chim. Acta. 1997, 351(1-3):49-55.
    [10] Y. H. Cao, C. G. Lou, X. Zhang, Q. C. Chu, Y. Z. Fang, J. N. Ye. Determination of puerarin and daidzein in Puerariae radix and its medicinal preparations by micellar electrokinetic capillary chromatography with electrochemical detection [J]. Anal. Chim. Acta. 2002, 452(1): 123-128.
    [11] B. Chen, L. L. Zhao, J. H. Li, Y. L. Yan, The rapid analysis of functional components of P.Lobata by near infrared spectrum[J]. Spectrosc. Spectr. Anal. 2002, 22(6):976-979.
    [12] N. Okamura, H. Miki, H. Orii, Y. Masaoka, S. Yamashita, H.Kobayashi, A. Yagi. Simultaneous high-performance liquid chromatographic determination of puerarin, daidzin, paeoniflorin, liquiritin, cinnamic acid, cinnamaldehyde and glycyrrhizin in Kampo medicines [J]. J. Pharm. Biomed. Anal. 1999, 19(3-4):603-612.
    [13] B. S. Yu, X. P. Yan, G. B. Zhen, Y. P. Rao. RP-HPLC determination of puerarin in Chinese traditional medicinal preparations containing pueraria[J]. J. Pharm. Biomed. Anal. 2002, 30(3):843-849. [14] M. Q. Li, X. Sheng, X. G. Shao. Separation and determination of active components of pueraria lobata isoflavonoid extract by reversed phase high performance liquid chromatography [J].Chin. J. Anal. Chem. 2003, 31(2):178-180.
    [15] J. K. Prasain, K. Jones, M. Kirk, L. Wilson, M. Smith-Johnson, C.Weaver, S. Barnes. Profiling and quantification of isoflavonoids in kudzu dietary supplements by high-performance liquid chromatography and electrospray ionization tandem mass spectrometry[J]. J. Agric. Food Chem. 2003, 51:4213-4218.
    [16] H. Rong, D. De Keukeleire, L. De Cooman, W. R. Baeyens, G. Vander Weken. Narrow-bore HPLC analysis of isoflavonoid aglycones and their O- and C-glycosides from pueraria lobata [J]. Biomed. chromatogr. 1998,12(3):170-171.
    [17] Z. Ma, Q. Wu, D.Y. W. Lee, M. Tracy, S. E. Lukas. Determination of puerarin in human plasma by high performance liquid chromatography [J]. J. Chromatogr. B 2005, 823(2): 108-114.
    [18] B. Yan, D. Xing, Y. Ding, J. Tao, L. Du. HPLC method for the determination and pharmacokinetic studies on puerarin in cerebral ischemia reperfusion rat plasma after intravenous administration of puerariae radix isoflavone [J] J. Pharm.Biomed. Anal. 2005, 37(2):297-301.
    [19] Q. Zhang, A. Myint, L. Liu, X. Ge, H. Cui. Flow injection-chemiluminescence determination of puerarin in pharmaceutical preparations [J]. J. Pharm. Biomed. Anal. 2004, 36(3):587-592.
    [20] C. Wang, Z. Song. In vitro monitoring of nanogram levels of puerarin in human urine using flow injection chemiluminescence [J]. Bioorg. Med. Chem. Lett. 2004, 14(16):4127-4130.
    [21] T. Liu, S. Zhao, N. Zhang, R. Luo. Determination of puerarin by reverse - phase HPLC in healthy food[J]. Chin. J. Health Lab. Tech. 2005, 15(2):147-148.
    [22] B.Gan, Q. Liao. Determination of puerarin in health food by HPLC[J]. Technology & Development of Chemical Industry. 2006, 35(1):21-22.
    [1] S. G. Zhang, D. R. Sun. A Hand Book of Clinical Pharmalogy and Application for New Drugs [M], Beijing: Chemical Industry Press, 2001: 290
    [2] 刘迎梅,丁学兵,巩延丽,王涛,陈晨,宗兆凯.卡托普利副作用的国内报道综 述[J].中华全科医师杂志.2005,4(1):25-26.
    
    [3] K. K. Wong, S. Lan, B. H. Migdalof, In vitro biotransformation of [14C]-captopril in the blood of rats, dogs and humans [J]. Biochem. Pharmacol. 1981, 30 (10):2643-2650.
    [4] Y. Matsuki, K. Fukuherea, T. Ito, Determination of captopril in biological fluids by gas-liquid chromatography[J]. J. Chromatogr. 1980,188(2):177-183.
    [5] P. T. Funke, E. Ivashkiv, M. F. Malley, A. I. Cohen. Gas chromatography/selected ion monitoring mass spectrometric determination of captopril in human blood [J]. Anal. Chem. 1980, 52(7): 1086-1089.
    
    [6] I. I. Salem, W. A. Saif, Y. Jmeian, J. I. Al Tamimi. A selective and rapid method for the quantification of captopril in human plasma using liquid chromatography/selected reaction monitoring mass spectrometry [J]. J. Pharm. Biomed. Anal. 2005, 37(5): 1073-1080.
    [7] S. Sypniewski, E. Bald. Determination of captopril and its disulphides in whole human blood and urine by high-performance liquid chromatography with ultraviolet detection and precolumn derivatization [J]. J. Chromatogr. A. 1996,729 (1-2): 335-340.
    [8] C. Arroyo, C. Lopez-Calull, L. Garcia-Capdevila, I. Gich, M. Barbanoj, J. Bonal. Determination of captopril in plasma by high-performance liquid chromatography for pharmacokinetic studies [J]. J. Chromatogr. B, 1997, 688(2):339-344.
    [9] M. Amini, A. Zarghi, H. Vatanpour. Sensitive high-performance liquid chromatographic method for determination of captopril in plasma [J]. Pharmaceutica Acta Helvetiae. 1999,73(6):303-306.
    [10] B. K. Zhang, H. D. LI, H. Deng, J. Wang, Y. Z. Liu. Detection of captopril in human plasma by pre-column derivation HPLC with solid phase extraction[J]. J. Pharma. Anal. 2002, 22(1): 27-29.
    [11] J. A. M. Pulgarin, L. F. Garcia Bermejo, P. F. Lopez. Sensitive determination of captopril by time-resolved chemiluminescence using the stopped-flow analysis based on potassium permanganate oxidation [J]. Anal. Chim. Acta. 2005, 546(1): 60-67.
    [12] X. Zhang, W. R. G Baeyens., G Van der Weken, A. C. Calokerinos, K. Nakashima Chemiluminescence analysis of captopril: comparison between luminol and rhodaminc B-sensitized cerium(Ⅳ) methods[J]. J. Pharm. Biomed. Anal. 1995, 13(4/5): 425-429.
    [13] J. Ouyang, W. R. G. Baeyens, J. Delanghe, G. Van Der Weken, W. Van Daele, D. D. Keukeleire, A. M. Garcia Campana. Chemiluminescence-based liquid chromatographic determination of hydrochlorothiazide and captopril [J]. Anal. Chim. Acta. 1999, 386(3): 257-264.
    [14] D. J. Walton, S. S. Phull, D. M. Bates. J. P. Lorimer, T. J. Mason, Ultrasonic enhancement of elcctrochemiluminescence[J]. Electrochim. Acta. 1993, 38(2/3): 307-310.
    [15] B. Li, Z. Zhang, X. Zheng, C.Xu. Flow-injection Chemiluminscencc Determination of isoniazid Using on-line electrogencrated Manganese (Ⅲ) as oxidant[J]. Microchem. J. 1999, 63: 374-380.
    [16] B. Li, Z. Zhang, M. Wu. Flow-injection chemiluminescence determination of quinine using on-line elcctrogenerated cobalt(Ⅲ) as oxidant[J]. Talanta, 2000, 51: 515-521.
    [17] C. Zhang, J. Huang, Z. Zhang, M. Aizawa. Flow injection chemiluminescence determination of catecholamines with electrogenerated hypochlorite [J]. Anal. Chim. Acta. 1998, 374:105-110.
    [1] 严辉宇.库仑分析[M].北京:新时代出版社,1985:205-207.
    [2] A. A. Noyes, J. L. Hoard, K. S. Pitzer, Argentic salts in acid solution. Ⅰ. The oxidation and reduction reactions. [J]. J. Am. Chem. Soc. 1935, 57 (7): 1221-1229.
    [3] J. A. McMillan. Higher oxidation states of silver[J]. Chem. Rev. 1962, 62(1):65-80.
    [4] A. A. Noyes, K.S. Pitzer, C. L. Dunn. Argentic salts in acid solution. Ⅱ. The oxidation state of argentic salts[J]. J. Am. Chem. Soc. 1935, 57(7):1229-1237.
    [5] A. A. Noyes, A. Kossiakoff. Argentic salts in acid Solution. Ⅲ. Oxidation potential of argentous-argentic salts in nitric acid solution [J]. J. Am. Chem. Soc. 1935, 57(7): 1238-1242.
    [6] 彭图治,王国顺.分析化学手册(第四分册,电分析化学)[M].第2版.北京:化学工业出版社,1999:58-77.
    [7] R. C. Schothorst, G. D. Boef, The application of strongly oxidizing agents in flow injection analysis: Pan 1. Silver(Ⅱ)[J]. Anal. Chim. Acta, 1985, 169: 99-107.
    [8] B. Li, Z. Zhang, M. Wu. Flow-injection Chemiluminescence determination of sulfite using on-line electrogenerated silver(II) as the oxidant [J]. Anal. Chim. Acta 2001, 432(2):315-319.
    [9] B. Li, Z. Zhang, M. Wu. Flow-injection chemiluminescence determination of captopril using on-line electrogenerated silver(II) as the oxidant[J]. Microchem. J. 2001, 70(2):85-91.
    [10] B. Auvinet, R. Ziller, T. Appelboom, P. Velicitat. Compaison of the onset and intensity of action of intramuscularmeloxicam and oralmeloxicam in patientsw ith acute sciatica [J]. Clin. Then 1995,17:1078-1098.
    [11] S. P. Ayalasomayajula, U. B. Kompella. Subconjunctivally administered celecoxib-PLGA microparticles sustain retinal drug levels and alleviate diabetes-induced oxidative stress in a rat model. Eur. J. Pharm., 2005, 511 (2-3):191-198.
    [12] A. Zarghi, A. Shafaati, S.M. Foroutan, A. Khoddam. Simple and rapid high-performance liquid chromatographic method for determination of celecoxib in plasma using UV detection: Application in pharmacokinetic studies [J]. J. Chromatogr. B. 2006, 835(1-2):100-104.
    [13] M. Zhang, G A. Moore, S. J. Gardiner, E. J. Begg. Determination of celecoxib in human plasma and breast milk by high-performance liquid chromatographic assay [J]. J. Chromatogr. B. 2006, 830(2): 245-248.
    [14] H. Jalalizadeh, M. Amini, V. Ziaee, A. Safa, H. Farsam, A. Shafiee. Determination of celecoxib in human plasma by high-performance liquid chromatography[J]. J. Pharma. Biomed. Anal. 2004, 35(3): 665-670
    [15] M. J. Rose, E. J. Woolf, B. K. Matuszewski. Determination of celecoxib in human plasma by normal-phase high-performance liquid chromatography with column switching and ultraviolet absorbance detection [J]. J. Chromatogr. B 2000, 738 (2): 377-385.
    [16] E. Stormer, S. Bauer, J. Kirchheiner, J. Brockmoller, I. Roots. Simultaneous determination of celecoxib, hydroxycelecoxib, and carboxycelecoxib in human plasma using gradient reversed-phase liquid chromatography with ultraviolet absorbance detection[J]. J. Chromatogr. B. 2003, 783(1): 207-212.
    [17] H. H. S. Chow , N. Anavy , D. Salazar , D. H. Frank, D. S. Alberts. Determination of celecoxib in human plasma using solid-phase extraction and high-performance liquid chromatography[J].J. Pharma. Biomed. Anal.2004, 34(1):167-174.
    [18] F. Schonberger, G. Heinkele, T. E. Murdter, S. Brenner, U. Klotz, U. Hofmann. Simple and sensitive method for the determination of celecoxib in human serum by high-performance liquid chromatography with fluorescence detection [J]. J. Chromatogr.B 2002, 768(2): 255-260.
    [19] S. K. Paulson, T. A. Kaprak, C. J. Gresk, D. M. Fast, M. T. Baratta, E. G. Burton, A. P. Breau, A.. Karim. Plasma protein binding of celecoxib in mice, rat, rabbit,dog and human[J]. Biopharm. Drug Dispos. 1999, 20: 293-299.
    [20] U. Werner, D. Werner, A. Pahl, R. Mundkowski, M. Gillich, K. Brune, Investigation of the pharmacokinetics of celecoxib by liquid chromatography-mass spectrometry[J]. Biomed. Chromatogr. 2002, 16 (1): 56-60.
    [21] E. C. Kempen, P. Yang, E. Felix, T. Madden, R.A. Newman. Simultaneous quantification of arachidonic acid metabolites in cultured tumor cells using high-performance liquid chromatography/electrospray ionization tandem mass spectrometry [J]. Anal Biochem., 2001,297(2):183-190.
    [22] M. Abdel-Hamid, L. Novotny, H. Hamza, Liquid chromatographic-mass spectrometric determination of celecoxib in plasma using single-ion monitoring and its use in clinical pharmacokinetics [J]. J. Chromatogr. B 2001, 753 (2): 401-408.
    [23] Y. Wen, S. Cai, G. Chen, W. Chen. Determination of celecoxib in blood plasma by RP-HPLC with UV detection [J]. Chin. Hosp. Pharm. J. 2004, 24(10):602-604.
    [1] A. Goodman-Hillman, T. Rail, A. Nier, P. Taylor, The Pharmacologycal Basic of Therapeutic[M], McGraw-Hill, New York, 1996.
    [2] 中华人民共和国药典委员会,中华人民共和国药典(二部)[M],北京:化学工业出版社,2005:566-567.
    [3] H. Goicoechea, A. Olivieri, Chemometric assisted simultaneous spectrophotometric determination of four-component nasal solutions with a reduced number of calibration samples [J]. Anal Chim. Acta. 2002, 453 (2): 289-300.
    [4] K.M. Kelani, J. AOAC Int. 81 (1998) 1128-1134.
    [5] S. Casado-Terrones, J. F. Femandez-Sanchez, B. C. Diaz, A.S. Carretero, A. Fernandez-Gutierrez. A fluorescence optosensor for analyzing naphazoline in pharmaceutical preparations Comparison with other sensors [J]. J. Pharm. Biomed. Anal. 2005, 38: 785-789.
    [6] S. L. McCall, J. D. Winefordner, Low-temperature filter paper phosphorescence [J]. Anal. Chem. 1983, 55 (2): 391-393.
    [7] A. S. Carretero, C. C. Blanco, B. C. Diaz, A. Fernandez-Gutierrez. Room-temperature phosphorimetric method for the determination of the drug naphazoline in pharmaceutical preparations[J].Analyst. 1998,123 (5) 1069-1071.
    [8] S. Khalil, Analytical application of atomic emission and atomic absorption spectrometry for the determination of imidazoline derivatives based on formation of ion-associates with sodium cobaltinitrite and potassium ferricyanide[J]. Mikrochim. Acta 1999,130 (3):181-184.
    [9] A. F. Marchesini, M. R. Williner, V. E. Mantovani, J. C. Robles, H. C.Goicoechea, Simultaneous determination of naphazoline, diphenhydramine and phenylephrine in nasal solutions by capillary electrophoresis [J]. J. Pharm. Biomed. Anal. 2003,31: 39-46.
    [10] J. M. Lemus Gallego, J. Perez Arroyo, Determination of prednisolone and the most important associated compounds in ocular and cutaneous pharmaceutical preparations by micellar electrokinetic capillary chromatography [J]. J. Chromatogr. B 2003, 784 (1): 39-47.
    [11] J. M. Lemus Gallego, J. Perez Arroyo, Determination of prednisolone, naphazoline,. and phenylephrine in local pharmaceutical preparations by micellar electrokinetic. Chromatography[J].J. Sep. Sci. 2003, 26 (9-10):947-952.
    [12] J. Bauer, S. Krogh. High-performance liquid chromatographic stability-indicating assay for naphazoline and tetrahydrozoline in ophthalmic preparations[J]. J. Pharm. Sci. 1983, 72(11): 1347-1349.
    [13] S. C. Ruckmick, D. F. Marsh, D.T. Duong, Synthesis and identification of the primary degradation product in a commercial ophthalmic formulation using NMR, MS, and a stability-indicating HPLC method for antazoline and naphazoline[J]. J. Pharm. Sci. 1995, 84 (4): 502-507.
    [14] 张晓平,刘桂敏,赵秀梅,张荣泉.HPLC法测定滴鼻净中盐酸萘甲唑林含量[J].药物分析杂志.2000,20(4):277-278.
    [15] P. Chocholous, D. Satinsky, P. Solich. Fast simultaneous spectrophotometric determination of naphazoline nitrate and methylparaben by sequential injection chromatography [J]. Talanta 2006,70:408—413.
    [16] 李军,颜晗.HPLC法测定盐酸萘甲唑啉滴鼻液的含量[J].中国药品标准.2001,1(2):31-34.
    [17] P. K. Dasgupta, Z. Genfa,, J. Li, C. B. Boring, S. Jambunathan, R. Al-Horr. Luminescence detection with a liquid core waveguide[J]. Anal. Chem. 1999, 71(7): 1400-1407.
    [18] A. M. GarciaoCampana, W. R. G. Baeyens Chemiluminescence in Analytical Chemistry[M], New: Marcel Dekker, Inc. 2001: 393-424.
    [19] B. Li, Z. Zhang, M. Wu. Flow-injection chemiluminescence determination of quinine using on-line electrogenerated cobalt(Ⅲ) as oxidant[J]. Talanta. 2000, 51: 515-521.
    [20] W.J. Blaedel, M.A. Evenson, Preparation of Cobalt(Ⅲ) complexes by continuous anodic oxidation[J]. Inorg. Chem. 1966, 5 (5): 944-946.
    [21] S. Swarm, T. S. Xanthalsos, Cobaltic sulfate as an oxidizing agent [J]. J. Am. Chem. Soc. 1931, 53 (2): 400-404..
    [22] R. C. Schothorst, G. den Boef, The application of strongly oxidizing agents in flow injection analysis: Part 3. Cobalt(Ⅲ) [J]. Anal. Chim. Acta 1986, 181: 235-239.
    [23] B. Li, Z. Zhang, M. Wu. Flow injection chemiluminescence determination of pipemidic acid using on-line electrogenerated Cobalt(Ⅲ) as oxidant[J] Mikrochim. Acta, 2000, 134(3/4): 223-227.
    [24] B. Li, Z. Zhang, M. Wu. Flow-injection chemiluminescence determination of gentamycin using on-line electrogenerated cobalt(Ⅲ) as the oxidant[J]. Anal. Lett. 2000, 33(8): 1577-1590.
    [25] 沈宝亨,李梁铸,李明晔.应用药物制剂技术[M].北京:中国医药科技出版社,2000:358.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700