用户名: 密码: 验证码:
犍为水电站坝址区渗漏水文地质条件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
坝址区渗漏问题是水利水电工程中需要解决的重要问题之一。本论文以拟建的岷江航电犍为水电站为研究背景,进行了详细的野外水文地质调查,分析了坝址区的地质环境条件,进行了地下水不稳定渗流抽水试验、地下水连通试验、溶蚀试验、水化学测试分析、微观测试分析等。在掌握了详细的第一手资料基础上,重点研究了坝址区渗漏的水文地质条件,划分出了坝址区地下水系;并探讨坝址区类岩溶问题,分析了类岩溶对犍为水电站工程建设的影响。在此基础上,分析了坝址区渗漏问题。此外,初步提出了防渗措施建议。
     主要研究成果如下:
     (1)犍为水电站坝址区属于中低山地貌,出露的地层为第四系松散堆积层、侏罗系中统下沙溪庙组、自流井组和三叠系上统须家河组,构造较简单,坝址区存在钙质砂(砾)岩类岩溶现象。
     (2)坝址区地下水按含水介质类型可分为:松散岩类孔隙水、碎屑岩类裂隙孔隙水和基岩裂隙水,以基岩裂隙水为主。
     (3)研究区地下水含较高游离CO2,pH值偏中性,矿化度和电导率值偏高,地下水化学类型以HCO3-Ca及HCO3-SO4-Ca为主。
     (4)坝址区地下水主要接受大气降水补给,通过裂隙通道径流,向水库较低部位排泄。
     (5)对影响钙质砂(砾)岩溶蚀速率的几个因素进行了试验研究,结果表明:在模拟实际水文条件下,钙质砂(砾)岩溶蚀速度较缓慢。因此推测:在水库蓄水后的自然条件下,钙质砂(砾)岩溶蚀反应非常缓慢,在有限长的时间内,不致产生大的渗漏通道,即坝址区钙质砂(砾)岩对水库渗漏影响性小。
     (6)进行了连通试验研究,分析得出,68号钻孔、01号水井、郑家竹林旁沟水、47号钻孔、59号泉点和12号泉水属于相同地下水系;55号水井和56号水井属于另外一个地下水系。
     (7)可将坝址区地下水划分为5个地下水系:左岸的石马河地下水系、岷东乡-顺江桥地下水系;右岸的九角洞-石盘上地下水系、塘坝乡地下水系、红沙堆-懒家坝地下水系。
     (8)水库蓄水以后,存在坝基渗漏和绕坝渗漏。建议对坝基和坝肩采取防渗处理措施。
The leakage problem of dam site area is one of the most frequent problems in the hydropower engineering. This paper is based on the proposed Qianwei hydropower station of Minjiang Avionics. Through field hydrogeological survey in detail, analysis of the geological environmental condition in the dam site area, groundwater pumping test of unsteady seepage, consecutive test, dissolution experiment, hydrochemistry analysis and microscopic test, this paper mastered detailed first-hand data. On this basis, it focus on the hydrogeological conditions on leakage, finds out the underground water system in the dam site area, and discusses the semi-karst erosion in the study area, and initially evaluatethe influence of semi-karst development to the construction of Qianwei hydropower project. In addition, leakage control measures are put forward by prelimilary. Paper main results are as follows:
     (1) The Qianwei hydropower station dam site area’s physiognomy belongs to the low mountain landform. The exposed stratums are Quaternary overburden, Shaximiao Fm and Ziliujing Fm of Jurassic system, Xvjiahe Fm of Triassic system. Geological structure is simple. And semi-karst calcium sand (gravel) of phenomenon exists in the dam site area.
     (2) According to the aquifer medium type, groundwater in dam site area can be divided into: loose rocks of pore water; clastic rocks of fracture pore water; and bedrock fissure water which is the most main types.
     (3) Groundwater contain relatively high free CO2 in the study area. And pH value is partial neutral, salinity and conductivity value are on the high side. The major groundwater chemical types are HCO3-Ca and HCO3-SO4-Ca.
     (4) The groundwater in the dam site area is largely recharged by precipitation, running through the fissure channel and discharge to the lower part of reservoir.
     (5) The results of a test on several factors influencing corrosion rate of calcium sand (gravel) semi-karst show that: the calcium sand (gravel) semi-karst corrosion speed is slow in simulation of the actual hydrological conditions, and speculate that: in the natural conditions after the hydropower station impoundment, the calcium sand (gravel) semi-karst dissolution reaction is slow, and the calcium sand (gravel) semi-karst couldn’t produce large leakage passages in limited time. In other words the calcium sand (gravel) semi-karst have small influence on the reservoir leakage.
     (6) The analysis results of the consecutive test show: Including of these water spots, 68 drill hole, 01 well, ditch-water beyond Zheng family bamboo grove, 47 drill hole, 59 spring and 12 spring, they belong to the same underground water system. The other water spots of 55 well and 56 well belong to another underground water system.
     (7) The underground water system in dam site area could be divided into five underground water systems: there are Shima River underground water system and Mindong Commune - Shunjiang Bridge underground water system in left bank; and Jiujiao Hole– Shipanshang underground water systems, Tangba Commune underground water systems, Hongshatui– Lanjia Dam underground water systems in right bank.
     (8) The reservoir impoundment will lead to the leakage of dam foundation and bypass seepage. The measure has been given to prevent leakage of the dam base and abutment in the dam site area.
引文
[1]宋汉周.大坝环境水文地质研究[M].北京:中国水利水电出版社,2007.
    [2]杨连生.水利水电工程地质[M].武汉:武汉大学出版社,2004.
    [3]邹成杰,张汝清等.水利水电岩溶工程地质[M].北京:水力电力出版社,1994.
    [4]铁道部第二勘测设计院.岩溶工程地质[M].北京:中国铁道出版社,1984.
    [5]曾昭璇,黄少敏.中国自然地理·地貌[M].北京:科学出版社,1980:139-150.
    [6]张强.金沙江观音岩电站红层钙质砂岩类岩溶发育特征及渗透稳定性研究[D].成都理工大学,2010.
    [7]rweichen.水电站[EB/OL].百度百科,(2011-1-15)[2011-3-20]. http://baike.baidu.com/view/345 59.htm.
    [8]曾贤薇.其宗水电站坝址区岩溶发育特征及岩溶水系统研究[D].成都理工大学,2009.
    [9]王能峰.水文地球化学在大岗山水电站坝区地下水系统研究中的应用[D].成都理工大学,2004
    [10]袁道先,朱德浩等.中国岩溶学[M].北京:地质出版社,1994.
    [11]任美锷,刘振中.岩溶学概论[M].北京:商务出版社,1983.
    [12]Dreybrodt W. The role of dissolution kinetics in the development of karst aquifers in limestone: A model simulation of karst evolution [J]. Journal of Geology, 1990, 98( 5).
    [13]Dreybrodt W. Principle of early development of karst conduits under natural and man - made conditions revealed by mathematical analysis of numerical models [J]. Water Resources Research, 1996, 32(9).
    [14]Romanov D, Gabrovsek F, Drebrodt W. The impact of hydro chemical boundary conditions on the evolution of limestone karst aquifers[J]. Journal of Hydrology, 2003, 276.
    [15]Mats W, Ingemar B. A mass transfer model for limestone dissolution from a rotating cylinder[J]. Chem. Eng, 1989, 44(1): 61-67.
    [16]Mats W, Ingemar B. Rate models for limestone dissolution: A comparison[J]. Geochimica et Cosmochimica Acta, 1989, 53(6): 1171-1176.
    [17]刘琦,卢耀如等.动水压力作用下碳酸盐岩溶蚀作用模拟实验研究[J].岩土力学,2010,31(supp.1):96-101.
    [18]钱海涛,谭朝爽等.碳酸盐岩溶解动力学机制研究现状与思考[J].人民黄河.2010,32(7):130-132
    [19]季汉成,徐珍.深部碎屑岩储层溶蚀作用实验模拟研究[J].地质学报,2007,81 (2) :212-218.
    [20]王锦国,周志芳等.某水电站坝址区钙质砂砾岩溶蚀发育规律研究[J].河海大学学报(自然科学版),2008,36(6):828-832.
    [21]漆继红,许模等.观音岩地区钙质砂(砾)岩溶蚀试验模拟研究[J].水土保持研究,2007,14(3):64-66.
    [22]犍为县人民政府.犍为县国民经济和社会发展第十一个五年规划纲要[EB/OL].犍为新闻网,(2007-1-4)[2011-3-20]. http://qw.leshan.cn/xqgl/HTML/112.html.
    [23]乱线.犍为县[EB/OL].百度百科,(2010-8-3)[2011-3-20]. http://baike.baidu.com/view/364836. htm.
    [24]谷歌.四川省乐山犍为县[EB/OL].谷歌地图,[2011-4-30]. http://ditu.google.cn/maps?hl=zh-C N&tab=wl.
    [25]汤连生,王思敬.水岩化学作用对岩体变形破坏的力学效应研究进展[J].地球科学进展,1999,14 (5) :433-439.
    [26]乐昌硕.岩石学[M].北京:地质出版社,2005.
    [27]卢书强,许模等.金沙江某电站钙质砂(砾)岩溶蚀对岩体质量的控制作用[J].中国地质灾害与防治学报,2007,18(2):74-77.
    [28]王大纯,张人权等.水文地质学基础[M].北京:地质出版社,1995.
    [29]沈照理,朱宛华,钟佐燊.水文地球化学基础[M].北京:地质出版社,1993.
    [30]王能峰,漆继红等.大岗山水电站坝区水化学特征及其在地下水系研究中的应用[J].水电站设计,2007,23(1):74-79.
    [31]于静,李海华等.四川汉源永定桥水库坝区岩溶渗漏的水文地球化学特征研究[J].地质灾害与环境保护,2010,21(2):58-63.
    [32]许模,王士天.工程水文地质学及其在水电工程中的应用概述[J].工程地质学报,2003,11(4):396-401.
    [33]邓英尔,贾疏源.岩溶缝洞系统地下水系研究[J].地球科学进展,2008,23(5):489-494.
    [34]邬光辉,岳国林.塔中奥陶系碳酸盐岩裂缝连通性分析及其意义[J].中国西部油气地层,2006,2(2):156-159.
    [35]樊融,张成江.五指山隧道渗漏水连通试验分析[J].四川理工学院学报(自然科学版),2009,22(1):116-120.
    [36]胡耀飞,宋胜武.雅砻江锦屏水电站坝址区右岸地下水系特征及其工程意义[J].水土保持研究,2006,13(6):22-24.
    [37]于静,贾疏源等.雅砻江某水电站坝址左岸江水水化学特征研究[J].矿物岩石,2004,24(2):112-116.
    [38]王伟,向群.黔西北地区岩溶水系统划分及找水方向[J].贵州地质,2010,27(1):49-53.
    [39]邹林.洪渡河石垭子水电站地质条件综述[J].贵州水利发电,2005,19(3):38-41.
    [40]曹小虎.南梁—古堆泉域岩溶地下水系统研究分析[J].地下水,2005,27(3):181-183.
    [41]邢林生.水电站大坝安全评价的几个技术问题[J].红水河,2003,22(1):76-78,82.
    [42]李彩红.水利工程防渗处理施工技术应用的探析.河南水利与南水北调,2010,8:154-155.
    [43]艾合买提江·阿不都热和曼,钟建华等.碳酸盐岩裂缝与岩溶作用研究[J].地质论评,2008,54(4):485-493.
    [44]邹光辉,刘胜等.塔中地区奥陶系碳酸盐岩裂缝特征与评价[J].勘探家,1999,4(4):48-54.
    [45]唐军峰,徐国元等.坝基破碎带岩体渗透特性试验研究[J].湖南科技大学学报,2010,25(2):40-44.
    [46]文丰,水库坝基防渗漏施工措施[J].中国高新技术企业,2010,(13):131-132.
    [47]计庆宝.山西省泽城西安水电站大坝坝基渗漏分析.科技情报开发与经济,2010,20(21):160-161.
    [48]刘欣,李延军.水库渗漏原因分析及灌浆防渗处理[J].河南水利与南水北调,2010,(9):74-75.
    [49]王亚芹,于丽君.对闹德海水库绕坝渗漏问题的探讨.中国科技信息,2010,(14):71-72.
    [50]郅军超.松塔水电站坝址区右岸绕坝渗漏分析.科技情报开发与经济,2009,19(33):125-126.
    [51]龚睿,许模等.黄河上游某水电站右岸坝肩渗漏数值模拟分析[J].甘肃水利水电技术,2009,45(12):17-19,22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700