用户名: 密码: 验证码:
硫酸化乌贼墨多糖抗肿瘤生长和转移的活性及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
恶性肿瘤已成为全球的主要致死疾病之一,而90%因肿瘤致死的患者机体内发生了肿瘤的转移。因此,研发抗肿瘤转移药物对提高癌症患者的存活率至关重要。由于于具有免疫增强和抗肿瘤活性且毒副作用小,天然多糖抗肿瘤生长和转移活性的研究已成为肿瘤药物研究热点之一。乌贼墨多糖SIP为本课组从曼氏无针乌贼(Sepiella maindronni)墨中,首次分离到的一种结构新颖的多糖。研究发现SIP硫酸化衍生物SIP-S能够抑制肿瘤细胞基质金属蛋白酶-2(MMP-2)的表达和活性,并能抑制肿瘤细胞侵袭和内皮细胞迁移,据此我们推测SIP-S具有抗肿瘤转移的活性。本课题不但深入研究了SIP-S在小鼠体内的抗肿瘤生长和转移的活性,而且于体外研究了其抗肿瘤生长和转移的活性作用机制
     1SIP-S体内抑瘤和免疫增强活性的研究
     本论文建立S180肉瘤细胞小鼠皮下移植瘤模型,并考察了SIP-S体内抗肿瘤和免疫增强的活性。
     单独用药考察结果表明,SIP-S具有显著的抗肿瘤活性和免疫增强活性。SIP-S单独应用能够显著抑制S180荷瘤小鼠的肿瘤生长,给药剂量为30、20和10mg/kg·d的模型动物体内的抑瘤率分别达到43.5、39.7和32·4%;与环磷酰胺(CTX)30mg/kg·d给药组相比,SIP-S各剂量组瘤重均无显著性差异(P>0.05),说明SIP-S具有显著的抗肿瘤活性。此外,CTX给药组的小鼠脾脏指数显著降低(P<0.01),而SIP-S给药组小鼠的脾脏指数和胸腺指数有轻微或显著升高,说明SIP-S具有免疫增强活性。
     联合用药考察结果表明,SIP-S同样具有良好的抗肿瘤活性。SIP-S(15mg/kg-d)与CTX(12.5mg/kg·d)联合应用时的抗肿瘤活性高于SIP-S15(mg/kg·d)及CTX (25mg/kg·d)单独用药的活性,并且对小鼠的免疫功能没有显著影响。从而证明SIP-S与CTX联用具有协同增效作用,其免疫增强活性是其抗肿瘤活性的作用机制之一。
     2SIP-S抗肿瘤活性机制的体外研究
     SIP-S体外对肿瘤细胞的生长具有良好的抑制活性,且成时间和剂量依赖性。采用四甲基偶氮唑蓝(MTT)比色法和细胞克隆形成实验检测了SIP-S的体外抗肿瘤活性。检测结果表明,500、100和20μg/mL的SIP-S对人卵巢癌SKOV3细胞有明显的增殖抑制作用,作用2天时抑制率分别为41.06%、32.48%和25.10%,而第7天时抑制率则分别提高到约为86.96%、67.39%和50.00%。结果说明SIP-S能够直接影响肿瘤细胞的生长,随着时间和剂量的增大,其对肿瘤细胞的抑制作用增强。
     Annexin V-FITC/PI结合流式细胞仪检测表明,500、100、20μg/mL和0μg/mLSIP-S作用SKOV3细胞,36h后细胞的早期凋亡比率分别为8.54%、3.66%、1.79%和3.18%,坏死细胞和凋亡晚期细胞比率分别为17.41%、6.44%、5.76%和3.90%,证明SIP-S能够诱导细胞凋亡。另外,Western blot结果表明SIP-S能明显抑制SKOV3细胞内聚腺苷二磷酸核糖聚合酶(PARP-1)的表达和上调促凋亡蛋白caspase-3、-8、-9和bax的表达水平,但是对bcl-2和caspase-10的表达无显著影响。该结果同时证明这种胞内调节活性呈一定剂量依赖性。
     以上结果说明SIP-S能够通过调节凋亡相关蛋白的表达诱导肿瘤细胞的凋亡,抑制肿瘤细胞的生长,发挥其抗肿瘤作用。
     3SIP-S抗肿瘤转移活性的研究
     SIP-S体内不但有抗肿瘤转移活性,还能抑制转移瘤的生长。通过建立小鼠黑色素瘤B16F10人工肿转移模型,本论文考察SIP-S的体内抗转移活性。结果表明,与生理盐水组相比,SIP-S30和15mg/kg-d剂量组均能显著抑制小鼠肺部转移结节数(P<0.01),抑制率分别为87.95和85.94%。此外,阴性对照组部分动物出现肺部转移结节生长过大致肺部完全受到侵袭以及肝转移现象,但药物组均未出现此种情况,表明SIP-S体内不但有抗肿瘤转移活性,还能抑制转移瘤的生长。HE病理切片可见药物组肿瘤转移结节细胞核异型较少,免疫组化检测发现药物组转移结节上碱性成纤维细胞生长因子(bFGF)及细胞间黏附分子-1(ICAM-1)的表达量较生理盐水组降低。这可能是SIP-S抗转移活性的作用机制之一。
     4SIP-S抗肿瘤转移机制的研究
     本论文推测SIP-S通过调节细胞黏附分子的表达和抑制乙酰肝素酶的活性来实现抗肿瘤转移的活性。
     分别采用MTT法、流式细胞术、酶联免疫法和Western blot检测,本论文分析了SIP-S对肿瘤细胞黏附能力、P-选择素/配体结合、乙酰肝素酶活性以及细胞黏附分子表达的影响。MTT检测结果表明,SIP-S能够较好的抑制SKOV3细胞与Matrigel胶的黏附,SIP-S500、100和20μg/mL浓度下作用40min后的黏附抑制率分别为65.10%、54.40%和38.41%,作用80min后的黏附抑制率分别为68.53%、58.27%和42.76%。流式细胞术检测显示SIP-S能够抑制重组P-选择素/Fc嵌合蛋白(P-Fc)与表达其配体P-选择素糖蛋白配体1(PSGL-1)的HL-60细胞的结合,SIP-S5和1mg/mL的抑制率分别为23.81%和20.19%。此外,SIP-S能够显著抑制乙酰肝素酶对底物硫酸乙酰肝素和细胞外基质的降解,SIP-S10和5μg/mL浓度下的抑制率大于60%,与阳性对照药肝素的抑制活性相当,说明SIP-S能显著抑制乙酰肝素酶的活性。Western blot检测发现SIP-S能明显抑制SKOV3细胞上黏附分子ICAM-1、转化生长因子β1(TGF-β1)、整合素β1(integrin β1)和人脐静脉内皮细胞融合细胞EA.hy926上E-选择素的表达,但是对SKOV3细胞上E-钙黏素、CD44V6和EA.hy926细胞上VCAM-1和的表达没有显著影响。以上结果皆证明SIP-S具有调节细胞黏附分子的表达抑制肿瘤细胞的黏附、抑制乙酰肝素酶的生物活性,我们推测这是SIP-S抗肿瘤转移的作用机制。
     5SIP-S抗血管生成活性的研究
     体外管腔形成实验表明SIP-S能够抑制内皮细胞管腔形成和血管内皮生长因子VEGF和bFGF的表达,从而发挥抗肿瘤生长和转移的活性。SIP-S500、100和20μg/mL作用一定时间,可见内皮细胞小管形成数目减少,且管腔不完整,与阴性对照组比较差异显著。建立鸡胚尿囊膜模型检测SIP-S体内对血管生成的影响,与生理盐水组相比,SIP-S2和0.4mg/mL能够显著抑制鸡胚尿囊膜上的新生血管生成(P<0.01)。以上结果证明SIP-S具有抗血管生成的活性。Western blot检测发现SIP-S能明显抑制SKOV3细胞上和内皮细胞上血管内皮生长因子VEGF和bFGF的表达,这可能是其抗血管生成作用的机制之一。血管生成在肿瘤生长和转移的过程中均发挥重要作用。因此,推测SIP-S的抗血管生成活性是其抗肿瘤生长和转移活性的作用机制之一。
     6结论和意义
     本课题采用一系列体内、体外的方法确定了SIP-S抗肿瘤生长和转移的活性并初步揭示了SIP-S该类活性的作用机制。研究表明SIP-S体内具有显著的抗肿瘤生长和转移活性。进一步研究发现SIP-S能够抑制肿瘤细胞生长、诱导肿瘤细胞凋亡、增强荷瘤小鼠免疫功能、缓解化疗药物CTX所致的免疫损伤、降低肿瘤细胞的黏附能力、抑制乙酰肝素酶的活性并抑制新生血管生成,这些活性是SIP-S抗肿瘤生长和转移的作用机制。
     本课题研究证明了SIP-S是一种具有良好的抗肿瘤生长和转移活性的多糖且确定了其部分作用机制。本课题的完成,不但在硫酸化多糖抗肿瘤发生及转移研究方面具有重要理论意义,而且相关结论为SIP-S在肿瘤治疗中的应用开发奠定了坚实基础,应用价值同样明显。
Cancer is a leading cause of death worldwide, and metastasis is responsible for about90%of the deaths from cancer. Therefore, the development of antimestatic drugs is urgently needed to control human malignancies. Natural polysaccharides have become the focus of research due to the advantages such as immunoenhancing activity, antitumor activity, as well as few toxic and adverse effects. Previously, we isolated a new polysaccharide SIP from the ink of cuttlefish Sepiella maindroni. The previous studies demonstrated that sulfated SIP (SIP-S) significantly inhibited the expression as well as the activity of matrix metalloproteinase-2(MMP-2), and decreased the invasion of SKOV3cells as wll as the migration of ECV3O4cells. These results suggested that SIP-S may be a candidate compound for preventing tumor metastasis. In this study, we determined the anti-cancer and anti-metastatic activities of SIP-S in mice models, and proved the possible mechanisms of these activities.
     1SIP-S has anticancer and immunostimulatory activities
     The subcutaneous transplanted model of S180sarcoma in mice was made to investigate the activities of anticancer and immunostimulatory of SIP-S.
     SIP-S has immunoenhancing as well as anticancer activities, and it is demonstrated that the immunoenhancing activity is one mechanism for its anticancer activity. SIP-S could significantly inhibit tumor growth in S180-bearing mice. The inhibition rates of30,20and10mg/kg·d of SIP-S were43.5%,39.7%and32.4%, respectively. There were no obvious difference between the mean tumor weight of SIP-S-treated groups and cyclophosphamide (CTX)-treated group. Besides, SIP-S could improve mice thymus and spleen index in S180-bearing mice and mice treated with CTX. The combination treatment of SIP-S with CTX showed higher anticancer potency than the monotherapy. These results showed that SIP-S has immunoenhancing and anticancer activities, and demonstrated that the immunoenhancing activity is one mechanism for SIP-S's anticancer activity.
     2SIP-S could inhibit the growth and induce the apoptosis of tumor cells
     SIP-S could induce apoptosis of cancer cells by regulating the expression of relevant protein, so as to inhibit the prolifieration of cancer cells.
     The anticancer activity of SIP-S in vitro was investigated with MTT assay and cells colony-forming experiment. The inhibition rates to SKOV3cell proliferation by incubating with500,100and20μg/mL of SIP-S for2days were41.06%,32.48%and35.10%, respectively. And, the inhibition rates to SKOV3cell colony formation with the same concenntrations of SIP-S for7days were86.96%,67.39%and50.00%, respectively. These results showed that SIP-S could inhibit tumor cells growth in vitro and the effects are associated with time and given doses.
     Flow cytometry combined with AnnexinV-FITC/PI staining showed that SIP-S could induce tomor cells apoptosis. The early apoptosis rates of SKOV3cells under the concentrations of500,100,20and0μg/mL for36h were8.54%,3.66%,1.79%and3.18%, respectively, and the necrosis and late apoptosis rates were17.41%,6.44%,5.76%and3.90%. Western blot analysis showed that SIP-S could suppress the expression of PARP-1and increase the expression of caspase-3,-8,-9and bax in tumor cells and the effect was associated with concentration, while it had no significant influence on the expression of bcl-2and caspase-10.
     3SIP-S shows anti-metastatic activity in vivo
     The antimetastatic activity of SIP-S in vivo was examined by using the model of artificial lung metastasis with mouse melanoma B16F10. Compared with the saline group, SIP-S (15and30mg/kg-d) administrated for12d markedly decreased B16F10pulmonary metastasis in mice models by85.94%and87.95%, respectively. Besides, SIP-S could significantly inhibit liver metastasis of B16F10and the growth of metastatic tumor. Immunohistochemistry showed that SIP-S decrease the expression levels of ICAM-1and bFGF in lung metastasis nodules.
     The metastatic tumor sections staining with HE showed that nuclear atypia rates in SIP-S-treated groups were decreased compared with the saline group. The expression of basic fibroblast growth factor (bFGF) and intercellular adhesion molecule-1(ICAM-1) in metastatic nodules of SIP-S-treated group was less than in that of saline group from immunohistochemical examination, which may be one of mechanisms of anti-metastatic activity of SIP-S in vivo.
     4SIP-S inhibits tumor cell adhesion and heparanase(HPA) activity
     It is demonstrated that regulating the expression of cell adhesion molecules and inhibiting heparanase activity might be the anti-tumor metastasis mechanisms of the SIP-S.
     In order to explore the mechanism of anticancer activity of SIP-S, we detected the inhibitory effects of SIP-S on adhesive ability of SKOV3cells and the activity of HPA by MTT assay and enzyme-linked immunosorbent assay(ELISA assay), respectively. MTT assay showed that SIP-S could inhibit the adhesive ability of SKOV3cells to matrigel. The inhibition rate by treating with500,100and20μg/mL of SIP-S for40min were65.10%,54.40%and38.41%, while68.53%,58.27%and42.76%by treating with SIP for80min respectively. ELISA assay showed that SIP-S could significantly inhibit the degradation of HPA to its substrate heparan sulfate and the extracellular matrix. Compared with the positive control drug, the inhibition rates by treating with10and5μg/mL of SIP-S were over60%, which demonstrate SIP-S can significantly inhibit the activity of HPA.
     Flow cytometry assay showed that SIP-S could inhibit the P-selectin-mediated adhesion to HL-60cells. The inhibition rates with5and1mg/mL of SIP-S treatment were23.81%and20.19%, respectively. Western blot analysis showed that the expression of ICAM-1, integrin β1, TGF-β1and E-selectin in tumor cells and endothelial cells was significantly inhibited by SIP-S. But, there were no obvious change in the expression of E-cadherin and CD44V6in SKOV3cells and VCAM-1in EA.hy926cells.
     5SIP-S shows anti-angiogenic activity
     The anti-angiogenic activity of SIP-S was detected both in vitro and in vivo. SIP-S could inhibit endothelial cell lumen formation, proven by tube formation experiments in vitro. The number of endothelial cell tube formation was significantly reduced after treatment of SIP-S500,100and20μg/mL for a few hours compared the control group. SIP-S inhibited neovascularization in chick chorioallantoic membrane (CAM) assay at the dose of2and0.4mg/mL. These results showed that SIP-S possess anti-angiogenic activity. Western blot analysis showed that SIP-S significantly decreased the expression of VEGF and bFGF in SKOV3and EA.hy926cells, which might be one of the mechanisms of anti-angiogenic effect of SIP-S.
     6Conclusions
     In this study, the anti-cancer and anti-metastatic effects and mechanisms of SIP-S were investigated. SIP-S has significant anti-cancer and antimetastic activities, which might be mediated by inducing tumor cell apoptosis, enhancing the immune function of tumor-bearing mice, suppressing the adhesive ability of tumor cells and inhibiting neovascularization in CAM.
     The success of this project will not only determine that SIP-S was a polysaccharide with good anti-cancer activity and anti-matastasis activity, but also uncover fundamental anti-metastasis mechanisms of SIP-S in vitro and in vivo.. The information we got will also improve and enhance the development of the sulfated polysaccharide based anti-cancer drug in the future.
引文
[1]World Health Organization.2011. Cancer. Retrieved from http://www.who.int /mediacentre/factsheets/fs297/en/.
    [2]赵平.中国癌症负担与防控策略[J].抗癌之窗,2011,2(1):5-6.
    [3]Balch CM, Soong SJ, Atkins MB, et al. An evidence-based staging system for cutaneous melanoma[J]. CA Cancer J Clin,2004,54(3):131-149, quiz 182-184.
    [4]Geiger TR, Peeper DS. Metastasis mechanisms[J]. Biochimica et Biophysica Acta, 2009,1796(2):293-308.
    [5]汤钊酞.肝癌转移复发的基础与临床[M].上海科技教育出版社,2003.
    [6]Schmidmaier R, Baumann P. Anti-adhesion evolves to a promising therapeutic concept in oncology[J]. Curr Med Chem,2008,15(10):978-990.
    [7]Li DM, Feng YM. Signaling mechanism of cell adhesion molecules in breast cancer metastasis:potential therapeutic targets [J]. Breast Cancer Res Treat,2011, 128(1):7-21.
    [8]Balzer EM, Konstantopoulos K. Intercellular adhesion:mechanisms for growth and metastasis of epithelial cancers[J]. Wiley Interdiscip Rev Syst Biol Med, 2012,4(2):171-181.
    [9]Chen M, Geng JG. P-selectin mediates adhesion of leukocytes, platelets, and cancer cells in inflammation, thrombosis, and cancer growth and metastasis[J]. Arch Immunol Ther Exp (Warsz),2006,54(2):75-84.
    [10]梁静.恶性肿瘤转移机制及分子基础[J].武警医学院学报,2004,13(1):53-56.
    [11]Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases:regulators of the tumor microenvironment[J]. Cell,2010,141(1):52-67.
    [12]Vlodavsky I, Friedmann Y. Molecular properties and involvement of heparanase in cancer metastasis and angiogenesis[J]. J Clin Invest,2001,108(3):341-347.
    [13]Makrilia N, Lappa T, Xyla V, et al. The role of angiogenesis in solid tumours:an overview[J]. Eur J Intern Med,2009,20(7):663-671.
    [14]Folkman J. Anti-angiogenesis:new concept for therapy of solid tumors[J]. Ann Surg,1972,175(3):409-416.
    [15]Schmitt J, Matei D. Targeting angiogenesis in ovarian cancer[J]. Cancer Treat Rev,2012,38(4):272-283.
    [16]卢大用,黄敏,周晋,等.肿瘤转移及抗肿瘤转移药研究进展[J].河南医学研究,2004,13(3):273-281.
    [17]Meeran SM, Elmets CA, et al. Orally Administered Green Tea Polyphenols Prevent Ultraviolet Radiation-Induced Skin Cancer in Mice through Activation of Cytototic T Cells and Inhibition of Angiogenesis in Tumors[J]. J Nutr.,2005, 135(12):2871.
    [18]徐永强.蛇毒抗肿瘤转移的研究现状[J].中国临床药理学与治疗学,2002,7(5):477-480.
    [19]Lucena S, Sanchez EE, Perez JC. Anti-metastatic activity of the recombinant disintegrin, r-mojastin 1, from the Mohave rattle snake[J]. Toxicon.,2011, 57(5):794-802.
    [20]Dong Lu, Mike Scully, Vijay Kakkar, et al. ADAM-15 Disintegrin-Like Domain Structure and Function[J]. Toxins,2010,2,2411-2427.
    [21]Beer AJ, Haubner R, Sarbia M, et al. Positron emission tomography using [18F] Galacto-RGD identifi es the level of integrin alpha(v) beta3 expression in man[J]. Clin Cancer Res,2006,12(13):3942-3949.
    [22]Moschos SJ, Sander CA, Wang W, et al. Pharmacodynamic (phase 0) study using etaracizumab in advanced melanoma[J]. J Immunother,2010,33(3):316-325.
    [23]Chen Q, Manning CD, Millar H, et al. CNTO 95, a fully human anti alpha v integrin antibody, inhibits cell signaling, migration, invasion, and spontaneous metastasis of human breast cancer cells [J]. Clin Exp Metastasis,2008,25(2): 139-148.
    [24]Desgrosellier JS, Cheresh DA. Integrins in cancer:biological implications and therapeutic opportunities [J]. Nat Rev Cancer,2010,10(1):9-22.
    [25]Conti JA, Kendall TJ, Bateman A, et al. The desmoplastic reaction surrounding hepatic colorectal adenocarcinoma metastases aids tumor growth and survival via alphav integrin ligation[J]. Clin Cancer Res,2008,14(20):6405-6413.
    [26]Cheng C, Komljenovic D, Pan L, et al. Evaluation of treatment response of cilengitide in an experimental model of breast cancer bone metastasis using dynamic PET with (18)F-FDG [J]. Hell J Nucl Med,2011,14(1):15-20.
    [27]贾凌云,孔花青,李媛,等.肝素类化合物与肿瘤转移的关系[J].食品与药品,2011,13(7):286-289.
    [28]Stevenson JL. Heparin attenuates metastasis mainly due to inhibition of P-and L-selectin, but non-anticoagulant heparins can have additional effects[J]. Thromb Res,2007,120:S107-S111.
    [29]徐怀勇,巩本刚,成王光,等.MMPs、MMPs抑制剂及新型抑制剂MMI 166在肿瘤中的研究进展[J].中国现代普通外科进展,2011,14(9):703-706.
    [30]Murphy G, Nagase H. Progress in matrix metalloproteinase research [J]. Mol Aspects Med,2008,12,29(5):290-308.
    [31]Oba K, Konno H, Tanaka T, et al. Prpvention of liver metastasis of human colon cancer by selective matrix metalloproteinase inhibitor MMI-166[J]. Cancer Letters,2002,175(1):45-51.
    [32]董缙,姚硕蔚,徐云根.肿瘤血管生成抑制剂[J].化学进展,2010,22(10):1993-2002.
    [33]Ferrara N, Hillan KJ, Novotny W. Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy [J]. Biochem Biophys Res Commun.,2005,333(2):328-335.
    [34]Zhou BN, Johnson RK, Mattern MR, et al. The first naturally occurring Tie2 kinase inhibitor[J]. Org Lett.2001,3(25):4047-4049.
    [35]Hodous BL, Geuns-Meyer SD, Hughes PE, et al. Evolution of a highly selective and potent 2-(pyridin-2-yl)-1,3,5-triazine Tie-2 kinase inhibitor[J]. J Med Chem.,2007,50(4):611-626.
    [36]傅雷.糖生物学的产生和发展[J].生物学通报,2006,41(12):27-28.
    [37]张惟杰.复合多糖生化研究技术[M].浙江大学出版社,1999.
    [38]Zhang M, Cui SW, Cheung PCK, et al. Antitumor polysaccharides from mushrooms:a review on their isolation process, structural characteristics and antitumor activity[J]. Trends Food Sci Tech,2007,18(1):4-19
    [39]王克夷.灰姑娘的马车已经来了[J]。生命的化学,2001,21(3):257-258.
    [40]刘颖,金宏,程义勇.多糖生物活性及其作用机制研究进展[J].中国公共卫生,2006,(5):627-629.
    [41]Wasser SP. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides[J]. Appl Microbiol Biotechnol,2002, 60(3):258-274.
    [42]Senni K, Pereira J, Gueniche F, et al. Marine polysaccharides:a source of bioactive molecules for cell therapy and tissue engineering[J]. Mar Drugs,2011, 9(9):1664-1681.
    [43]Liu CH, Lin QX, Gao Y, et al. Characterization and antitumor activity of a polysaccharide from Strongylocentrotus nudus eggs[J]. Carbohyd Polym,2007, 67(3):313-318.
    [44]Zhang YJ, Song SL, Liang H, et al. Enhancing effect of a seacucumber Stichopus japonicus sulfated polysaccharide on neurosphere formation in vitro[J]. J Biosci Bioeng,2010,110(4):479-486.
    [45]Wang JM, Hu YL, Wang DY, et al. Sulfated modification can enhance the immune-enhancing activity of lycium barbarum polysaccharides[J]. Cell Immunol,2010,263(2):219-223.
    [46]Liu CM, Chen HJ, Chen K, et al. Sulfated modification can enhance antiviral activities of Achyranthes bidentata polysaccharide against porcine reproductive and respiratory syndrome virus (PRRSV) in vitro[J]. Int J Biol Macromol, 2013,52:21-24.
    [47]Wang SB, Cheng YN, Wang FS, et al. Inhibition activity of sulfated polysaccharide of Sepiella maindroniink on matrix metalloproteinase (MMP)-2 [J]. Biomed Pharmacother,2008,62(5):297-302.
    [48]Sun YX, Liang HT, Cai GZ, et al. Sulfated modification of the water-soluble polysaccharides from Polyporus albicans mycelia and its potential biological activities[J]. Int J Biol Macromol,2009,44(1):14-17.
    [49]李玉华,王凤山,贺艳丽.多糖化学修饰方法研究概况[J].中国生化药物杂志,2007,28(1):62-65.
    [50]Zong AZ, Cao HZ, Wang FS. Anticancer polysaccharides from natural resources: A review of recent research[J]. Carbohydr Polym,2012,90(4):1395-1410.
    [51]Mizuno M, Nishitani Y. Immunomodulating compounds in Basidiomycetes[J]. J Clin Biochem Nutr.,2013,52(3):202-207.
    [52]Wu X, Chen D, Xie GR. Effects of Gekko sulfated polysaccharide on the proliferation and differentiation of hepatic cancer cell line[J]. Cell Biol Int.,2006, 30(8):659-664.
    [53]Du L, Mei HF, Yin X, et al. Delayed growth of glioma by a polysaccharide from Aster tataricus involve upregulation of Bax/Bcl-2 ratio, activation of caspase-3/8/9, and downregulation of the Akt[J]. Tumour Biol.2013.
    [54]Park HS, Hwang HJ, Kim GY, et al. Induction of apoptosis by fucoidan in human leukemia U937 cells through activation of p38 MAPK and modulation of Bcl-2 family[J]. Mar Drugs.,2013,11(7):2347-2364.
    [55]赵俊霞,严永鑫,赵娟,等.刺五加多糖诱导人小细胞肺癌H446细胞凋亡[J].细胞生物学杂志,2008(30):239-242.
    [56]袁丽铭.巴西蘑菇多糖(ABPS)诱导肿瘤细胞凋亡的分子机理研究[D].上海:上海师范大学,2005.
    [57]Ye MN, Chen HF, Zhou RJ, et al. Effects of Astragalus polysaccharide on proliferation and Akt phosphorylation of the basal-like breast cancer cell line. Zhong Xi Yi Jie He Xue Bao,2011,9(12):1339-1346.
    [58]孟运莲,蔡丽华,吴慧芬,等.化学修饰的茯苓多糖抗肿瘤效应的免疫组织化学观察[J].武汉大学学报:医学版,2007,28(1):67-69.
    [59]于广利,李春林,赵峡,等.一种灰树花菌丝体多糖的结构特征及其抗肿瘤活性[J].中国海洋大学学报,2006,36(6):915-918.
    [60]Jiang J, Slivova V, Sliva D. Ganoderma lucidum inhibits proliferation of human breast cancer cells by down-regulation of estrogen receptor and NF-kappaB signaling[J]. Int J Oncol.,2006,29(3):695-703.
    [61]金光,杨恩月,金晴昊,等.桦褐孔菌多糖的抗肿瘤作用实验研究[J].延边大学医学学报,2004,27(4):257-259.
    [62]潘洪明,王玉,金殿鏊,等.藉苓多糖对小鼠HepA瘤细胞p16,Rb基因表达的影响[J].中国优生与遗传杂志,2002,10(4):32-33.
    [63]Lu WZ, Geng GX, Li QW, et al. Anti-tumor activity of polysaccharides isolated from Patrinia scabra Bunge on U14 cervical carcinoma bearing mice[J]. Am J Chin Med.2009,37(5):933-944.
    [64]董永杰,单铁英,袁征,等.6种中药多糖对诱导树突状细胞成熟及刺激T细胞增殖作用的比较[J].现代预防医学,2010,37(18):3438-3441.
    [65]孟运莲,蔡丽华,吴慧芬,等.化学修饰的茯苓多糖抗肿瘤效应的免疫组织化学观察[J].武汉大学学报:医学版,2007,28(1):67-69.
    [66]蒋晓琴,丁晓明,刘海燕,等.黄伞粗多糖抗肿瘤及对荷瘤小鼠免疫功能影响的研究[J].中国药师,2007,10(2):119-121.
    [67]裴素平,谈立.人参多糖对进展期消化道肿瘤患者疗效和免疫功能指标的影响[J].中国误诊学杂志,2007,7(24):5776-5777.
    [68]王慧铭,夏明,夏道宗,等.香菇多糖抗肿瘤作用及其机制的研究[J].浙江中西医结合杂志,2006,16(5):291-292.
    [69]Leung MYK, Liu C, Koon JCM, el al. Polysaccharide biological response modifiers[J]. Immunol Lett,2006,105(2):101-114.
    [70]Li W, Nie S, Chen Y, et al.Enhancement of cyclophosphamide-induced antitumor effect by a novel polysaccharide from Ganoderma atrum in sarcoma 180-bearing mice[J]. J Agric Food Chem.,2011,59(8):3707-3716.
    [71]Li XB, He XJ, Liu B, et al. Immunoregulatory function of Radix Glycyrrhizae polysaccharide in tumor-bearing mice[J]. Zhong Xi Yi Jie He Xue Bao,2010,8(4):363-367.
    [72]Liang BB, Liu HG, Cao JT. Antitumor effect of polysaccharides from cactus pear fruit in S180-bearing mice[J]. Ai Zheng,2008,27(6):580-584.
    [73]杜小燕,侯颖,覃华,等.绞股蓝多糖的抗肿瘤作用及其机制研究[J].科学技术与工程,2009,9(20):5968-5972.
    [74]金丽琴,吕建新,杨介钻,等.蝉拟青霉总多糖对老龄大鼠巨噬细胞的激活作用[J].中国病理生理杂志,2006,22(1):116-119.
    [75]张巍,张昆,邵明亮.灰树花多糖抗肿瘤作用的免疫学研究[J].中国实用医药,2009,4(7):127-127.
    [76]Liu Chunhui, Xi Tao, Lin Qinxiong, et al. Immunomodulatory activity of polysaccharides isolated from Strongylocentrotus nudus eggs[J]. Int Immuno Pharmacol,2008,8(13/14):1835-1841.
    [77]刘媛,耿越.灵芝多糖抗肿瘤的细胞机制及作用通路研究[J].食品与药品,2008,10(7):48-51.
    [78]任美萍,刘明华,李蓉,等.黄芪多糖抗肿瘤活性研究[J].中国新药杂志,2010,19(3):221-224.
    [79]Masuda Y, Ito K, Konishi M, et al. A polysaccharide extracted from Grifola frondosa enhances the anti-tumor activity of bone marrow-derived dendritic cell-based immunotherapy against murine colon cancer [J]. Cancer Immunol Immunother,2010,59(10):1531-1541.
    [80]荣微,井欢,刘春英.香菇多糖对荷瘤小鼠树突状细胞功能影响的实验研究[J].中医药学刊,2006,24(4):681-682.
    [81]Inngjerdingen K T, Debes S C, Inngjerdingen M, et al. Bioactive pectic polysaccharides from Glinus oppositifolius(L.)Aug. DC, a Malian medicinal plant, isolation and partial characterization[J].Ethnopharmacol,2005,101(1/3): 204-214.
    [82]Fisher M, Yang LX. Anticancer effects and mechanisms of polysaccharide-K (PSK):implications of cancer immunotherapy [J]. Anticancer Res,2002,22(3): 1737-1754.
    [83]Han SB, Lee CW, Kang JS, et al. Acidic polysaccharide from Phellinus linteus inhibits melanoma cell metastasis by blocking cell adhesion and invasion[J]. Int Immunopharmacol,2006,6(4):697-702.
    [84]Niu YC, Liu JC, Zhao XM, et al. A low molecular weight polysaccharide isolated from Agaricus blazei Murill (LMPAB) exhibits its anti-metastatic effect by down-regulating metalloproteinase-9 and up-regulating Nm23-H1[J]. Am J Chin Med,2009,37(5):909-921.
    [85]Han S-B, Lee CW, Kang MR, et al. Pectic polysaccharide isolated from Angelica gigas Nakai inhibits melanoma cell metastasis and growth by directly preventing cell adhesion and activating host immune functions[J]. Cancer Lett, 2006,243(2):264-273.
    [86]Takaaki M, Jun M, Minako T, et al. Inhibition of tumor invasion and metastasis by calcium spirulan (Ca-SP), a novel sulfated polysaccharide derived from a blue-green alga, Spirulina platensis[J]. Clin Exp Metastas,1998,16(6):541-550.
    [87]Liu AJ, Hu YX, Liu CJ, et al. Mechanism of metastasis inhibition by cartilage polysaccharide in breast cancer cells[J]. Biotechnol Appl Biochem,2009,53(Pt 4):253-263.
    [88]Cai JP, Wu YJ, Li C, et al. Panax ginseng polysaccharide suppresses metastasis via modulating Twist expression in gastric cancer[J]. Int J Biol Macromol,2013, 13(57C):22-25.
    [89]Xin T, Zhang F, Jiang Q, et al. The inhibitory effect of a polysaccharide from Codonopsis pilosula on tumor growth and metastasis in vitro [J].Int J Biol Macromol,2012,51(5):788-793.
    [90]Tang X, Li J, Xin X, Geng M. A new marine-derived sulfated polysaccharide from brown alga suppresses tumor metastasis both in vitro and in vivo[J]. Cancer Biol Ther,2006,5(11):1474-1480.
    [91]Sunila ES, Hamsa TP, Kuttan G. Effect of Thuja occidentalis and its polysaccharide on cell-mediated immune responses and cytokine levels of metastatic tumor-bearing animals[J]. Pharm Biol,2011,49(10):1065-1073.
    [92]Chen SG, Wang JF, Xue CH, et al. Sulfation of a squid ink polysaccharide and its inhibitory effect on tumor cell metastasis [J]. Carbohydr Polym,2010, 81(3):560-566.
    [93]宋坤,丁安伟.乌贼墨化学成分和药理作用研究概况[J].时珍国医国药,2001,12(4):377-378.
    [94]王欣,李国明.乌贼墨的药理作用研究进展[J].医学综述,2005,11(9):825-827.
    [95]杜铁平,周培根.乌贼墨研究概况[J].食品研究与开发,2002,23(6):16-18.
    [96]郑校先,戚晓玉.乌贼墨中多酚氧化酶的分离及纯化[J].上海水产大学学报2001,10(2):154-157.
    [97]Sasaki J, Ishita K, Takaya Y, et al. Antitumour activity of squid ink[J]. Journal of Nutritional Science Vitaminology,1997,43(4):455-461.
    [98]赫甡,谢光麟,赫明昌.乌贼墨对小鼠NK细胞杀伤活性的影响和抑瘤作用的研究[J].中国海洋药物,2002,21(5):37-39.
    [99]王群,吕昌龙,吕超,等.乌贼墨诱生小鼠IFN-γ及调节LAK细胞活性的研究[J].中国海洋药物,2001,20(1):37-39.
    [100]刘成玉,滕青,周绪祥.乌贼墨对红细胞免疫黏附肿瘤细胞能力的影响[J].中国海洋药物,1996,15(3):14-16.
    [101]黄枚.乌贼墨抗癌活性的实验研究[J].福建中医学院学报,2004,14(1):23-24.
    [102]赫甡,孟胜男,谢光麟.乌贼墨诱导小鼠巨噬细胞产生白细胞介素-1的研究[J].中国海洋药物,2003,22(5):17-19.
    [103]赫牲,谢光麟,刘风芝,等.乌贼墨对小鼠生成白细胞介素-2的影响[J].中国海洋药物,1999,18(1):11-16.
    [104]阎建忠,吕昌龙,李蔚,等.乌贼墨对小鼠脾细胞和巨噬细胞NO生成及IFN-γ分泌水平的影响[J].中国海洋药物,2004,4:19-23.
    [105]谢光麟,赫牲.乌贼墨诱生多重集落刺激因了的研究[J].中国海洋药物,2001,20(3):25-27.
    [106]侯雪云,孙克任.乌贼墨对H22癌细胞TPK、PKC及PKA活性的影响[J].中国海洋药物杂志,2001,20(6):17.
    [107]张倩,张建民,田芯.乌贼墨抗肿瘤活性研究进展[J].中国海洋药物杂志,2012,31(5):59-62.
    [108]王成斌,孙克任,谢克勤,等.乌贼墨对H22癌细胞内Ca2+浓度、细胞核Ca2+/Mg2+ -ATP酶活性及c-fos表达的影响[J].中国医科大学学报,2000,38(8):420-422.
    [109]徐秀云,文凤娥.复方乌贼墨胶囊对延缓衰老作用的影响[J].药学实践杂志,2006,24(2):93-95.
    [110]王光,潘江球,钟杰平,等.乌贼墨对环磷酰胺致小鼠脾脏氧化性损伤的保护效应[J].食品科学,2009,30(11):219-222.
    [111]王光,刘华忠,吴金龙,等.乌贼墨提取物对氧化性损伤小鼠心肌与脑组织的保护作用研究[J].中国现代应用药学,2010,27(2):95-99.
    [112]罗萍,师莉莎,刘华忠.乌贼墨多糖的体外抗氧化作用[J].食品研究与开发,2013,34(8):1-4.
    [113]李和生,李晓,董亚辉,等.乌贼墨黑色素的超微结构及抗氧化活性研究[J].中国食品学报,2012,12(10):62-66.
    [114]谢光临,吕昌龙,洪明标.乌贼墨促凝血作用机制的实验研究[J].中国医科大学学报,1994,23(6):530-531.
    [115]逢龙,王静凤,雷敏,等.乌贼墨制品促进小鼠造血功能的试验研究[J].营养学报,2007,29(1):87-90.
    [116]雷敏,王静凤,李兆杰,等.乌贼墨制品对60Coγ辐射损伤小鼠造血功能的影响[J].食品科学,2007,28(2):293-297.
    [117]杜铁平,周培根,卫小怡,等.乌贼墨抗菌活性的分离与研究[J].现代食品科技,2005,21(1):69-71.
    [118]王劲松.乌贼墨中抗菌活性成分的应用研究[J].荆门职业技术学院学报,2008,23(12):14-19.
    [119]师莉莎,刘华忠,钟杰平,等.乌贼墨抑制海洋鱼体腐败菌活性成分的分离[J].食品工业科技,2012(11):120-123.
    [120]王欣,李国明.乌贼墨的抗感染作用[J].中国医药导报,2008,5(22):31-32.
    [121]吴金龙,王光,师莉莎,等.乌贼墨制剂对环磷酰胺致小鼠毒性损伤的缓解效应[J].中国海洋药物杂志,2012,31(2):49-51.
    [122]黄银燕,杨翠玲,李伟,等.乌贼墨提取物对环磷酰胺致肝损伤小鼠肝功能的保护作用研究[J].食品研究与开发,2010,31(4):13-16.
    [123]王光,郭宜重,关淑冰,等.乌贼墨提取物对环磷酰胺所致小鼠肺纤维化的保护作用[J].中国海洋药物杂志,2009,28(1):36-40.
    [124]乐小炎,原林,林少杰,等.乌贼墨多糖的制备及对睾丸化疗性损伤的保护作用[J].http://www.cnki.net/kcms/detail/11.1759.TS.20130424.1356.006.html
    [125]乐小炎,许泽旋,师莉莎,等.乌贼墨多糖对环磷酰胺损伤小鼠生精功能的影响[J].中国海洋药物杂志,2012,31(5):23-26.
    [126]王光,钟杰平,刘华忠.乌贼墨多糖缓解环磷酰胺致大鼠骨髓功能抑制作用的研究[J].食品工业科技,2012,33(17):365-367.
    [127]Tsutomu M., Kazuhiro M., Hisyo H., et al. Studies on biological activities of melanin from marine animals. I. Purification of melanin from Ommastrephes bartramilesvel and its inhibitory activity on gastricivice secretion in Rats [J]. Chem. Pharm. Bull.,1982,30(4):1381-1386.
    [128]雷敏,王静凤,逢龙,等.乌贼墨对高脂血症大鼠血脂代谢和抗氧化能力的影响[J].中国海洋药物杂志,2007,26(3):30-33.
    [129]Takaya Y, Uchisawa H, Hanamatsu K, et al. Novel Fucose-rich glycosaminoglycans from squid ink bearing repeating unit of trisaccharide structure (-6GalNAc[alpha]1-3GlcA[beta]1-3Fuc[alpha]1-)n. Biochem Biophys Res Commun,1994,198(2):560-567.
    [130]王光.乌贼墨多糖的化疗保护作用研究[D].广东海洋大学,2010年.
    [131]王曦.乌贼墨肽聚糖的抗肿瘤作用[D].第二军医大学,2005年.
    [132]郑玉寅.乌贼墨肽聚糖抗前列腺癌活性研究及产品研发[D].浙江海洋学院,2011年.
    [133]Liu CH, Li XD, Li YH, et al. Structural characterization and antimutagenic activity of a novel polysaccharide isolated from Sepiella maindroni ink. Food Chem,2008,110(4):807-813.
    [134]李孝东.乌贼墨糖胺聚糖的制备、理化性质、结构与生物活性研究[D].山东大学,2004年.
    [135]李玉华.乌贼墨糖胺聚糖及其硫酸化衍生物的制备及生物活性研究[D].山东大学,2007年.
    [136]Rios JL. Chemical constituents and pharmacological properties of Poria cocos[J]. Planta Med,2011,77(7):681-691.
    [137]赵俊霞,严永鑫,赵娟,等.刺五加多糖诱导人小细胞肺癌H446细胞凋[J].细胞生物学杂志,2008,(30):239-242.
    [138]Ren L, Perera C, Hemar Y. Antitumor activity of mushroom polysaccharides:a review[J]. Food Funct,2012,3(11):1118-1130.
    [139]王欣,李国明.乌贼墨的药理作用研究进展[J].医学综述,2005,11(9):824-827.
    [140]Ooi VE, Liu F. Immunomodulation and anti-cancer activity of polysaccharide-protein complexes[J]. Curr Med Chem,2000,7(7):715-729.
    [141]Zhang SX, Zhu C, Ba Y, et al. Gekko-sulfated glycopeptide inhibits tumor angiogenesis by targeting basic fibroblast growth factor[J]. J Biol Chem,2012, 287(16):13206-13215.
    [142]孙燕.临床肿瘤内科手册[M].人民卫生出版社,2007,第五版.
    [143]Jiang M, Ouyang H, Ruan P, et al. Chitosan derivatives inhibit cell proliferation and induce apoptosis in breast cancer cells[J]. Anticancer Res,2011, 31(4):1321-1328.
    [144]Xue M, Ge Y, Zhang J, et al. Fucoidan inhibited 4T1 mouse breast cancer cell growth in vivo and in vitro via downregulation of Wnt/β-Catenin signaling[J]. Nutr Cancer,2013,65(3):460-468.
    [145]Morrison J, Haldar K, Kehoe S, et al. Chemotherapy versus surgery for initial treatment in advanced ovarian epithelial cancer[J]. Cochrane Database Syst Rev,2012,15(8):CD005343.
    [146]Gartel AL. Mechanisms of apoptosis induced by anticancer compounds in melanoma cells[J]. Curr Top Med Chem,2012,12(1):50-52.
    [147]Artacho-Cordon F, Rios-Arrabal S, Lara PC, et al. Matrix metalloproteinases: potential therapy to prevent the development of second malignancies after breast radiotherapy[J]. Surg Oncol,2012,21(3):e143-151.
    [148]Pollari S, Kakonen RS, Mohammad KS, et al. Heparin-like polysaccharides reduce osteolytic bone destruction and tumor growth in a mouse model of breast cancer bone metastasis [J]. Mol Cancer Res,2012,10(5):597-604.
    [149]Borgenstrom M, Warri A, Hiilesvuo K, et al.O-sulfated bacterial polysaccharides with low anticoagulant activity inhibit metastasis[J]. Semin Thromb Hemost,2007,33(5):547-556.
    [150]Alekseyenko TV, Zhanayeva SY, Venediktova AA, et al. Antitumor and antimetastatic activity of fucoidan, a sulfated polysaccharide isolated from the Okhotsk Sea Fucus evanescens brown alga[J]. Bull Exp Biol Med,2007, 143(6):730-732.
    [151]Naomoto Y, Takaoka M, Okawa T, et al. The role of heparanase in gastrointestinal cancer (Review). Oncol Rep,2005,14(1):3-8.
    [152]Glinsky VV, Raz A. Modified citrus pectin anti-metastatic properties:one bullet, multiple targets. Carbohydr Res,2009,344(14):1788-1791.
    [153]Tamagawa K, Horiuchi T, Wada T, et al. Polysaccharide-K (PSK) may suppress surgical stress-induced metastasis in rat colon cancer[J]. Langenbecks Arch Surg,2012,397(3):475-480.
    [154]Kawaguchi T. Cancer metastasis:characterization and identification of the behavior of metastatic tumor cells and the cell adhesion molecules, including carbohydrates. Curr Drug Targets Cardiovasc Haematol Disord,2005, 5(1):39-64.
    [155]Gohji K, Katsuoka Y, Okamoto M, et al. Human heparanase:roles in invasion and metastasis of cancer[J]. Hinyokika Kiyo,2000,46(10):757-762.
    [156]李媛,张丽,孔花青,等.乙酰肝素酶与肿瘤转移及血管生成的关系[J].食品与药品,2011,13(1):61-63.
    [157]Vaday GG,Lider O. Extracellular matrix moieties, cytokines, and enzymes: dynamic effects on immune cellbehavior and inflammmation[J]. Leuk Biol, 2000,67(2):149-158.
    [158]Chen J, Zheng D, Shen J, et al. Heparanase is involved in the proliferation and invasion of nasopharyngeal carcinoma cells[J]. Oncol Rep,2013, 29(5):1888-1894.
    [159]Zeng C, Ke ZF, Luo WR, et al. Heparanase overexpression participates in tumor growth of cervical cancer in vitro and in vivo[J]. Med Oncol,2013, 30(1):403.
    [160]Zhang ZH, Chen Y, Zhao HJ, et al. Silencing of heparanase by siRNA inhibits tumor metastasis and angiogenesis of human breast cancer in vitro and in vivo[J]. Cancer Biol Ther,2007,6(4):587-595.
    [161]蔡小玲,余志刚,林永成.具抗肿瘤活性的乙酰肝素酶抑制剂的研究与开[J].生命的化学,2008,28(5):617-620.
    [162]Huang KS, Holmgren J, Reik L, et al. High-throughput methods for measuring heparanase activity and screening potential antimetastatic and anti-inflammatory agents[J]. Analyt Biochem,2004,333(2):389-398.
    [163]肖楚瑶,丁月,蒋建敏.新型抗肿瘤药PI-88及其类似物[J].国际药学研究杂志,2008,35(6):411-414.
    [164]Zhao HJ, Liu HY, Chen Y, et al. Combats tumor angiogenesis and metastasis simultaneously targeting basic fibroblast growth factor, oligomannurarate sulfate, a novel heparanase inhibitor[J]. Cancer Res,2006,66(17):8779-8787.
    [165]Pottratz ST, Hall TD, Scribner WM, et al. P-selectin-mediated attachment of small cell lung carcinoma to endothdial cells[J].Am J Physiol,1996, 271(6):918-923.
    [166]李媛,丁兰.P选择素与肿瘤转移[J].西北师范人学学报(自然科学版),2008,3(44):78-81.
    [167]刘芳,孔旭黎,樊红亮,等.P-选择素与肿瘤转移关系的研究[J].现代医药卫生,2005,21(20):2766-2767.
    [168]张春.E-选择素在结肠癌中的研究现状[J].齐齐哈尔医学院学报,2008,29(20):2502-2503.
    [169]Roselli M, Guadagni F, Martini F, et al. Association between serum earcinoembryonie antigen and endothelial cell adhemon molecules in colorectal cancer[J]. Oncology,2003,65(2):132-138.
    [170]Ordemann J, Hoflich C, Braumann C, et al. Impact of pneumoperitoneum on expression of E-cadherin, CD44v6 and CD54 (ICAM-1) on HT-29 colon-carcinoma cells[J]. Zentralbl Chir,2005,130(5):405-409.
    [171]Stetler-Stevenson WG, Hewitt R, Corcoran M. Matrix metalloproteinases and tumor invasion:from correlation and causality to the clinic[J]. Semin Cancer Biol,1996,7(3):147-154.
    [172]Yamamoto H, Itoh F, Adachi Y, et al. Relation of enhanced secretion of active matrix metalloproteinase with tumor spread in human hepatoeellular carcinoma[J]. Gasteroenterology,1997,112 (4):1290-1296.
    [173]Ruoslaht E, Reed JC. Anchorage dependence, integrins, and apoptosis[J]. Cell, 1994,77(4):477-478.
    [174]Matsuoka T, Hirakawa K, Chung YS, et al.Adhesion polypeptides are useful for the prevention of peritoneal dissemination of gastric cancer[J]. Clin Exp Metastasis,1998,16(4):381-388.
    [175]Jian MS. Expression of focal adhesion kinase and alpha5 and betal1 integrins in carcinomas and its clinical significance[J]. World J Gastroenterol,2002, 8(4):613-618.
    [176]Kawamura T, Endo Y, Yonemura Y, et al. Significance of integrin alpha2/betal in peritoneal dissemination of a human gastric xenograft model [J]. Int J Oncol, 2001,18(4):809-815.
    [177]Matsuoka T, Yashiro M, Nishimura SH, et al. Increased expression of alpha2 betal-integrin in the peritoneal dissemination of human gastric carcinoma[J]. int J Mol Med,2000,5(1):21-25.
    [178]Ohuchida K, Mizumoto K, Murakami M, et al. Radiation to stromal fibroblasts increases invasiveness of pancreatic cancer cells through tumor-stromal interactions[J]. Cancer Res,2004; 64(9):3215-3222.
    [179]Zavadil J, Bottinger EP. TGF-beta and epithelial-to-mesenchymal transitions[J]. Oncogene,2005,24(37):5764-5774.
    [180]Hasegawa Y, Takanashi S, Kanehira Y, et al. Transforming growth factor-betal level correlates with angiogenesis, tumor progression, and prognosis in patients with nonsmall cell lung carcinoma[J]. Cancer,2001,91(5):964-971.
    [181]Tuxhorn JA, McAlhany SJ, Yang F, et al. Inhibition of transforming growth factor-beta activity decreases angiogenesis in a human prostate cancer-reactive stroma xenograft model [J]. Cancer Res,2002, 62(21):6021-6025.
    [182]Letterio JJ, Roberts AB. Regulation of immune responses by TGF-beta[J]. Annu Rev Immunol,1998,16:137-161.
    [183]俞清翔.转化生长因子p与肿瘤转移的研究进展[J].世界华人消化杂志,2006,14(25):2538-2541.
    [184]Tian F, DaCosta Byfield S, Parks WT, et al.Reduction in Smad2/3 signaling enhances tumorigenesis but suppresses metastasis of breast cancer cell lines. Cancer Res,2003,63(23):8284-8292.
    [185]王斌,邓长生,徐少勇.食管癌中细胞粘附分子E-钙粘素和CD44变异体表达及其临床意义[J].临床内科杂志,2002,19(6):432-434.
    [186]Buda A, Pignatelli M. E-cadherin and the cytoskeletal network in colorectal cancer development and metastasis[J]. Cell Commun Adhes,2011, 18(6):133-143.
    [187]Hoshimoto K, Yamauchi N, Takazawa Y, et al. CD44 variant 6 in endometrioid carcinoma of the uterus:its expression in the adenocarcinoma component is an independent prognostic marker[J]. Pathol Res Pract,2003,199(2):71-77.
    [188]钱皓,凌沛学,王凤山,等.黏附分子CD44与恶性肿瘤关系的研究进展[J].中国生化药物杂志,2007,3:102-108.
    [189]Gho YS, Kim PN, Li HC, et al. Stimulation of tumor growth by human soluble intercellular adhesion molecule-1[J]. Cancer Res,2001,61(10):4253-4257.
    [190]Koch AE, Halloran MM, Haskell CJ, et al. Angiogenesis mectiated by soluble forms of E-selectin and vascular cell adhesion molecule-1[J]. Nature,1995, 376(6540):517-519.
    [191]谭海宁.新生血管生成抑制剂内皮抑素的化学修饰及修饰物的生物活性和药代动力学研究[D].山东大学,2009年.
    [192]Folkman J. Tumor angiogenesis:therapeutic [J]. N Engl J Med,1971, 285(21):1182.
    [193]王兰,田菲,杨佩颖,等.扶正解毒方对小鼠Lewis肺癌移植瘤血管生成和肿瘤转移作用的实验研究[J].山西医药杂志,2012,41(11):1125-1126.
    [194]王峰,薛英威.血管生成与胃癌转移关系的分子机制研究进展[J].当代医学,2012,18(5):19-20.
    [195]Fujimoto J. Novel therapeutic strategy for uterine endometrial cancers[J].Int J Clin Oncol,2008,13(5):411-415.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700