用户名: 密码: 验证码:
胞二磷胆碱结合康复训练对脑缺血大鼠行为学及神经可塑性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的
     研究胞二磷胆碱结合康复训练对脑缺血大鼠运动功能恢复及对钙结合蛋白、β微管蛋白表达的影响,为临床药物结合康复训练治疗脑血管病提供理论依据。
     研究方法
     按随机数字表法,将120只成年雄性SD大鼠采用Longa线栓法制作大鼠左侧大脑中动脉闭塞(MCAO)模型,选出造模成功后符合标准的96只大鼠随机分为对照组、胞二磷胆碱组、康复训练组、胞二磷胆碱结合康复训练组4组,每组24只。造模成功后3d,胞二磷胆碱组开始给予胞二磷胆碱(每天500mg/kg体重),康复训练组开始进行滚笼、平衡木、转棒、网屏等训练,胞二磷胆碱结合康复训练组既给予胞二磷胆碱,又给予康复训练,对照组不做任何干预。各组分别在造模后7、14、21d时进行行为学评估综合评分,同时在相应时间点,经灌流固定后断头取脑;各组取脑组织行免疫组化法观察缺血周围皮质S-100.β-tubulin的表达情况。采用SPSS13.0统计学软件进行单因素方差分析以及Newman-Keuls检验,P<0.05认为差异有统计学意义。
     结果
     1.大脑中动脉梗塞成功造模后各组大鼠均不同程度出现神经功能缺损的体征。
     2.神经行为学评估:
     各组大鼠随时间推移行为学评分均逐渐减小,胞二磷胆碱组、康复训练组、胞二磷胆碱结合康复训练组造模后7d行为学评分分别与同一时间点对照组比较,差异无统计学意义(P>0.05);胞二磷胆碱组造模后14、21d与同一时间点对照组比较,差异无统计学意义(P>0.05);康复训练组、胞二磷胆碱结合康复训练组造模后14、21d行为学评分明显优于同一时间点对照组,差异有统计学意义(P<0.05),且胞二磷胆碱结合康复训练组降低更明显(P<0.01)。
     3.免疫组化:
     造模后7d胞二磷胆碱组、康复训练组S-100、β-tubulin的表达水平与同一时间点对照组比较,增加不明显(P>0.05);造模后7d胞二磷胆碱结合康复训练组S-100、β-tubulin的表达水平与同一时间点胞二磷胆碱组、康复训练组、对照组增加明显,差异有统计学意义(P<0.01);造模后14、21d时胞二磷胆碱组、康复训练组、胞二磷胆碱结合康复训练组S-100、β-tubulin的表达水平较对照组增加(P<0.05),且胞二磷胆碱结合康复训练组较胞二磷胆碱组、康复训练组增加更显著(P<0.01)。
     结论
     1.脑缺血损伤引起大鼠明显的神经功能缺损体征,胞二磷胆碱结合合理有序的康复训练能明显改善脑缺血大鼠运动功能。
     2.胞二磷胆碱以及康复训练均能促进脑缺血大鼠神经损伤的恢复,两者结合应用效果更加显著。
     3.胞二磷胆碱结合康复训练能促进脑缺血后神经功能恢复,其可能与脑缺血周围皮质S-100、β-tubulin的表达水平的上调有关。
Objectives
     To observe the effect of citicoline in combination with rehabilitative training on motor function and the expression of S-100,β-tubulin after focal cerebral ischemia in rats, It also provides academic foundation for medicine in combination with rehabilitative training.
     Methods
     One-hundred and twenty male adult Sprague-Dawley rats(3 month old, n=100) were subjected to left middle cerebral artery occlusion (MCAO) with the suture occlusion and ninety-six rats consistent with the standard were randomly divided into four group:control group(n=24), citicoline group(n=24), rehabilitative training group(n=24), citicoline in combination with rehabilitative training group(n=24). Three day after reperfusion, the rats in citicoline group were received citicoline on dose of 500mg/Kg daily, those in rehabilitative training group were received motor training programs including balancing, grasping, rotating and walking exercise, those in citicoline in combination with rehabilitative training group were received citicoline and motor training programs, those in control group were not recevived any treatment. The behavioral tests of every group were evaluated at the 7th,14th,21st day after MCAO. And Immunohistochemistry staining method was used to detect the expression of S-100 andβ-tubulin of peri-ischemia cortex at the 7th,14th,21st day after MCAO respectively.
     With SPSS 13.0 statistical software, and the differences among the groups were compared with the One-Way ANOVA and Newman-Keuls test. A value of P<0.05 was considered statistically significant.
     Results
     1.The rat of every group appear the sign of nervous function defect after MCAO successful.
     2. neuroethology assessment
     As compared with the control group, citicoline group at the 7th,14th,21st day after MCAO and rehabilitative training group, citicoline in combination with rehabilitative training group at the 7th day after MCAO were no significant difference (P>0.05), but rehabilitative training group, citicoline in combination with rehabilitative training group at the 14th,21st day after MCAO(P<0.05) significantly superior to the control group, especially in the citicoline in combination with rehabilitative training group (P<0.01).
     3. Immunohistochemistry Staining Method
     As compared with the control group, the expression of S-100 andβ-tubulin of citicoline group, rehabilitative training group at the 7th day after MCAO were no significant difference respectively(P>0.05), but the citicoline in combination with rehabilitative training group was significant higher than other group at the 7th day after MCAO(P<0.05); As compared with the control group, the other group respectively was significant higher at the 14th,21st day after MCAO(P<0.05), especially in the citicoline in combination with rehabilitative training group (P<0.01).
     Conclusions
     1.Citicoline in combination with reasonable and obviously rehabilitative training can significant improve motor functional recovery in rats.
     2.Citicoline and rehabilitative training can promote the recover of nervous injury after focal cerebral ischemia in rats, the effect of combined modality therapy was more obvious.
     3.the functional recovery may be partially attributed to the up-regulation of S-100 andβ-tubulin in peri-ischemia cortex.
引文
[1]Mellado TP, Court LJ, Godoy FJ, et al. Cerebrovascular disease in a Neurologic Intermediate Care Unit in Chile. Analysis of 459 consecutive patients. Rev Med Chil, 2005,133:1274-1284.
    [2]Mayo NE, Wood-Dauphinee S, Cote R, et al. Activity, participation, and quality of life 6 months poststroke. Arch Phys Med Rehabi,2002,83 (8):1035-1042.
    [3]Kimura K, Iguchi Y, Shibazaki ket al. Recanalization between 1 and 24 hours after t-PA therapy is a strong predictor of cerebral hemorrhage in acute ischemic stroke patients. J Neurol Sci,2008,270(1-2):48-52.
    [4]Miao Y, Zhang W, Lin Y, et al. Neuroprotective Effects of Ischemic Preconditioning on Global Brain Ischemia through Up-Regulation of Acid-Sensing Ion Channel 2a. Int J Mol Sci,2010,11(1):140-153.
    [5]Lee HC, Chang KC, Huang YC, et al. Inpatient rehabilitation utilization for acute stroke under a universal health insurance system. Am J Manag Care.2010,16(3): 67-74.
    [6]Caso V, Paciaroni M, Venti M, et al. Determinants of outcome in patients eligible for thrombolysis for ischemic stroke. Vasc Health Risk Manag,2007,3(5):749-754.
    [7]Adibhatla RM, Hatcher JF, Dempsey RJ. Citicoline:neuroprotective mechanisms in cerebral ischemia. J Neurochem,2002,80(1):12-23.
    [8]Menku A, Ogden M, Saraymen R. The protective effects of propofol and citicoline combination in experimental head injury in rats. Turk Neurosurg,2010,20(1):57-62.
    [9]Chen CL, Tang FT, Chen HC, et al. Brain lesion size and location:effects on motor recovery and functional outcome in stroke patients. Arch Phys Med Rehabil, 2000,81(4):4447-4521.
    [10]van Praag H, Kempermann G, Gage FH. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyms. Nat Neurosei,1999,2(3):266-270.
    [11]Jones TA, Chu CJ, Grande LA, et al. Motor skills training enhances lesion-induced structural plasticity in the motor cortex of adult rats. J Neurosei,1999, 19(22):10153-10163.
    [12]Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke,1989,20:84-91.
    [13]Hurtado O, Moro MA, Cardenas A, et al. Neuroprotection afforded by prior citicoline administration in experimental brain ischemia:effects on glutamate transport. Neurobiol Dis,2005,18:336-345.
    [14]Ding Y, Li J, Lai Q, et al. Motor balance and coordination training enhances functional outcome in rat with transient middle cerebral artery occlusion. Neuroscience,2004,123:667-674.
    [15]Bederson JB, Pitts LH, Tsuji M, et al. Rat middle cerebral artery occlusion: evaluation of the model and development of neurologic examination. Strokes,1986, 17:472-476.
    [16]Borlongan CV. Motor activity-mediated partial recovery in ischemic rats. Neuroreport,2000,11:4063-4067.
    [17]Johansson BB, Zhao L, Maasson B. Environmental influence on gene expression and recovery from cerebral ischemia. Acta Neurochir Suppl.1999,73:51-55.
    [18]Risedal A, Mattsson B, Dahlqvist P, et al. Environmental influences on functional outcome after a cortical infarct in the rat. Brain Res Bull,2002,58:31 5-321.
    [19]Johansson BB, Ohlsson AL, et al. Environment social interaction and physical activity as determinants of functional outcome after cerebral infarction in the rat. Exp Neurol,1996,139:322-327.
    [20]Biemaskie J, Corbett D. Enriched rehabilitative training promotes improved forelimb motor function and enhanced dendritic growth after focal ischemic injury. J Neurosci,2001,21:5272-5280.
    [21]Pulsinlli WA, Brieley JB. A new model of Bilateral hemispheric ischemia in the unanest hetized rat. Stroke,1979,10 (3):267-272.
    [22]De Ryck M, Van ReEmpts, Borgers M, etal. Photochemical stroke model Funarizine prevents sensorimotor dificits after necortical infarct in rat. Stroke,1989, 20:1383-1390.
    [23]Furlow TW Jr. Cerebral ischermia produced by four ressel occlusion in the A Quantitative of cerebral blood flow. Stroke,1982,13:852-861.
    [24]Tamura A, Graham DI, Meculloch J, et al. Focal cerebral ischemia in the rat: description of technique and early neuropathopological consequences following middle cerebral artery occlusion. Jcereb Blood Flow,1982,13:53-58.
    [25]WatsonBD, Dietrich WD, Busto R, et al. Induction of reproducible brain infarction by photochemically initiated thrombosis. Ann Neurol,1985,17:497-504.
    [26]Hiraoka-Yamamoto J, Nara Y, Yasui N, et al. Establishment of a new animal model of metabolic syndrome:SHRSP fatty (fa/fa) rats. Clin Exp Pharmacol Physiol, 2004,31(1-2):107-109.
    [27]Koizumi J, Yoshida Y, Nakazawa T, et al. Experimental studies of ischemia brain edemal. A new experimental model of cerebral embolism infarcts in the ischem ia area. Jpn J Stroke,1986, (8):1-8.
    [28]Markraf CG, Kraydieh S, Prado R, et al. Comparatve histopathologic consequences of photohrombotic occusion of the distal middle cerebral artery in Sprague-Dawley and Wistary rats. Stroke,1993,24 (2):286-293.
    [29]Wang LC, Futrell N, Wang DE, et al. A Reproducible Model of Middle Cerebral Infarts, Compatible with Long-term Survival in Aged Rats. Stroke,1995,26:2087-2090.
    [30]Simpkins JW, Wen Y, Perez E, et al. Role of nonfeminizing estrogens in brain protection from cerebral ischemia:an animal model of Alzheimer's disease neuropathology. Ann N Y Acad Sci,2005,1052:233-242.
    [31]Kelly MA, Shuaib A, Todd KG. Matrix metalloproteinase activation and blood-brain barrier breakdown following thrombolysis. Exp Neurol,2006,200:38-49.
    [32]Hungerhuber E, Zausinger S, Westermaier T, et al. Simultaneous bilateral laser Doppler fluxmetry and electrophysiological recording during middle cerebral artery occlusion in rats. J Neurosci Methods,2006,154:109-115.
    [33]Honma T, Honmou O, Iihoshi S, et al. Intravenous infusion of immortalized human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat. Exp Neurol,2006,199:56-66.
    [34]Gupta YK, Briyal S. Animalmodels of cerebral ischemia for evaluation of drugs. Indian J Physiol Pharmacol,2004,48:379-394.
    [35]饶明俐主编。中国脑血管病防治指南[M]。北京:人民卫生出版社,2007:1-3。
    [36]燕铁斌,窦祖林。实用偏瘫康复(第一版)[M]。北京:人民卫生出版社,1999。
    [37]Matyja E, Taraszewska A, Naganska E, et al. CDP-choline protects motor neurons against apoptotic changes in a model of chronic glutamate excitotoxicity in vitro. Folia Neuropathol,2008,46(2):139-148.
    [38]Shimotake J, Derugin N, Wendland M, et al.Vascular endothelial growth factor receptor-2 inhibition promotes cell death and limits endothelial cell proliferation in a neonatal rodent model of stroke. Stroke,2010,41(2):343-349.
    [39]Navaratna D, Guo S, Arai K, et al. Mechanisms and targets for angiogenic therapy after stroke. Cell Adh Migr,2009,3(2):216-223.
    [40]Failor S, Nguyen V, Darcy DP, etal. Neonatal cerebral hypoxia-ischemia impairs plasticity in rat visual cortex. J Neurosci,2010,30(1):81-92.
    [41]Johansson BB, Grabonski M. Functional recovery after brain infarction: Plasticity and neural transplantation. Brain Pathol,1994,4(1):L85-95.
    [42]Adibhatla RM, Hatcher JF, Dempsey RJ. Cytidine-5'-diphospho choline affects CTP-phosphocholine cytidylyl transferase and lysophosphatidylcholine after transient brain ischemia. J Neurosci Res,2004,76(3):390-396.
    [43]Adibhatla RM, Hatcher JF, Larsen EC, et al. CDP-choline significantly restores phosphatidylcholine levels by differentially affecting phospholipase A2 and CTP: phosphocholine cytidylyltransferase after stroke. J Biol Chem,2006,281(10): 6718-6725.
    [44]Mir C, Clotet J, Aledo R, et al. CDP-choline prevents glutamate mediated cell death in cerebellar granule neurons. J Mol Neurosci,2003,20(1):53-60.
    [45]Parnetti L, Mignini F, Tomassoni D, et al. Cholinergic precursors in the treatment of cognitive impairment of vascular origin:ineffective approaches or need for re-evaluation. J Neurol Sci,2007,257:264-269.
    [46]Lee HJ, Kang JS, Kim YI. Citicoline Protects Against Cognitive Impairment in a Rat Model of Chronic Cerebral Hypoperfusion. J Clin Neurol,2009,5:33-38.
    [47]kim MW, Bang MS,Han TR, et al. Exercies increased BDNF and tkB in the contralateral hemisphere of the ischemic rat brain. Brain Res,2005,1052(1):16-21.
    [48]Macko RF, IveyFM, ForesterLW, et al. Treadmill exercise rehabilitation improves ambulatory function and cardiovaScular fitness in patients with chronic stroke:a randomized, controlled trail. Stroke,2005,36(10):2206-2211.
    [49]Ang ET, wong PT, Moochhala S, et al. Neuroprotection associated with running: is it a result of increased endogenous neurotrophic factors. Neuoscience,2003,118: 335-345.
    [50]Ding Y, Li J, Luan x, et al. Exercies pre-conditioing reduces barin damage in ischemic rats that may be associated with regional angiogenesis and cellular overexpression of neurolrophin. Neuroscience,2004,124:583-591.
    [51]Kreisel SH, Hennerici MG, Bazner H. Pathophysiology of stroke rehabilitation: the natural course of clinical recovery, use-dependent plasticity and rehabilitative outcome. Cerebrovasc Dis,2007,23:243-255.
    [52]Liu HX, Zhang JJ, Zheng P, et al. Altered expression of MAP-2, GAP-43 and synaptophysin in the hippocampus of rats with chronic cerebral hypoperfusion correlates with cognitive impairment. Mol Brain Res,2005,139:169-177.
    [53]Komitova M, Johansson BB, Eriksson PS. On neural plasticity, new neurons and the postischemic milieu:an integrated view on experimental rehabilitation. Exp Neurol,2006,199:42-55.
    [54]Nudo RJ, Wise BM, SiFuentes F, et al. Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science,1996, 272:1791-1794.
    [55]Black JE, Isaacs KR, Anderson BJ. Learning causes synaptogenesis whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats. Proc Natel Acad Sci,1990,87:5568-5572.
    [56]Briones TL, Suh E, Jozsa L, et al. Changes in number of synapses and mitochondria in presynaptic terminals in the dentme gyrus following cerebral ischemia and rehabilitation training. Brain Res,2005,1033:51-57.
    [57]Briones TL, Suh E, Jozsa L, et al. Behaviorally-induced ultrastructuml plasticity in the hippocampal region after cerebral ischemia. Brain Res,2004,997: 137-146.
    [58]Hagemann G, Redecker C. Increased long-term potontiation in the surrund of experimentally induced focal cortical infarction. Annul Neural,1998,44(2):255-258.
    [59]Lincoln N, Parry R, Vass C, et al. Randomized, controlled trial to evaluate increased intensity of physiotherapy treatment of arm function after stroke. Stroke, 1999,30(3):573-579.
    [60]Carmichael ST. Cellular and molecular mechanisms of neural repair after stroke:making waves. Ann Neurol,2006,59(5):735-742.
    [61]Tagaya M, Matsuyama T, Nakamura H, et al. Increased FI/GAP-43 mRNA accumulation in gerbil hippocampus after brain ischemia. Cereb Blood Flow Metab, 1995,15(6):1132.
    [62]Donato R. Intracellular and extracellular roles of S100 proteins. Microsc Res Tech,2003,60(6):540-551.
    [63]Wainwright MS, Craft JM, Grifin WS. Increased susceptibility of S100B transgenic mice to perinatal. Ann Neural,2004,56(1):61-67.
    [64]Bennett MR. The concept of long term potentiation of transmission at synapses. Prog Neurobiol,2000,60:109-137.
    [65]Cartier L, Laforge T, Feki A, et al. Pax6-induced alteration of cell fate:shape changes, expression of neuronal alpha tubulin, postmitotic phenotype, and cell migration. J Neurobiol,2006,66:421-436.
    [66]Carre M, Andre N, Caries G, et al. Tubulin is an inherent component of mitochondrial membranes that interacts with the voltage-dependent anion channel. J Biol Chem,2002,277:3664-33669.
    [67]Tomimoto H, Yanagihara T. Immunoelectron microscopic studv of tubulin and microtubule-associated proteins after transient cerebral ischemia in gerbils. Acta Neuropathol(Berl),1992,84:394-399.
    [68]段淑荣,张璇,王勋,等。康复训练对脑梗死大鼠梗死灶周围微管蛋白表达的影响。中华物理与康复杂志,2005,27(7):387-390。
    [69]Griesbach GS, Gomez-Pinilla F, Hovda DA.The upregulation of plastlcity-related Proteins following TB1 is disrupted with acute voluntary exercise. Brain Res, 2004,1016:154-162.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700