用户名: 密码: 验证码:
动平衡测量的若干关键技术问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
转子的动平衡性能是电机使用寿命、工作噪声以及能耗的决定性因素之一随着电机转速的日益提高,对电机转子的动平衡性能的要求也越来越严苛,对动平衡机测量系统的精度要求也不断提高。目前,测量系统的精度不高成了国产动平衡产品质量提升的瓶颈问题。由于系统测量误差的可消除性和随机测量误差对测量结果影响的可估计性,采用系统误差的实时修正和随机误差影响的实时评估技术是提高测量系统精度的有效且经济的途径。鉴于动平衡测量过程的系统误差主要体现为影响系数的估计精度,本文研究成果主要体现在以下几个方面:
     (1)采用重新标定的方法对测量系统进行校准,针对采用经典统计原理处理标定数据中试重的振动响应测量值的样本数量与停工工时之间的矛盾,提出了基于层次贝叶斯方法的标定数据的处理方法。充分利用试重振动响应和测量方差的先验信息,建立了不同试重水平下振动响应真值和测量方差的联合分布模型,以体现测量方差对振动响应真值估计的影响。并采用马尔科夫链蒙特卡罗(MCMC)方法中的Gibbs抽样法求取其最大后验估计,降低了标定数据估计精度对样本数量的依赖性,实现了小样本条件下标定数据的准确估计,缩短了重新标定所消耗的工时,减少了生产线停工给企业带来的经济损失。
     (2)鉴于在生产过程中可以获得高精度的标准测量数据,提出了基于改进卡尔曼滤波的动平衡测量过程的在线校准方法。针对传统的过程状态估计方法在小样本情况下缺乏兼顾追踪状态变化和抑制随机误差干扰的能力,提出了卡尔曼滤波与多元统计过程控制相结合的过程状态调节方法。通过χ2统计量对观测残差进行监控,当测量过程处于可控状态时,采用经典卡尔曼滤波方法以充分利用其抑制随机测量误差的能力;反之,通过χ2统计量对状态预测协方差矩阵进行主动调节,以增强其追踪状态变化的能力;合理地权衡了追踪状态变化和抑制随机误差二者之间的矛盾,提高了测量过程校准的鲁棒性。
     (3)鉴于ISO-GUM所提供的测量不确定度评定方法不能解决动平衡测量过程的非线性,也不能体现测量系统寿命周期内的动态性的问题,提出了动平衡测量系统动态不确定度的评定方法。建立了不平衡量与振动响应和影响系数之间的概率传递关系,并以Monte Carlo方法为计算工具确定不平衡量的概率分布。同时,通过对振动响应随机测量方差以及影响系数的动态估计,将测量系统的动态信息融合到测量不确定度的评定中,实现了在测量系统全寿命周期内测量不确定度的精确评价。
     (4)针对测量不确定度导致的“误收”和“误废”决策,提出了基于贝叶斯最小决策成本准则的转子动平衡性能评价方法。将决策成本、生产过程波动等信息融合到决策模型中,同时通过贝叶斯统计估计对生产过程的波动进行动态估计,最终提高了质量决策的可靠性。
Dynamic balancing performance is the determinant factor for the service life, working noise and energy consumption of motors. With the increasing of motor rotating speed, the requirements on motor dynamic balancing performance are more and more stringent, which then demands more accurate dynamic balancing machines. Currently, the poor accuracy of the measurement system on domestic dynamic balancing products is the bottleneck to improve their quality of. Due to the fact that system measurement error can be eliminated and the influence of random measurement error on measurement results can be estimated, the most economic and effective way to improve the accuracy of measurement systems is to adopt real time system error elimination technology and to real time evaluate the influence of random error on measurement error. The system error of dynamic balancing measurement process was featured by the estimating accuracy of influence coefficients. Aiming at this situation, the main contributions are listed below:
     (1) Under the circumstance that recalibration was adopted to periodically calibrate measurement systems, aiming at the conflict between the number of samples of vibration responses of trial weights and the stoppage time of product assembly line, a hierarchical Bayesian method for dealing with calibration data was proposed. Through this method, the prior information of the vibration responses of trial weights and their estimation variance was sufficiently employed. The joint distribution model of vibration responses and their measurement variance was established to embody the influence of measurement error on the estimator of the true value of vibration responses; furthermore, the Gibbs sampling method of Markov Chain Monte Carlo (MCMC) method was used to obtain their maximum posterior estimation. This method reduced the dependency of estimation accuracy of calibration data on the number of samples and implemented accurate estimation of calibration data under the circumstance of small sample. This could reduce the time of the calibration process and then decrease the loss resulting from the stoppage of the whole assembly line.
     (2) When standard measurement data with higher accuracy was available, an improved Kalman filtering method for the regulation of dynamic balancing measurement process was presented. Aiming at the drawback that conventional state estimation method could not give attention to both the ability of track state change and the ability of suppress the disturbance of random measurement errors, Kalman filtering was combined with multivariate statistical process control. The measurement residual was monitored by theχ2 value. When the measurement process was under control, normal Kalman filtering was adopted to make the best use of its ability in suppressing random measurement errors; when the measurement process was out of control, theχ2 value was used to actively regulate the state prediction covariance to enhance the ability of track state change of Kalman filtering, which made the best tradeoff the conflict between tracking state change and suppressing random errors and improved the robustness of process regulation method.
     (3) Aiming at the problem that the method provided by ISO-GUM was incapable in solving the nonlinearity of dynamic balancing measurement process and embodying the dynamics of measurement systems in their lifecycle, a dynamic measurement uncertainty evaluation method for dynamic balancing measurement systems was proposed. By establishing the probability propagation relationship between unbalance and its vibration response, the distribution of unbalance was determined, which took the Monte Carlo method as calculating tools. Meantime, through the dynamic estimation of influence coefficients and the statistical characteristics of random measurement error of vibration responses, the dynamic information of the measurement system was fused into the process of evaluating measurement uncertainty. Ultimately, the accurate evaluation of measurement uncertainty during the lifecycle of measurement systems was achieved.
     (4) Regarding to the two wrong decisions of accepting a bad rotor and rejecting a good rotor due to measurement uncertainty, an evaluating method of rotor dynamic balancing performance based on Bayesian minimum decision cost method was proposed. This method adopted the information of the variation of manufacturing processes and decision cost into the decision model, which provided more reference for decision-makers. Meantime, to guarantee the correctness of the above information, the statistical characteristics of the variation of manufacturing process were dynamically estimated by Bayesian statistical estimation method. And finally the reliability of quality decision was improved.
引文
[1]刘健.多工位全自动动平衡机设计方法及关键技术研究[D].杭州:浙江大学,2005.
    [2]徐锡林.浅述我国动平衡机发展方向[J].试验技术及试验机.2003,43(1):6,22.
    [3]徐伯元.中小型电机产品市场发展预测[J].电工技术,2001,(3):59-61.
    [4]王颖星,周伟.电动工具行业十五规划市场发展预测[J].电气时代,2001(3):11-16.
    [5]T.J. Franklin, L.C. Anderson. Recommmended procedures for evaluating automatic armature correction balancing systems [C]. Proceedings of electrical insulation conference and electrical manufacturing & coil winding conference,1997, Rosemont, IL, USA, p497-504.
    [6]陈伟彬,凌志浩.仪器仪表发展的新技术及其特征[J].自动化信息,2004,(7):16-21.
    [7]李宏生,范维光.当今仪器仪表的特点与设计方法仪器仪表学报[J].2001,22(3)增刊:434-435.
    [8]L. Reznik, K.P. Dabke. Measurement models:application of intelligent methods [J].2004,35: 47-58.
    [9]V. Sobolev, O. Aumala. Metrological automatic support of measurement results in intelligent measurement systems [J]. Measurement,1996,17(3):151-159.
    [10]V. Sobolev, A. Sachenko, P. Daponte, O. Aumala. Metrological automatic support in intelligent measurement systems [J]. Measurement,2002,24:123-131.
    [11]F. Crenna, R.C. Michelini, G.B. Rossi. Hierarchical intelligent measurement set-up for characterizing dynamical systems [J]. Measurement,1997,21(3):91-106.
    [12]朱晓农.国产平衡机的现状和发展预测试验技术和试验机[J].1997,37(3-4):10-20.
    [13]叶能安,余汝生.动平衡原理和动平衡机[M].武汉:华中工学院出版社,1985.
    [14]王汉英.转子平衡技术和平衡机[M].背景:机械工业出版社,1988.
    [15](日)三轮修三,下村玄.旋转机械的平衡[M].朱晓农译.北京:机械工业出版社,1992
    [16]马浩,贾庆轩,曲庆文,柴山等.转子动平衡理论分析[J].机械工程学报.2000,36(3):1-3.
    [17]Cavalca K L, Cavalcante P F, Okabe E P. An investigation on the influence of the supporting structure on the dynamics of the rotor system. Mechanical systems and signal processing. 2005,19(1):157-174.
    [18]Zhou Shiyu, Shi Jianjun. Active balancing and vibration control of rotating machinery. The shock and vibration digest.2001,33(4):361-371.
    [19]Sperling L, Ryzhik B, Duckstein H. Single-plane auto-balancing of rigid rotors. Technische Mechanik,2003,24(1):1-24.
    [20]Sperling L., Ryzhik B., Duckstein H. Simulation of two-plane automatic balancing of a rigid rotor.2002.58(4-6):351-365.
    [21]W.C. Foiles, P.E. Allarie, E.J. Gunter. Review:Rotor balancing [J]. Shock and vibration,1995, 5:325-336.
    [22]Kang Y., Chang Y.P., Tseng M.H., Tang P.H., et al. A modified approach based on influence coefficient method for balancing crank-shafts. Journal of sound and vibration.2000, 234(2):277-296.
    [23]Kang Y., Tseng M.H., Wang S.M., Chiang C.P., et al. An accuracy improvement for balancing crankshafts. Mechanism and machine theory.2003,38(12):1449-1467.
    [24]虞礼贞.曲轴动平衡检测中一种数值校正方法[J].应用科学学报.2001,19(3):233-236.
    [25]C. Y. TSENG, T. W. SHIH, J. T. LIN, Dynamic balancing scheme for motor armatures [J], Journal of Sound and Vibration,2007,304:110-123.
    [26]Kang Y, Lin T.W., Chang Y.J., Chang Y.P., et al. Optimal balancing for flexible rotors by minimizing the condition number of influence coefficients.2008,43(7):891-908.
    [27]Shafei A.E., Kabbany A.S.E., Younan A.A.. Rotor balancing without trial weights. Journal of engineering for gas turbines and power.2004,126(3):604-609.
    [28]Dyer S.W., Ni J.. Adaptive influence coefficient control of single-plane active balancing systems for rotating machinery. Journal of manufacturing and engineering.2001,123(2): 291-298.
    [29]邱海,屈梁生,张海军,万德安.神经网络在转子动平衡中应用的几个关键问题[J].机械工程学报.2001,37(1):88-91.
    [30]王晓升,张冰焰.人工神经网络在转子动平衡技术中的应用[J].中国电机工程学报.1997,37(3-4):262-266.
    [31]S.J. William, G.A. Timothy, et al. Neural nets in rotor balancing. Intelligent engineering systems through artificial neural networks v2 1992 [C]. ASME, Fairfield, NJ, USA,1992, p791-796.
    [32]邱海,张海军,屈梁生,孙瑞祥.遗传算法在柔性转子动平衡中的应用[J].中国机械工程.2002,13(3):413-417.
    [33]A. Tarantola. Inverse problem theory and methods for model parameter estimation [M].2004, Philadelphia:SIAM.
    [34]D. Higdon, C. Nakhleh, J. Gattiker, B. Williams. A Bayesian calibration approach to the thermal problem [J]. Computer methods in applied mechanics and engineering.2008, 197(29-32):2431-2441.
    [35]J.B. Wang, N. Zabaras. A Bayesian inference approach to the inverse heat conduction problem [J]. International journal of heat and mass transfer.2004,47(17-18):3927-3941.
    [36]S. Parthasarathy, C. Balaji. Estimation of parameters in multi-mode heat transfer problems using Bayesian inference-effect of noise and a priori [J]. International journal of heat and mass transfer.2008,51(9-10):2313-2334.
    [37]高斯云,杨晨.利用贝叶斯模型进行热参数估计[J].系统仿真学报,2006,18(6):]462-1465.
    [38]T. Auranen, T. Nummenmaa, M.S. Hamalainen, et al. Bayesian analysis of the neuromagnetic inverse problem with lp norm priors [J]. Neurolmage,2005,26(3):870-884.
    [39]高嵩.基于贝叶斯推理的环境水力学反问题研究[D].2008,浙江大学.
    [40]T. Chen, E. Martin. Bayesian linear regression model and variable selection for spectroscopic calibration [J]. Analytica Chimica Acta.2009,631(1):13-21.
    [41]K.Y. Ding, R. J. Karunamuni. A linear empirical Bayes solution for the calibration problem [J]. Journal of statistical planning and inference.2004,119(2):421-447.
    [42]R. Kacker, K.D. Sommer, R. Kessel. Evolution of modern approaches to express uncertainty in measurement. Metrologia,2007,44(6):513-529.
    [43]D. Wallach, M. Genard. Effect of uncertainty in input and parameter values on model prediction error[J]. Modelling,1998,105(2-3):337-345.
    [44]潘光斌,陈光颙.基于Taylor展开式的测量系统不确定度分析.计量学报,2005,26(4):376-378.
    [45]M.L. Roberts, J.W. Stevens, R. Luck. Evaluation of parameter effects in estimating non-linear uncertainty propagation [J]. Measurement,2007,40(1):15-20.
    [46]D.R. White, P. Saunders. The propagation of uncertainty with calibration equations [J]. Measurement science and technology,2007,18(7):2157-2169.
    [47]R. Kacker, A Jones. On use of Bayesian statistics to make the Guide of the expression of uncertainty in measurement consistent [J]. Metrologia,2003,40(5):235-248.
    [48]R. Willink. On using the Monte Carlo method to calculate uncertainty intervals [J]. Metrologia,2006,43(6):L39-L42.
    [49]G.C. Maurice, R.L.S. Bernd. The use of a Monte Carlo method for evaluating uncertainty and expanded uncertainty [J]. Metrologia,2006,43(supplement):S178-S188.
    [50]M.A. Herrador, A.G. Asuero, A.G. Gonzalez. Estimation of the uncertainty of indirect measurements from the propagation of distributions by using the Monte Carlo method:An overview [J]. Chemometrics and intelligent laboratory systems,2005,79(1-2):115-122/
    [51]G. Wubbeler, M. Krystek, C. Elster. Evaluation of measurement uncertainty and its numerical calculation by a Monte Carlo method [J]. Measurement science and technology,2008,19(8): 084009-1-094009-4.
    [52]G.B. Rossi. A probabilistic model for measurement processes [J]. Measurement,2003,34(2): 85-99.
    [53]G.B. Rossi. A probabilistic theory for measurement [J]. Measurement,2006,39(1):34-50.
    [54]G.C. Maurice, G.B. Rossi, P.M. Harris, A.Forbes. A probabilistic approach to the analysis of measurement processes [J]. Metrologia,2008,45(5):493-502.
    [55]K.D. Sommer, B.R. Siebert. Systematic approach to the modelling of measurements for uncertainty evaluation [J]. Metrolgia,2006,43(supplement):S200-S210.
    [56]亓四华,费业态,孙键.测量能力和加工能力对误判率影响的研究[J].中国科学技术大学学报,2000,30(5):607-612.
    [57]亓四华,费业态,孙键.基于在线测量的制造质量零废品控制模型的研究[J].中国机械工程,2001,12(2):222-225.
    [58]P. Carbone, D. Macii, D. Petri. Measurement uncertainty and metrological confirmation in quality-oriented organizations [J]. Measurement,2003,34(4):263-271.
    [59]A.B. Forbes. Measurement uncertainty and optimized conformance assessment [J]. Measurement,2006,39(9):808-814.
    [60]G.B. Rossi, F. Crenna. A probabilistic approach to measurement-based decisions [J]. Measurement,2006,39(2):101-119.
    [61]A.J. Fry. Measurement validation via expected uncertainty [J]. Measurement,2001,30(3): 171-186.
    [62]谢少锋.测量系统分析与动态不确定及其应用研究[D].2003,合肥:合肥工业大学.
    [63]龚蓬,费业泰.一种基于灰色预测控制的动态测量误差修正系统[J].宇航计测技术,2002,22(2):1-5.
    [64]龚蓬,费业泰.基于误差传播理论的动态测量误差灰色评定方法[J].仪器仪表学报,2001,35(5):31-34.
    [65]殳伟群.动态测量不确定度问题初探[J].计量学报,2003,24(3):245-249.
    [66]黄小明,陈晓怀,周李兵.动态测量系统误差模型的建立[J].中国仪器仪表,2009,6:67-70.
    [67]黄俊钦.动态不确定度的估算方法和实例[J].计量学报,2005,26(4):372-375.
    [68]赵志刚,赵伟.基于动态测量不确定度理论的最佳线性数据融合算法[J].仪器仪表学报,2007,28(5):928-932.
    [69]费业泰,蒋敏兰,刘芳芳.动态测量精度理论研究进展和未来[J].中国机械工程,2007,18(9):2260-2262.
    [70]许桢英,费业泰,陈晓怀.动态精度理论研究与发展[J].仪器仪表学报,2001,22(4):70-72.
    [71]卢荣胜.动态测量实时误差修正技术研究[D].1998,合肥:合肥工业大学.
    [72]卢荣胜,费业泰.标准量插入神经网络实时误差修正技术研究[J].计量学报,2001,22(2):81-86.
    [73]H. Ihalainen, K.L. Kayra, R. Ritala. Dynamic validation of on-line measurements:A probabilistic analysis [J]. Measurement,2006,39(4):225-351.
    [74]文成林,周东华.多尺度估计理论及其应用[M].北京:清华大学出版社,2002.
    [75]邓自立.最优估计理论及其应用:建模、滤波和信息融合估计[M].哈尔滨:哈尔滨工业大学出版社,2005.
    [76]S. Haykin. Adaptive filter theory,4th edition [M]. New Jersey:Prentice Hall,2002.
    [77]J.H. Lee, N.L. Ricker. Extended Kalman filter based nonlinear model predictive control [J]. Industry engineering chemical research.1994,33(6):1530-1541.
    [78]S.J. Julier, J.K. Uhlmann. New extension of the Kalman filter to nonlinear systems[C]. Signal processing, sensor fusion and target recognition VI.1997,3068(182). Orlando, FL, USA.
    [79]尹建君,张建秋,林青Unscented卡尔曼滤波-卡尔曼滤波算法[J].系统工程与电子技术,2008,30(4):617-620.
    [80]R.V.D. Merve, A. Doucet, N.D. Freitas, et al. The unscented particle fitler. Technical report CUED/F-INFENG/TR 380, from www.searchindex.com.
    [81]J.Y. Ching, J.L. Beck, K.A. Porter. Bayesian state and parameter estimation of uncertainty dynamical systems [J]. Probabilistic engineering mechanics.2006,21(1):81-96.
    [82]边平勇.粒子滤波算法在贝叶斯动态模型中的应用[D].2006,山东:山东科技大学.
    [83]B.H. Yang, W.D. Yang, L.G. Chen, L. Qu. Dynamic optimization of feedforward automatic gauge control based on extended Kalman filter [J]. Journal of iron and steel research international.2008,15(2):39-42.
    [84]Y. Hadab, Q. Chen, P. Lutz. Improvement of strain gauges micro-forces measurement using Kalman optimal filtering [J]. Mechatronics,2009,19(4):457-462.
    [85]Pan Jeh-Nan. Determination of the optimal allocation of parameters for gauge repeatability and reproducibility study [J]. The international Jouranl of Quality & Reliability Management, 2004.21(6-7):672-682.
    [86]Dasgupta Thirthankar, S.V.S.N. Nurthy. Looking beyond audit-oriented evaluation of gauge repeatability and reproducibility:A case study [J]. Total Quality Management,2001.12(6): 649-655.
    [87]Stephen Marquedant. QS9000:Quality regs for suppliers [S]. Quality,1995.34(3):26.
    [88]Lupo Christian. ISO/TS 16949 the clear choice for automotive suppliers [S]. Quality Progress, 2002.35(10):44-49.
    [89]Loon Ching Tang. Six sigma:Advanced tools for black belts and master black belts [M]. 2006, Chichester, England; Hoboken, NJ:Wiley.
    [90]Donna C.S. Summers. Six sigma:basic tools and techniques [M].2007, upper saddle river, N.J.:Pearson/Pretice Hall.
    [91]David M. Levine. Statistics for six sigma green belts:with minitab and JMP [M].2006, upper saddle river, NJ:Pearson Prentice Hall.
    [92]Theodore T. Allen. Introduction to engineering statistics and six sigma:statistical quality control and design of experiments and systems [M].2006, London, springer.
    [93]Marilyn Hart. Learning by doing:A series of hands-on projects for SPC [J]. Quality engineering,2005.17(1):127-137.
    [94]Greg Larsen. Measurement system analysis:the usual metrics can be noninformative [J]. Quality Engineering,2002.15(2):293-298.
    [95]Automotive Industry Action Group. Measurement Systems Analysis [M].2nd ed.1995, Detroit, MI.
    [96]Automotive Industry Action Group. Measurement Systems Analysis [M].3nd ed.2002, Detroit, MI.
    [97]董双财.测量系统分析——理论、方法和应用[M].北京:中国计量出版社,2006.
    [98]Richard K. Burdick, Connie M. Borror, Douglas C. Montgonmery. A review of methods for measurement systems capability analysis [J]. Journal of quality technology,2003.35(4): 342-354.
    [99]Mandel J. Repeatability and reproducibility. Journal of quality technology [M].1972.4(2): 74-85.
    [100]D.C. Montgomery, G.C.Runger. Gauge capability and designed experiments, Part I:Basic methods [J]. Quality Engineering.1993.6:115-135.
    [101]D.J. Wheeler, R.W. Lyday. Evaluating the measurement process [M].1989,Knoxville, TN: SPC press.
    [102]D.P. Mader, J. Prins, R.E. Lampe. The economic impact of measurement error [J]. Quality engineering.1999,11:563-574.
    [103]ISO 10012:2003. Measurement management systems- requirements for measurement processes and measuring equipment [S].2003.
    [104]赵瑞贤,孟晓风,王国华.复杂测试系统量值稳定性检查监控方法及模型[J].测试技术学报.2006,20(6):492-497.
    [105]孙群,赵颖,孟晓风.基于动态修正贝叶斯模型的自动测试系统量值稳定性监控方法[J].兵工学报,2008,29(8):990-994.
    [106]孙群,赵颖,孟晓风.基于小样本数据特征的测量过程控制图参数优化[J].系统仿真学报,2008,20(11):2987-2990.
    [107]刘健,潘双夏,杨克己,冯培恩.全自动动平衡机关键技术研究[J].浙江大学学报(工学版),2006,40(5):777-782.
    [108]潘双夏,刘健.一种动平衡机机械装置:中国,ZL 03 2 29485.9[P].2004-02-25.
    [109]蒋渤鸥,杨克己,贾叔仕.动平衡机支承系统的研究[J].机床与液压,2004,10.114-116.
    [110]陶利民.转子高精度动平衡测试与自动平衡技术研究[D].长沙:国防科技大学,2006.
    [111]赵钧.飞行器动平衡测试技术的实验研究[D].哈尔滨:哈尔滨工业大学,2007.
    [112]李顶根.新型立式动平衡机的研制与工件不平衡量的测量[D].武汉:华中科技大学,2004.
    [113]刘健,潘双夏,杨克己,冯培恩.动平衡机系统误差分析及标定方法研究[J].组合机床与自动化加工技术,2004,4:1-4.
    [114]Monitor. An introduction to uncertainty in measurement using the GUM[J]. Chemometrics and intelligent laboratory systems,2007,86:139-141.
    [115].茆诗松.贝叶斯统计[M].北京:中国统计出版社,1999.
    [116]I. Lira, G. Kyriazis. Bayesian inference from measurement information[J] Metrologia,1999, 36:163-169.
    [117]J. Zhang, J.W. Wu, Z. Y. Ma.Hierarchical Bayesian calibration and online updating method for influence coefficient of automatic dynamic balancing machine[J]. Chinese Journal of mechanical engineering,2009,22(6):876-882.
    [118]S.S. Qian, C.A. Stow, M.E. Borsuk. On Monte Carlo methods for Bayesian inference[J]. Ecological modeling,2003,159:269-277.
    [119]江振宇,张为华.基于MCMC方法的虚拟试验贝叶斯校准研究[J].系统仿真学报,2008,20(18):4776-4779.
    [120]C. Hajiyew. Innovation approach based measurement error self-correction in dynamic systems[J].2006,39:585-593.
    [121]B.D. Hall. On the propagation of uncertainty in complex-valued quantities[J]. metrologia, 2004,41:173-177.
    [122]B.D. Hall. Calculating measurement uncertainty for complex-valued quantities[J]. Measurement science and technology,2003,14:368-375.
    [123]A.B.Forbes, B.Hughes, W.J.Sun. Comparison of measurements in coordinates metrology[J]. Measurement,2009,42:1473-1477.
    [124]杨春玲,余英林,刘国岁.转换坐标卡尔曼滤波算法分析[J].计算机工程与设计,2010,5(10):76-78.
    [125]周红波,耿伯英.基于转换测量卡尔曼滤波算法的目标跟踪研究[J].系统仿真学报,2008,20(3):682-688.
    [126]A.V. Prabhu, T.F. Edgar. A new state estimation method for high-mix semiconductor manufacture processes [J]. Journal of process control,2009,19,1149-1161.
    [127]C.A.Bode, J.Wang, T.F.Edgar. Run-to-run control and state estimation in high-mix semiconductor manufactrueing[J]. Annual reviews in control.,2007,31:241-253.
    [128]J.Wang, Q.P.He, T.F. Edgar. State estimation in high-mix semiconductor manufacturing[J]. Journal of process control,2009,19:443-456.
    [129]B.H. Yang, W.D. Yang, L.G. Chen, L.Qe. Dynamic optimization of feedforward automatic gauge control based on extended Kalman filter[J]. Journal of iron and steel research, international.2008,15(2):39-42.
    [130]蒋敏兰.测量系统精度损失溯源与预测模型研究[D].合肥:合肥工业大学,2007.
    [131]彭秀艳,王茂,刘长德.AR模型参数自适应估计方法研究及应用[J].哈尔滨工业大学学报,2009,41(9):12-16.
    [132]殷建军,余忠华,李兴林,王兆卫.基于Kalman滤波的过程调节与质量监控方法[J].浙江大学学报(工学版),2008,42(8):1419-1422.
    [133]赵仕健.多元统计过程监控若干问题研究[D].北京:清华大学,2004.
    [134]田学民,曹玉苹.统计过程控制的研究现状及展望[J].中国石油大学学报(自然科学版),2008,32(5):175-180.
    [135]何桦,柴京慧,卫志农,顾全.基于量测残差的改进参数估计方法[J].电力系统自动化, 2007,31(4):33-36.
    [136]马宏,王金波.仪器精度理论[M].北京:北京航空航天大学出版社,2009.
    [137]马义中.减小和控制多元质量特性波动的理论和方法[M].西安:西北工业大学,2002.
    [138]T. Schultz, M. Sheplak, L. N. Cattafesta. Application of multivariate uncertainty analysis to frequency response function estimates[J]. Journal of sound and vibration,2007,305: 116-133.
    [139]P. Pennacchi, A. Vania, N.Bachschmid. Bivariate analysis of complex vibration data:An application to condition monitoring of rotating machinery [J]. Mechanical systems and signal processing,2006,20:2340-2374.
    [140]张黎.测量系统能力分析与统计过程控制[J].航空制造技术,2005,7:86-89.
    [141]A. Possolo, B Toman. Assessment of measurement uncertainty via observation equations[J]. Metrologia,2007,44:464-475.
    [142]M.G. Box, A.B. Forbes, P.M. Harris, I.M. Smith. Measurement uncertainty evaluation associated with calibration functions[C].//XIX IMEKO world congress of fundamental and applied metrology. Lisbon, Portugal,2009:2346-2351.
    [143]A.A. Refaie, N. Bata. Evaluating measurement and process capabilities by GR&R with four quality measures[J]. Measurement,2010,43:842-851.
    [144]X.M. Jiang, S. Mahadevan. Bayesian risk-based decision method for model validation under uncertainty [J]. Reliability engineering & system safety,2007,92:707-718.
    [145]J. Potzick. Metrology and process control:dealing with measurement uncertainty[C].//Proceeding of metrology, inspection and process control for microlithography XXIV.2009, Gaithersburg, USA:76381 Ul-76381 U8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700