用户名: 密码: 验证码:
王庄—宁海地区砂岩储层敏感性机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用多种粘土矿物分析测试手段,结合敏感性实验分析结果,本文系统研究了王庄-宁海地区碎屑岩储层中粘土矿物特征,分析了储层敏感性的形成机理。
     研究区古近纪时期主要发育沙河街组沙四段、沙三段、沙一段地层,而缺失沙二段地层。在沙四沉积时期,本区发育多个冲积扇砂砾岩体;沙三段和沙一段沉积期主要发育了扇三角洲的砂砾岩体沉积。垂向上构成了多套叠置厚层砂砾岩体,具有岩性复杂、成份成熟度和结构成熟度偏低、成岩作用较弱,孔渗条件较好,非均质性强,泥质含量高等特点。
     X射线衍射、透射电镜和扫描电镜分析结果表明,该区碎屑岩储层中粘土矿物组成类型为:高岭石、伊/蒙无序间层矿物、伊利石和绿泥石四种类型矿物。其中以伊/蒙无序间层矿物和高岭石为主,前者间层比一般在80%以上。高岭石矿物主要分布于沙三段,发育两种成因:即高结晶度自生高岭石和低结晶度陆源碎屑高岭石。伊/蒙无序间层矿物主要分布于沙一段,依据蒙皂石层层间阳离子类型,可进一步分为钙型、钠型和钙钠过渡型三种类型,其中以钙—钠过渡型者居多。这种矿物是碎屑岩储层在早成岩阶段形成的,多呈蜂窝状或网状。此外,伊利石和绿泥石矿物含量少,前者多呈丝缕状或搭桥状充填于粒间,后者几乎见不到。
     为了提高储层中粘土总量计算精度,在实验分析基础之上,提出了一种新的计算方法即二级抽提分离+非定向X射线衍射法,与其它计算方法相比,该法具有操作简单、理论性强、代表性好和精度高等优点。
     为了深入分析敏感性机理,对粘土矿物的阳离子交换量和膨胀率进行了分析测试,研究结果表明,沙一段储层粘土矿物的阳离子交换量和膨胀率均高于沙三段储层。粘土矿物阳离子交换过程即为其体积膨胀过程,二者与伊/蒙无序间层矿物的含量有较好的正相关关系。敏感性测试结果表明,研究区储层敏感性以速敏性和水敏性为主。其中沙一段储层敏感性以水敏性为主,且水敏损害程度总体偏强;沙三段储层敏感性以水敏性和速敏性为主,且敏感性损害程度均较弱。另外,在常规岩心实验分析基础上,综合利用各类测井资料对非关键井区粘土矿物类型、总量及敏感指数进行计算,建立了预测模型,实现了全井段和全区的敏感性评价。
     敏感性控制因素研究结果表明,速敏性损害的主控因素为储层的物性和粘土总量,而导致该区水敏性损害的主要因素则为储层粘土矿物中伊/蒙无序间层矿物的含量较高。在稠油热采过程中,这种性质比较接近于蒙皂石的间层矿物发生剧烈膨胀,从而导致该区储层伤害。
Based on multiple methods of test, and combining with reservoir sensitivity tests, the characteristic of clay minerals of clastic reservoir of Zhengjia -Wangzhuang area are systematically studied, and the reason of reservoir sensitivity was discussed.
     Lying on the north actic region of Dongying Sag, the aimed area was controlled by Chennan fault and palaeogeomorphic fluctuation of convex limb of Chenjiazhuang bulge, and the area developed Sha-4, Sha-3 and Sha-1 Formation in Paleogene. Lots of glutenite bodies of alluvial fan in Sha-4 sedimentary period, and of fan delta developed in Sha-3 and Sha-1 sedimentary period. Thus, superimposed multi-thick bedded reservoir formed on vertical direction which was characterized by complicated lithology, low compositional maturity and texture maturity, weak diagenesis, high reservoir quality, high heterogeneity and high shale content.
     X-ray diffraction analysis shows the clay minerals in the sandstone reservoir is composed of randomly interstratified illite/montmorillonites (S/I), kaolinite, illite and chlorite in which the quantity of randomly interstratified illite/montmorillonites and kaolinite are much more than the others, and the former one's rate of montmorillonite to illite lay is more than 80 percent. There are two kinds origins of kaolinite that are high crystalline authigenic one and low crystalline allogenic one which developed mainly in Sha-1 Formation. S/I can subdivide into three kinds: calcium type, natrium type and calcium-natrium mixture type according to the cations' type in the interlays, in which calcium -natrium mixture type is more than the others. S/I exhibits two morphological habits: honeycomb and net. Additionally, illite and chlorite exist in small amount, the former one exhibit silk or bridge intergranular filling, and the later nearly can't see in microscope.
     In order to improving calculate accuracy of total amount of clay in clastic reservoirs, on the basis of experimental analysis, a new method, twice grain size segregation plus x-ray diffraction of randomly oriented powers of clay minerals, was put forward to calculate the total amount in clastic reservoir rock. Contracting with other methods, the one was characterized by simpler processing, good theorization, strong representativeness and higher precision.
     In order to analyze the reason of reservoir sensitivity, Measurement to sample's cation exchange capability (CEC) and swell capability (SC) in solvent indicates that CEC and SC of clay minerals in Sha-1 Formation are more than ones in Sha-3 Formation. And the course of cation exchange is the course of swelling, Swell capability and CEC have positive linear correlation with the relative quantity of S/I. Measurement to reservoir sensitivity indicates that water-sensitivity and velocity-sensitivity are the main sensitivity kinds of clastic reservoir of the areas, and the main kinds of clastic reservoir sensitivity in Sha-3 Formation main are water-sensitivity and velocity-sensitivity which is relative weak. And in Sha-1 Formation main is water-sensitivity which is relative strong. Additionally, on the basis of routine drilling core experimental analysis, taking use of multiple well logging data, the types of clay minerals, the total amount of clay and sensitivity index are calculated, and forecasting models has been established, the sensitivity evaluation of all-well and the whole area have been accomplished.
     The controlling factors to reservoir velocity-sensitivity are reservoirs quality and total amount of clay in clastic reservoirs, and to water-sensitivity is the content of S/I. In the course of thermal recovery, S/I, having the similar character with montmorillonite, can swell acutely which can cause formation damage of the reservoir.
引文
1.奥西波夫.B,粘土类土和岩石的强度与变形性能的本质,北京:地质出版社,1985
    2.陈桂英,刘继德.国外控制地层损害用化学剂,保护油层专辑术(第二册).石油工业部科学技术情报研究所,1988
    3.陈建渝,黄骅坳陷低凝固点原油的特点及其成因.石油勘探与开发,1988,15(5):14-18
    4.陈敬中,张汉凯著,硅酸盐矿物中准周期非周期结构初步研究.武汉:中国地质大学出版社,1997
    5.陈丽华,谬欣,于众等,扫描电镜在地质中的应用.北京:科学出版社,1985
    6.陈忠,唐洪明,沈明道,王进.高岭石在碱剂中矿物相变的研究.西南石油学院学报,1997,增刊
    7.程鹏,高抒,李徐生.激光粒度仪测试结果及其与沉降法、筛析法的比较,沉积学报,2001,19(3):449-455
    8.段太忠,曾允孚,高振中.根据沉积历史分析华南古大陆边缘的构造演化.石油与天然气地质,1988;9(4):410-420
    9.范.奥尔芬著;许冀泉等译.粘土胶体化学导论.北京:农业出版社,1982
    10.方邺森,任磊夫.沉积岩石学教程,北京地质出版社,1987
    11.冯增昭,王英华,刘焕杰等.中国沉积学,北京:石油工业出版社,1994,60-103.
    12.郭正吾.四川盆地西部浅层致密砂岩天然气勘探模式.天然气工业,1997,17(3):5-9
    13.黄汉仁,杨坤鹏,罗平亚.泥浆工艺原理,北京:石油工业出版社,1981
    14.黄学先,贺玉贞,王亚烈等著.华北海泡石矿的产状、成因和用途北京:地质出版,1996
    15.康毅力,罗平亚,沈守文,沈明道,粘土矿物产状和微结构对地层损害的影响.西南石油学院学报,1998,20(2):27-29
    16.康毅力,吴志均,汪建军等,碱敏损害是塔里木盆地东河塘构造东河1井减产的主因,西南石油学院学报,1997,19(4):14-19
    17.朗斯塔夫.F.粘土矿物与资源地质学(邢顺诊等译),哈尔滨:黑龙江科技出版社,1986
    18.雷怀彦,关平,房玄.粘土矿物对形成过渡带气的催化作用研究.沉积学报,1985,13(2):56-61
    19.雷怀彦,师育新,关平等.铝硅酸盐粘土矿物对形成过渡带气的催化作用研究.中国科学(D辑),1997,27(1):39-44
    20.李春光.东营凹陷稠油油藏成因机制探讨,特种油气藏,1996,3(1):1-5
    21.李牧,杨红等.化学吞吐开采稠油技术研究.油田化学,1997,14(12):340-344
    22.李生林,薄遵昭,秦素娟,涨之一编译,粘土中结合水译文集.北京:地质出版社,1982
    23.李天杰.土壤环境学—土壤环境污染防治与土壤生态保护.北京:高等教育出版社,
    24.李云峰,钱会.蒸汽吞吐稠油井注人和采出水中化学组合存在形式及其含量的计算.油田化学,1997,14(1):36-41
    25.栗文楼,李明路著,膨润土的开发应用北京:地质出版社,1998
    26.林西生,郑乃聋,侯纯敏,沉积岩粘土矿物XRD分析技术进展情况回顾,理学X射线衍射仪用户协会论文选集,1997,10(1):45-67
    27.凌建军等.水平压裂辅助蒸汽驱开采稠油油藏的研究.河南石油,1996,10(3):30-34
    28.刘宝珺,张锦泉.沉积成岩作用.北京科学出版社,1992
    29.吕修祥,张一伟,李德生.从波动观点看渤海湾盆地济阳坳陷油气田分布.石油实验地质,1996;18(3):259-266
    30.罗平亚.完井液和射孔液.见现代完井工程,万仁傅主编.北京:石油工业出版社,1996
    31.罗平亚.中国石油天然气总公司院士文集(罗平亚集).北京:中国大百科全书出版社,1997
    32.罗蛰潭等,粘土矿物对碎屑岩储层评价的控制理论及应用实例,成都地质学院学报,1991,18(3):1-12
    33.牛树银,陈路,许传诗等.太行山区地壳演化及成矿规律.北京:地震出版社,1994
    34.任安身.济阳坳陷构造变动特征及其形成机制探讨[胜利油田有限公司内部研究报告].山东东营:胜利油田有限公司,1985
    35.任磊夫,关平.油气生成过程中的微粒质点矿物.北京:地质出版社,1992
    36.任磊夫.试论粘土矿物转化过渡结构.沉积学报,1988,6(1):32-35
    37.任磊夫.粘土矿物与粘土岩,北京:地质出版社,1992
    38.沈宝琳,周国平,我国粘土科学研究现状及今后发展方向.地质论评,1991,37(4):373-377
    39.沈明道,唐洪明,康毅力等.塔里木盆地地东河塘构造石炭系东河砂岩储层碱敏损害机理.西南石油学院学报,1998,20(1):1-5
    40.沈明道,赵敬松,唐洪明,陈忠.水驱后及复合驱过程中储层岩性物性变化研究.西南石油学院,“八五”国家攻关项目报告,1994
    41.史宏才,朱江庆,王诗中等.高温下矿物.水反应对油层伤害的模拟研究.油田化学,1997,14(1):32-35
    42.孙维林,王铁军,浏庆旺.粘土理化性能.北京:地质出版社,1992
    43.唐洪明,陈忠,王进,康毅力.粘土矿物碱耗规律探讨西南石油学院学报,1997,增刊
    44.万天丰,朱鸿,赵磊.郯庐断裂带的形成与演化.现代地质,1996;10(2):159-168
    45.王大文,白春礼,扫描隧道显微术在纳米科学技术中的应用科技导报,1992
    46.王进,沈明道,唐洪明,陈忠.化学驱试验中碱剂传质规律研究,西南石油学院学报,1997,19(4):23-25
    47.王进,沈明道.粘土矿物碱耗动力学模型研究.“油气藏地质及开发工程”国家重点实验室资助项目(9402),1996
    48.王行信,石油粘土地质学和石油粘土工程学.杭州石油地质研究所内刊,1997
    49.王行信,辛国强等.松辽盆地粘土矿物研究.哈尔滨:黑龙江科学技术出版社,1990
    50.王行信,周书欣.砂岩储层粘土矿物与油层保护,北京:地质出版社,1992
    51.王行信.有机粘土化学理论发展.当前生油理论研究,杭州石油地质研究所内刊,1997
    52.王行信.有机粘土化学研究生油理论.海相油气地质,1996,1(4):33-39
    53.王颖,赵锡奎,高博禹.济阳坳陷构造演化特征.成都理工学院学报,2002,29(2):181-187
    54.吴平霄,张惠芬,郭九皋,原子力显微镜在粘土矿物学研究中的应用地球科学进展,1998,13(4):351-355
    55.谢锐杰,漆家福,王永诗等.渤海湾盆地东营凹陷北部地区新生代构造演化特征研究,石油实验地质,2004,26(5):427-431
    56.解习农.中国东部中新代盆地形成演化与深部过程的耦合作用.地学前缘,1998;5(增刊):162-165
    57.杏媛,张有瑜,粘土矿物与粘土矿物分析.北京:海洋出版社,1994
    58.熊毅,陈家坊等.土壤胶体的性质.北京:科学出版社,1990
    59.熊毅,李庆速.中国土壤(第二版),北京:科学出版社,1987
    60.熊毅等.土壤胶体(第二册),土壤胶体研究法.北京:科学出版社,1985
    61.熊毅等.土壤胶体(第一册),土壤胶体的物质基础.北京:科学出版社,1983
    62.许浚远,张凌云.西太平洋边缘新生代盆地成因.石油与天然气地质,2000;21(2):93-97
    63.须藤俊男.粘土矿物学,北京:地质出版社,1981
    64.徐同台,陈乐亮,罗平亚.深井泥浆.北京:石油工业出版社,1995
    65.徐同台,王行信,张有瑜等,中国含油气盆地粘土矿物,北京:石油工业出版社,2003
    66.徐同台.井壁稳定技术研究现状及发展方向,钻井液与完井液,1997,14(4):36-43
    67.杨景辉编.土壤污染与防治.北京:科学出版社,1995
    68.杨雅秀,张乃娴等.中国粘土矿物.北京:地质出版社,1994
    69.于连东,世界稠油资源的分布及其开采技术的现状与展望,2001,8(2):98~103
    70.张绍槐,罗平亚等编著保护储集层技术.北京:石油工业出版社,1993
    71.赵春增.粘土稳定剂及粘土稳定技术,石油技,胜利油田内刊,1988
    72.赵敏,徐同台等,保护油气层技术,北京:石油工业出版社,1995
    73.赵杏媛,陈洪起.我国含油气盆地粘土矿物分布特征及控制因素,石油学报,1998,9(3):56-61
    74.赵杏嫒,陈洪起.粘土矿物与防止油层损害,石油勘探与开发,1988,4:34-37
    75.赵杏媛,罗俊成,杨帆.塔里木盆地中、新生界粘土矿物与古环境.见王宜林主编,第五届全国沉积学及岩相古地理学学术会议论文集乌鲁木齐:新疆科技卫生出版社,1997
    76.赵杏媛,王行信,张有瑜等.中国含油气盆地粘土矿物.武汉:中国地质大学出版社,1995
    77.中国科学院南京土壤研究室所编.中国土壤北京.科学出版社,1978
    78.周德勇.东营凹陷稠油特征及其成因分类,特种油气藏,1995,2(4):1-4
    79.朱国华,粘土矿物对陕甘宁盆地中生界砂岩储层性质的影响及其意义,石油勘探与开发,1988,15(4):21-27
    80. A maefule, J.O., Kersey, D. G. et al, Advances in formation damage assessment and control strategies, CIM 88-39-65,1988
    81. Abrams, A., Mud design to minimize rock impairment due to particle invasion. J. of Petroleum Tech., 1977
    82. Almon, W.R., Sandstone diagenesis as a factor in stimulation design, south western petroleum short course, Proceedings of the Twentyfourth Annual Meeting, 1997
    83. Atwood, D.K., Petroleum tech restoration of permeability to water damaged cores, J. of Petroleum Tech, 1964
    84. Baghlklan, S.V., Sharma, M.M. and Handy, L. L., Flow of clay suspersions through porous media, SPE Reservoir Eng., 1989
    85. Bailey S.W., Summary of recommendation of AIPEA Nomenclature Commitees Clays Clay Mineral,1980, 28:73-78
    86. Baker, J.C., Uwins, P. J. R. and Mackinnon, I. D. R., ESEM study of Illite/Smectite fresh water sensitivity in sandstone reservoirs, J. of Petroleum Sci. and Eng.,1993
    87. Baker, J.C., Uwins,D.J.R., and Mackinnon, D.R., ESEM study of authigenic chlorite acid sensitivity in sandstone reservoirs, J. of petroleum Sri. and Eng., 1993
    88. Baker, J.C., Uwins,P.J.R. and Mackinnon, I.D.R., Freshwater sensitivity of corrensite and chlorite/Smectite in hydrocarbon reservoirs-an ESEM study, J. of Petroleum Sci. and Eng., 1994
    89. Baptist, O. C., White, E.J., Clay content and capillary behavior of Wyoming reservoir and petroleum transactions, AIME, 1957,210
    90. Barkman, J. H., Abrams, A and Darley, H. C etc., An oil-coating process to stabilize clays in fresh water flooding operations, J. of Petroleum Tech., 1975
    91. Basan, P.B., Formation damage index number: a model for the evaluation of fluid sensitivity in shaly sandstones, SPE 14317, 1985
    92. Bennett, R.H. and Hulbert ,M.H., Clay microstructure, D. Reidel Publishing Company, 1986
    93. Borchardt, J.K., Roll, D.L. and Rayne, L. M, Use of a mineral fines stabilizer in well completions, SPE 12757, 1984
    94.Borchardt,J.K.,论防止地层损害的有机聚合物化学剂的基本化学及油田结果.见油田化学发展论文集,W.E.Hainas主编,北京:石油工业出版社,1991
    95. Caenn, R.and Chillingar, G.V., Drilling fluids: state of the art, J. of Petroleum Sci and Eng., 1996,14
    96.Cerda, C.M., Mobilization of quartz fines in porous media, Clays and Clay Minerals, 1988, 36(6): 23-35
    
    97.CIementz, D.M., Clay stabilization in sandstones through adsorption of petroleum heavy ends, J. of Petroleum Tech., 1977
    
    98.Davies, D.K.,Clay Technology and well stimulation, southwestern petroleum short course, Proceedings of Twenty-fifth Annual Meeting, 1978
    
    99.Gabriel, G.A and Inamder, G. R., An experimental investigation of fines migration in porous media, SPE 12168,1993
    
    100.Greenland, D.J. and Moa, C. J. B., Surfaces of soil particles in the chemistry of soil constituents, ed .by D J. Greenland and M .H.B. Hayes. John Wiley & Sons, 1978
    
    101.Grim,R.E., Applied clay mineralogy, New York, Tomto,London: McGraw-Hill Book Company, Inc., 1962
    
    102.Gtven N. and Pollastro, R.M., Clay-water interface and its rheological applications, Published by the Clay Minerals Society, 1992
    
    103.Guggenheim S and R.T. Martin, Definition of clay and clay mineral: Joint Report of the A IPEA and CMS Nomenclature Commitees, Clay Minerals, 1995,30: 258-259
    
    104.Hewit, C.H., Analytical techniques for recognizing water-sensitive reservoir rocks, J. of Petroleum Tech., 1963
    
    105.Himes, R.E., Vinson, E. F. and Simon, D.E., Clay stabilization in low-permeability formations, SPE Production Eng., 1991
    
    106.Hower, W.F., Influence of clays on the production of hydrocarbons, SPE 4785,1974
    
    107.Hugget, J.M. and Uwins, P. J. R., Observation of water-clay reactions in water sensitive sand stone and mudrocks using an environmental scanning electron microscope, J. of Petroleum Sci. and Eng., 1994
    
    108.Jean-Pierre Girard, Philippe Freyssinet and Gilles Chazot. Unraveling climatic from intraprofile variation in oxygen and hydrogen isotopic composition of goethiteand kaolinite in iaterites: An integrated study from yaou, French Guiana, Geochimica et Cosmochimica Acta, 2000,64:409 ~ 426
    
    109.Jones,F.O.Jr., influence of chemical composition of water on clay blocking of permeability, J. of Petroleum Tech., 1964
    
    110.Krueger,R.F., An overview of formation damage and well productivity in oil field operations, J. of Petroleum Tech., 1986
    
    111.Land,C.S. and Baptist, O.C., Effect of hydration of montmorillonite on the permeability to gas of water-sensitive reservoir rocks, J. of Petroleum Tech, 1965
    
    112.Loughnan F.C.A. Technique for the isolation of Mont and Holloysite, Amen. Mineral, 1957,42:23-29.
    113.M claughlin, H .C. Snetal, Clay stabilizing agent can correct formation damage, World Oil, 1977
    
    114.Martin R .T. et al. Report of the clay minerals Society Nomenclature Committee, Revised Classification of Clay Materials, Clays Clay Mineral, 1991, 39: 333-335
    
    115.Monaghan, P.H., Salathiel, R.A. et al, Laboratory studies of formation damage in sands containing clays, Petroleum Transactions, AIMS, 1959, 216
    
    116.Moore, D.M.,Clay and soil groups stick together, Geotimes, 1993
    
    117.Muecke, T.W., Formation fines and factors controlling their movement in porous media, SPE 7007,1978
    
    118.Mungan, N., Permeability reduction through changes in pH and salinity, J. of Petroleum Tech., 1965
    
    119.Neasham, J.W., The Morphology of dispersed clay in sandstone reservoirs and its effecton sandstone shaliness, Pore Space and Fluid Flow Properties, SPE 6585,1977
    
    120.Peters, F.W. and Stout, C.M., Clay stabilization during fracturing treatments with hydrolyzable zirconium salts, J. of Petroleum Tech., 1977
    
    121.Porter,K.E., An overview of formation damage, J. of Petroleum Tech, 1989
    
    122.Reed, M.G., Formation damage prevention during drilling and completion, NMT 890006, 1989, 33-38
    
    123.Reed, M.G., Formation permeability damage by mica alteration and carbonate dissolution, J. of Petroleum Tech., 1997
    
    124.Reed. M.G., Stabiiization of formation clays with hydroxy- aluminum solutions, J. of Petroleum Tech., 1972
    
    125.Sarkar, A. K. and Sharma, M. M., An experiment investigation of fines migration in two- phase flow, SPE 17437,1988
    
    126.Sharma, M. M., Yortsos, Y. C. and Handy, L. L., Release and deposition of clays in sandstones, SPE 13562, 1985
    
    127.Shaw, H.F., Clay minerals in sediments and sedimentary rocks, in developments in pertroleum geology-2, edi. by G. D. Hobson, Applied Science Publishers Ltd., 1980
    
    128.Singer J K, Anderson J B, Ledbetter M T etc. An assessment of analytical techniques for the size analysis of fine grained sediments. Journal of Sedimentary Petrology, 1988, 58: 534-543
    
    129.Sudo, T., Shimoda, S., Yotsumito, H. and Acta,S., Electron micrographs of clay minerals.(Dev.Sedimentol.31), Amsterdan: Elsevier,1981
    
    130.Sydansk, R.D., Stabilizing clays with potassium hydroxide, J. of Petroleum Tech., 1984
    
    131.Syvitskij P M, Leblanc K W G, Asprey K W. Interlaboratory instrument calibration expereriment. In: Syvitski J P M, ed. Principles, methods and applications of particles size analysis. Cambridge University Press, New York, 1991.174-193
    
    132.Theng,B.K.G., Formation and properties of clay-polymer complexes, Amsterdam, Oxford, New York: Elsevier Scientific Publishing Company, 1979
    
    133.Tiab, D and Donaldson, E.C, Petrophysics: theory and partice of measuring reservoir rock and fluid transport properties, Houston, Texas: Gulf Publishing Company, 1996
    
    134.Van der Zwaag, C. H. Stallmach, R, Basan P. B. etal, New methodology to investigate formation damage using non-destructive analytical tools, SPE 38161,1997
    
    135.Van Olphen, H., An introduction to clay colloid chemistry(2nd Ed), New York, London, Sydney, Toronto: A Wiley Interscience Publication, John Wiley & Sons, 1977
    
    136.Velde, B., Clay minerals: a physico-chemical explanation of their occurrence, Amsterdam, Oxford, New York, Tokyo: Elsevier,1985
    
    137.Weaver, C.E. and Pollard, L.D., The chemistry of clay minerals, Amsterdam, London, New York: Elsevier Scientific Publishing Company, 1973
    
    138.Weaver,C.E., Clays muds and shales, Amsterdam, Oxford, New York Tokyo: Elsevier, 1989
    
    139.Wilson, M.D. and Pitman ,E.D., Authigenic clays in sandstones: recognization and influence reservoir properties and paleoenvironmeatal analysis, J.Sed. Petrology, 1977
    
    140. Wilson, M.J.(Ed.), A handbook of determinative methods in clay mineralogy, Chapman and Hall, 1987
    
    141.Young, B.M., McLaughlin, H. C. and Borchardt, J. K., Clay stabilization agents- their effectiveness in high-temperature steam, J. of Petroleum Tech., 1980
    
    142.Zhou, Z., Gunter, W. D. etal, Effect of clay swelling on reservoir quality, CIM 9454, 1994
    
    143.Zhou,Z. J., Gunter, W. Dand Jonasson, R. G., Controlling formation damage using clay stabilizers: a review, CIM 95-71,1995
    
    144.Zhou. Z, Camcron, S. et al, Clay swelling diagrams: their applications in formation damage control, SPE 31123,1996

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700