用户名: 密码: 验证码:
丁烯氟虫腈在水、土壤和菠菜中降解动态及机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丁烯氟虫腈是我国自主设计并合成的一种N-取代苯基吡唑类新型农药,为了正确评价丁烯氟虫腈环境行为,探明其在水中、土壤中以及菠菜中的降解动态及降解机理和影响因素,本课题对丁烯氟虫腈的检测方法、在水中的降解及影响因素、在土壤中的吸附及影响因素以及在菠菜中降解动态及对菠菜生理生化的影响等方面进行了系统的研究,研究内容及结果如下:
     1.丁烯氟虫腈在菠菜、水和土壤中的气相色谱-质谱联用检测方法的建立。研究建立了固相萃取(SPE)气相色谱-质谱(GC-MS)测定丁烯氟虫腈残留量的分析方法。研究结果表明菠菜用乙腈提取,水和土壤用乙酸乙酯提取,提取液加无水硫酸钠、氯化钠,过PSA固相萃取柱,采用GC-MS进行检测,方法简单、快速、重现性良好,相对标准偏差小于10%;检测限(S/N=3)为0.01mg/L,定量限为0.05mg/kg,在0.05mg/L -50mg/L范围内具有良好的线性关系,并对质谱图中丁烯氟虫腈的裂解进行了初步解析。
     2.研究了光源种类、丁烯氟虫腈的浓度、光降解温度、水溶液pH值以及溶液中添加不同化学物质对丁烯氟虫腈光降解动态的影响。研究表明:紫外光和自然光对丁烯氟虫腈的降解影响最大,27℃下,30W紫外灯40cm紫外光照射,丁烯氟虫腈在水中、0.01mol/L氯化钙溶液、甲醇、乙酸乙酯和正己烷中的降解符合一级反应动力学,降解半衰期分别为2.69h、2.67h、6.30h、5.63h和1.52 h,,而在丙酮中不降解;而在日光照射下,丁烯氟虫腈在水中、0.01mol/L氯化钙溶液、乙酸乙酯中的降解反应符合一级反应动力学,降解半衰期分别为2.78h、2.85h和5.74h,而在甲醇、正己烷和丙酮中没有发生明显的降解反应;丁烯氟虫腈水溶液在7℃、15℃和27℃条件下,分别用相同的紫外灯照射,其光降解半衰期t1/2分别为7.26h、3.04h和1.99h,表明随着温度的升高,丁烯氟虫腈在水溶液中的光降解速度加快;在相同的温度和紫外光的照射下,不同的pH值溶液中丁烯氟虫腈所表现出的降解动态有所不同,在中性水中降解半衰期最短,降解速度最快,光降解半衰期t1/2=2.16h,而在pH4和pH10溶液中半衰期变长,降解速度放慢,光降解半衰期分别为2.56h和2.41h;在丁烯氟虫腈水溶液中添加了过氧化氢、二氧化钛、丙酮、腐殖酸、硫酸亚铁、硫酸亚铁+过氧化氢、十二烷基苯磺酸钠、尿素以及土温80等化合物,结果表明以上化合物不同程度的减缓了丁烯氟虫腈的光降解速度,表现出一定的光淬灭性;水溶液中的丁烯氟虫腈,其水解速率随着温度的升高和pH值的降低而加快,水解反应符合一级反应动力学方程;对丁烯氟虫腈紫外光照射后产生的新物质利用气相色谱-质谱仪进行分析,结合丁烯氟虫腈的化学结构和光降解物的质谱图,结合质谱解析技术推断出可能的降解产物为:3-氰基-5-甲代烯丙基氨基-1-(2,6-二氯-4-三氟甲基苯基)吡唑(a)、氟虫腈(b)和3-氰基-4-三氟甲基-5-甲代烯丙基氨基-1-(2,6-二氯-4-三氟甲基苯基)吡唑(c)。
     3.试验研究了丁烯氟虫腈在不同土壤中的吸附-解吸作用、淋溶作用以及利用红外光谱技术研究了丁烯氟虫腈与土壤中重要的成份腐植酸和高岭土的相互作用机理。研究结果表明:丁烯氟虫腈在土壤中的水解速率符合一级反应动力学方程,且随着温度的升高而加快;丁烯氟虫腈在土壤中的吸附过程分为2个较为明显的阶段:快速的线性分配阶段和慢速的吸附阶段,并且在24h内能够达到吸附平衡,确定丁烯氟虫腈的吸附平衡时间为24h,吸附量与土壤中有机质成份、阳离子交换量和粘粒含量成正相关;丁烯氟虫腈的吸附-解吸过程表现为非线性, Freundlich方程很好地拟合了丁烯氟虫腈的吸附和解吸等温线,拟合度均大于0.97,丁烯氟虫腈在土壤中的吸附-解吸过程存在一定的滞后现象,滞后系数从0.89-0.98,说明丁烯氟虫腈的吸附除物理作用外,还存在不可逆的化学吸附,导致解吸滞后现象的出现;利用红外光谱技术研究了丁烯氟虫腈、腐植酸以及高岭土的红外光谱图,并与丁烯氟虫腈与腐植酸和高岭土相互作用后的红外光谱图进行了比较,解析了相互作用的机理;研究了丁烯氟虫腈在不同土壤中的淋溶特性,对于有机质、粘粒含量和阳离子交换量较高的1#、3#和5#土壤来说,丁烯氟虫腈的淋溶作用较弱,主要存在于土壤0cm-5cm的表层,而对于有机质、粘粒含量和阳离子交换量较低的2#和4#土壤来说,淋溶作用相对较强,丁烯氟虫腈主要存在于0cm-15cm深度土壤中。
     4.研究了不同浓度的5%丁烯氟虫腈乳油在以菠菜为试验作物进行喷施后,在菠菜和土壤中的降解残留动态,以及喷施农药后通过测定菠菜叶片中POD、SOD、CAT等酶的活性以及MDA的含量研究丁烯氟虫腈对菠菜生理生化活动的影响。研究结果表明:不同剂量的5%丁烯氟虫腈乳油喷施在菠菜叶面上和土壤中以后其降解动态符合一级反应降解动力学方程,菠菜中降解半衰期均在1d左右,推荐剂量土壤中的降解半衰期为2.16d,属于易降解农药;以2倍推荐剂量研究不同深度土壤中丁烯氟虫腈的残留动态,表明随着时间的推移,丁烯氟虫腈能够驻留在土壤中,并有一定的迁移性,经过50d,其迁移深度达到40cm,但浓度已经低于检测定量限;研究了不同剂量的5%丁烯氟虫腈乳油喷施在菠菜叶面上以后对菠菜生理生化反应的影响,结果显示除POD酶活性增加外,其他酶的活性和丙二醛的含量同对照相比,没有发生明显的变化,推荐剂量和2倍推荐剂量与空白相比对POD酶活性的影响在第7d时,已经没有明显差别,甚至略低于空白对照的过氧化物酶活性,表明丁烯氟虫腈对菠菜生理活性的影响不大,按照规定剂量喷施丁烯氟虫腈,7d后食用菠菜是安全的。
Butylene fipronil, a kind of N-substituted phenyl pyrazole compound, was designed and synthesized by Dalian Regar pesticides limited company based on fipronil molecular structure. In order to evaluate environment action of butylene fipronil in water, soils and spinach and the degradation dynamic, degradation mechanism and influence factor, the research studys systemly on detection methods, degradation in water and influence factor, absorption in soils and influence factor, degradation dynamic in spinach and the effect on physiology and biochemistry of spinach. The result of research as follows.
     1. A method was developed for determination of butylene fipronil residue in spinach, water and soil by solid phase extraction-gas chromatography/mass spectrometry (SPE-GC/MS). The residual of Butylene fipronil were extracted with acetonitrile in spinach and extacted three times with ethyl acetate in water and soils.The extracted solution mixed with NaSO4, NaCl in sequence and then purified by PSA solid phase extraction (SPE).The method was convenient, rapid and showed a good reproducibility. The relative standard deviation of this method was lower than10% (n=6), and the detection limits of butylene fipronil was 0.01mg/L, the quantity detection limits was 0.05mg/kg and good linearity in the range of 0.05mg/L-50mg/L was obtained. The paper studied the fragmentation mechanism of butylene fipronil preliminarily according to its mass spectrometry.
     2. Photo-degradation of butylene fipronil in aqueous solution was studied considered light source, condense of butylene fipronil in aqueous solution, tempareture, pH value and chemical matters and so on. The result of study showed that the photo-degradation of butylene fipronil could be described by first-order kinetics in water, 0.01mol/L CaCl2 solution, methanol, ethyl acetate and hexane under UV light, the half life was 2.69,2.67,6.30,5.63 and 1.52 hours with temperature at 27℃, but hardly degraded in acetone. Photo-degradation of butylene fipronil conformed to first-order kinetics in water, 0.01mol/L CaCl2 solution and ethyl acetate under sun light, the half life was 2.78, 2.85 and 5.74 hours, but no reaction in hexane, acetone and methanol abviosly. The experiment also studied the effect of light sources, concentration, temperatures and pH value on degradtion rate in order to provide science theory to support application of butylene fipronil. Photo-degradation rate was faster under UV with temperatures increased, when temperature at 7℃, 15℃and 27℃, half time was 7.26h, 3.04h and 1.99h respectively. Photo-degradation rate was different under UV with different pH value, when pH7.0, half time was 2.16h, but with pH value increased or decreased, photo-degration rate became slow, 2.56h when pH4 and 2.41h when pH10. Some chemical compounds were added into aqueous solution of butylene fipronil such as hydrogen peroxide, TiO2, acetone, humic acid, FeSO4, FeSO4+H2O2 (1:1), sodium dodecylbenzenesulfonate, carbamide and tween 80, all these chemical compounds were excited-state quenchers and delayed photo-degradation rate of butylene fipronil in aqueous solution. The chemical structure of photolysis products were studied by gas chromatography mass spectrometry, the results show that photolysis products mainly were fipronil, 3-cyanogen group-5- methallyl amido-1-(2,6-dichlone-4-benzotrifluoride) pyrazole and 3-cyanogen-4-trifluoride-group-5- methallyl amido-1-(2,6-dichlone-4-benzotrifluoride) pyrazole according molecular structure of butylene fipronil and photolysis products’mass spectrometry.
     3. Adsorption-desorption and eluviation of butylene fipronil in different style soils were investigated and IR of butylene fipronil, and IR of butylene fipronil’s reciprocity with humic acid and kaolin clay were studied. There two obvious processes during adsorption course in soils: rapid linearily distribution and low adsorption. Adsorption could be finished whitin 24 hours and the quantity of adsorption by soils had positive correlation with content of organic matter, cation exchange capacity and cosmid in soils. Adsorption-desorption isoterms of butylene fipronil in 5 kind soils were non-linear, and Freundlich equation could describe this course appropriately, coefficient of correlation were greater than 0.97. The results of desorption indicated that the hysteresis phenomena appeared during the desorption prosess, and the hysisters coefficient of butylene fipronil in the 5 soils studied varied from 0.89 to 0.98, which show that there were irreversible chemical adsorption besides physical adsorption. IR of butylene fipronil, humic acid and kaolin clay were studied with infrared analysis technology, and compare them with IR of butylene fipronil-humic acid and butylene fipronil- kaolin clay, elaborated the adsorption mechanism of butylene fipronil in soils. Experiment studied the leaching character of butylene fipronil in 5 kind soils and its influence factors such as organic maters, soil clay and cation exchange capacity. With these ingredients increased, soils could adsorb more butylene fipronil, which was not easy to be leached into lower surface soil, mainly stayed in upper layer 0cm to 5cm of 1#, 3# and 5# soils. Because lower content of organic maters, soil clay and cation exchange capacity in 2# and 4# soil, butylene fipronil was easy to be leached into lower and leaching ability got strong relatively, range enlarge from 0 cm to 15 cm of butylene fipronil in 2# and 4# soils.
     4. The degradation residual dynamics in spinach and soils were studied after butylene fipronil emulsifiable concentrate 5% application in farm, meanwhile, enzyme activity of peroxidase (POD), superoxide dismutase (SOD) and catalase (CAT) and quantity of malondialdehyde (MDA) were determined in order to study the effects of butylene fipronil on physic-cology and biochemistry of spinach. The results show that degradation residual dynamics of butylene fipronil emulsifiable concentrate 5% in spinach and soils could be described by the first order kinetic equiation, and the half time was 1 day in spinach and about 2 days in soils, butylene fipronil belongs to easily degradable pesticides. The degradation residual dynamics in different depth soils were studied after doubled recommended dosage were insufflated. The result show thatwith time go on, butylene fipronil could be absorbed by soils and infiltrated depth was 40 cm after 50 days later. Experiments also studied the influence of different concentration butylene fipronil on enzyme activity and MDA quantity in spinach leaves. The results were observed that there were none enzyme activity influenced except for POD, and the quantity of MDA without change obviously, after 7 days later, the activity of POD returned to normal level which indicated that the spinach was safety after applicated butylene fipronil 7 days according recommended dosage.
引文
1. J.巴尔特浦,J.科伊尔.光化学原理(第一版)(宋心崎,刘文渊,石鸿昌,译)[M].北京:清华大学出版社.1983.
    2.《环境科学大辞典》编辑委员会.环境科学大辞典[M].北京:中国环境科学出版社.1991.473.
    3.曹维强,黄刚,吕飞,佘永新,王静.固相萃取液相色谱-二极管阵列检测器测定猪肾中的三聚氰胺[J].分析试验室.2010,29(2):97-101.
    4.曹永松,侯樱,陈莹莹,陆贻通.纳米TiO2光催化降解溴虫腈[J].精细化工.2005,22(9):663-667.
    5.陈金峰,王宫南,程素满.过氧化氢酶在植物胁迫响应中的功能研究进展[J].西北植物学报,2008,28(1):0188-0193.
    6.陈力华.新型农药甲硫嘧磺隆在小麦及土壤中的残留降解行为研究[硕士学位论文].长沙:中南大学,2007.
    7.陈清火.GC-ECD检测水中有机氯和有机磷农残研究[J].环境科学. 1990, 5: 56-60+ 96-97.
    8.程景,李培武,张文,谢立华,丁小霞,张奇.基质固相分散-气相色谱法测定植物油中多种拟除虫菊酯类及有机磷类农药残留[J].中国油料作物学报.2008,30(3):346-352.
    9.程先忠,金灿,刘新海.煤系高岭土表面改性的红外光谱研究.光谱实验室. 2005,22(6):1230-1233.
    10.大连瑞泽农药股份有限公司.新颖杀虫剂-丁烯氟虫睛[J].世界农药,2005,27(5):49.
    11.邓芹英,刘岚,邓慧敏.波谱分析教程[M].北京:科学出版社.2009,30-81.
    12.丁慧瑛,谢文,周召千,李铂,蒋沁婷.蔬菜中11种苯甲酰脲类农药残留的液相色谱-串联质谱法测定[J].分析测试学报.2009,28(8):970-974.
    13.丁应祥,朱琰,黄剑聆.有机污染物在土壤-水体系中的分配理论[J].农村生态环境,1997,13(3):42-45.
    14.方晓航,仇荣亮.农药在土壤环境中的行为研究[J].土壤与环境.2002,11(1):94-97.
    15.冯南,王鹏,周志强.超临界流体萃取技术在食品药品残留分析中的研究进展.农药与环境安全国际会议论文集.2005,9:254-258.
    16.傅献彩,沈文霞,姚天扬.物理化学[M].第四版.北京:高等教育出版社, 1990.
    17.宫兆晶,李培武,张文,谢立华,丁小霞.基质固相分散-气相色谱法测定油菜籽中多种有机磷农药残留[J].中国油料作物学报. 2007, 29(3):333-338.
    18.顾志忙,王晓蓉,顾雪元,曹心德.傅里叶变换红外光谱和核磁共振法对土壤中腐植酸的表征.分析化学.2000,28(3):314-317.
    19.郭敏,单正军,石利利,孔德洋.氟虫腈在土壤中的降解规律研究. 2009-12-11取自http://www.nies.org/nies/new/uploadpic/200712652949929.38.pdf
    20.韩熹莱.农药概论[M].北京:中国农业大学出版社.1995,1-10.
    21.胡枭,樊耀波,王敏健.影响有机污染物在土壤中的迁移、转化行为的因素[J].环境科学进展,1999,7(5):14-22.
    22.花日茂,岳永德,樊德方.乙草胺在水中的光化学降解[J].农药学学报,2000,2(3): 71-74.
    23.华小梅,善正军.我国农药的生产使用现状及其因子分析[J].环境科学进展.1996,4(2):33-45.
    24.华小梅,朱忠林,单正军,蔡道基.涕灭威在土壤中的降解特性[J].农村生态环境,1995,11(4):9-13.
    25.黄家章,董丰收,刘新刚,王艳艳,郑永权,姚建仁.氟虫腈在4种土壤中的吸附和脱附初探[J].农业环境科学学报.2007,26(5):1685-1688.
    26.黄家章,刘新刚,董丰收,郑永权,王艳艳,姚建仁.氟虫腈在水稻土和红壤中的淋溶研究.第三届全国农业环境科学学术研讨会论文集.2009,10:787-790.
    27.黄家章.氟虫腈在土壤中的吸附,淋溶及降解特性研究[硕士学位论文].北京:中国农业科学院,2005.
    28.季明.氟虫腈在水体中的光化学降解研究[硕士学位论文].合肥:安徽农业大学,2006.
    29.焦劼.分子印迹在固相萃取中的应用[J].天津药学.2009,21(6):55-58.
    30.金戈辉,郝陶光,焦阳.微波萃取-气相色谱法同时测定水果、蔬菜中7种有机磷农药残留[J].化学分析计量.2008,(17)3:27-29.
    31.孔德洋,石利利,善正军,吴卫星,王菲,高士祥.除草剂甲基磺草酮在土壤中的吸附及淋溶特性[J].中国环境科学.2008,28(8):753-757.
    32.孔祥虹.固相微萃取-气相色谱法测定浓缩苹果汁中的8种有机磷农药残留[J].食品科学. 2009,2:196-200.
    33.李爱军,王明泰,牟峻,卢利军,周晓,芦春梅,等.气相色谱串联质谱法测定粮谷中16种有机磷农药残留量[J].农药.2009,48(11):823-826.
    34.梁箐,郭正元,彭晓春.戊唑醇在土壤中的光降解行为动力学研究[J].中国生态农业学报.2009,17(4):721-727.
    35.刘刚.丁烯氟虫腈产品获准农药临时登记[J].农药市场信息,2008,3:32-33.
    36.刘娇,孟范平,姚瑞华,李卓娜.甲基对硫磷分子印迹聚合物光谱研究[J].光谱学与光谱分析。2009,29(10):2756-2759.
    37.刘井兰,于建飞,印建莉,吴进才.化学农药对植物生理生化影响的研究进展[J].农药,2006,45(8):511-514.
    38.刘萍,李明军.植物生理学实验技术[M].北京:科学出版社,2007.
    39.刘维屏.农药环境化学[M].北京:化学工业出版社,2006.
    40.刘维屏,Carla Gessa.利谷隆在土壤中的吸附过程和机理[J].环境科学,1995,16(1):16-18.
    41.刘维屏,季瑾.农药在土壤-水环境中归宿的主要支配因素-吸附和脱附[J].中国环境科学.1996,16(1):25-30.
    42.刘郁,纪明山,胡睿,周艳明,于亚辉.丁烯氟虫腈在油菜中残留分析方法的研究[J].安徽农业科学, 2007,35(18):5344-5345.
    43.刘郁,于亚辉,边应权,桑海旭,王井士,张振杰,等.丁烯氟虫睛在大米中残留分析方法的研究[J].世界农药,2008, 30(5):35-37.
    44.陆继伟,苗水,毛秀红,郏征伟,王柯,季申.固相萃取-气相色谱双塔双柱法同时测定中药材中53种有机磷类农药残留量[J].中成药. 2010,01:94-99.
    45.陆欣.土壤肥料学[M].北京:中国农业大学出版社,2001.
    46.罗惠明,陈燕勤,梁希扬,张林田.液相色谱-串联质谱法测定蔬菜、水果中氨基甲酸酯类农药残留量[J].理化检验(化学分册).2009,8:994-997.
    47.罗玲,欧晓明,裴晖,余淑英,王晓光.表面活性剂和金属离子对新农药硫肟光解的影[J].生态环境学报.2009,18(5):1683-1687.
    48.莫汉宏.农药环境化学行为论文集[M].北京:中国科学出版社,1994.
    49.牟仁祥,谢绍军,闵捷,陈铭学. PSA分散固相萃取和离子对液相色谱测定蔬菜中苯并咪唑类残留的研究[J].分析测试学报. 2008,27(3):280-283.
    50.牛洪涛,闫磊,宗建平,魏书娟,罗万春.氟虫腈和丁烯氟虫腈对小菜蛾幼虫的室内毒力比较[J].农药研究与应用,2007,11(2): 28-30.
    51.农业部工业和信息化部环境保护部第1157号公告2009年3月11日. http://www.agri.gov.cn/govpublic/ZZYGLS/200903/t20090311_26834.html
    52.农业部农药残留试验准则NY/T 788-2004
    53.欧晓明,罗玲,王晓光,等.黏土矿物和腐植酸对新型农药硫肟醚的吸附及其机理研究[J].农业环境科学学报. 2006,25(1):211-218.
    54.欧晓明.新型农药硫肟醚的环境化学行为研究[博士学位论文].杭州:浙江大学,2004.
    55.潘云枫,张小虎,邹燕敏.5%丁烯氟虫腈防治小菜蛾应用技术研究[J].上海农业科技.2007,01:99-100.
    56.庞斌,秦曙,乔雄梧,赵丽娟.农药登记中残留田间实验采样的研究进展和方法[J].农药. 2009,48(5):317-321,343.
    57.任理,毛萌.农药在土壤中运移的模拟-以阿特拉津(莠去津)为例[M].北京:科学出版社.
    58.任丽萍,田芹,周志强,江树人,饶震红.己唑醇在溶液中的光化学降解[J].农药学学报.2004,6(4):73-77.
    59.荣维广,武中平,高巍,颜春荣,张晓强,杨红.氟虫腈的色谱分析方法[J].农药,2006, 45 (8):547-549.
    60.张艳.农药残留分析中不同提取溶剂的评价[J].甘肃农业科技,2006,9:28-29.
    61.施开良.环境·化学与人类健康[M].北京:化学工业出版社,2002.
    62.史延茂,董超,赵芊,张丽萍,程辉彩,张小兵.甲胺磷农药的微生物降解[J].河北省科学院学报.2003,20(3):179-182.
    63.孙清芳,冯玉杰,高鹏.萘在松花江沉积物上的吸附解吸行为[J].哈尔滨工业大学学报.2009,41(2):88-91.
    64.谭军,张炫,梁震,单玉秀,息长林.96%丁烯氟虫腈对小鼠显性致死的研究[J].农药, 2008, 47(1): 55-65.
    65.谭文捷,王金生,丁爱中,李发生.腐殖酸对水溶液中丁草胺光化学降解的影响[J].农业环境科学学报,2009,28(1):135-139.
    66.谭亚军,王磊,王兰英,吴优利,邢俐鹏,张宇.乙草胺在土壤中的淋溶作用[J].吉林农业大学学报.2009,31(3):301-304,308.
    67.汤峰,岳永德,花日茂,陈瑾.增效磷在液相中的光化学降解研究[J].农药学学报, 2000,2(6):71-76.
    68.汤亚飞,王焰新,蔡鹤生,BroderJ.Merkel.脉冲火焰光度检测器分析水中有机磷农药[J]. 2005,24(1):201-205.
    69.唐除痴,李煜昶,陈彬,杨华铮,金桂玉.农药化学[M].天津:南开大学出版社,1998.
    70.万益群,陈宗保.土壤中多种有机氯及拟除虫菊酯类农药的GC-ECD测定[J].分析试验室. 2006,25(9):60-63.
    71.汪东,王敬国,慕康国.TiO2对毒死蜱在土壤表面光降解的催化作用[J].生态环境学报.2009,18(3):934-938.
    72.王丹军,岳永德,汤锋,花日茂,操海群.几种表面活性剂和色素物质对氯苯嘧啶醇光化学降解的影响[J].安徽农业科学,2009,37(3):1294-1297,1306.
    73.王光辉,熊少祥.有机质谱解析[M].北京:化学工业出版社,2005.
    74.王惠,吴文君.农药分析与残留分析[M].北京:化学工业出版社,2007,115-117.
    75.王连生.有机污染物化学(上册)[M].北京:科学出版社,1990.178-221.
    76.王万红,王颜红,王世成,张红,王莹,曾青.GC-MS测定土壤中阿特拉津、六氯苯等十种农药残留[J].环境化学. 2009,(6):899-903
    77.王新平,杨云,栾伟,李攻科.固相微萃取-气相色谱-质谱联用分析环境水样中痕量有机磷农药[J].分析试验室.2003,05:5-9.
    78.王琰,崔建宇,胡林,王敬国,慕康国.悬浮态TiO2静止光催化降解有机磷农药[J].中国农业大学学报.2008,2:73-77.
    79.王一茹,刘长武,牛玉成,蔡保罗,李治祥,朱昌寿,等.丁草胺在水体中的光解和稻田中归趋的研究[J].环境科学学报,1996,16(4):475-481.
    80.文一.有机磷农药的联合毒性及其毒理学机理研究[博士学位论文].北京:中国农业科学院,2008.
    81.吴瞻英,饶竹,李夏,曹亚萍.微波萃取-气相色谱-质谱测定土壤中的多氯联苯[J].分析试验室. 2008,27(6):61-63.
    82.夏会龙.植物对有机磷农药的吸收与污染修复研究[博士学位论文].杭州:浙江大学,2002.
    83.徐红霞,吴海燕,张景飞,吴吉春.2,4-二氯苯酚在太湖沉积物中的吸附/解吸行为研究[J].农业环境科学学报.2008,27(4):1415-1420.
    84.徐瑞薇,胡钦红,靳伟,方慧珍,徐家基,严兴祥.多效唑在土壤中降解、吸附和淋溶作用[J].环境化学,1994,13(1):53-59.
    85.徐瑞薇,胡钦红,靳伟,李德平.杀虫双农药在土壤中行为的研究[J].环境化学,1991,10(3);47-53.
    86.许鹏翔,袁东星,邓永智,李权龙.水样中痕量有机磷农药的膜萃取-气相色谱法测定[J].分析化学.2002,30(3):321-323.
    87.许小龙,顾中言,陈明亮,刘维新,韩丽娟.丁烯氟虫腈对水稻和蔬菜主要害虫的田间防效[J].江苏农业科学.2007,4:80-81.
    88.杨伟春,王琪全,刘维屏.除草剂莠去津在土壤中的吸附机理[J].环境科学,2000,21(4): 94-97.
    89.杨章城.现代植物生理学实验指南[M].北京:科学出版社,2004.
    90.姚建仁,焦淑贞,钱盖新,郑永权.化学农药光解研究进展[J].农药译丛.1989,11(1):26-30.
    91.于春艳,赵慧敏,陈硕,张耀斌,全燮.水体中腐殖酸与Fe(Ⅲ)的络合物对2,4-D光降解的作用[J].环境科学.2010,31(2) :379-384.
    92.于佳,范青,吕慧怡,冷东伟.复方尿素霜中尿素及维生素A的测定[J].大连医科大学学报.2006,28(4 ):333-335.
    93.于金莲,石登荣,任丽萍.水体中农药降解研究的进展[J].农业环境科学学报.2005,24(增刊):367-370.
    94.岳永德,刘根凤.农药的环境光化学及其应用[J].安徽农业大学学报,1995,22(4):339-345.
    95.岳永德,汤锋,花日茂.土壤质地和湿度对农药在土壤中光解的影响[J].安徽农业大学学报,1995,22(4);351-355.
    96.张辉.土壤环境学[M].北京:化学工业出版社,2005.
    97.张利红,陈忠林,徐成斌,李雪梅,李培军.表层土壤中菲的紫外光降解研究[J].农业环境科学学报.2009,28(6):1115-1119.
    98.张旺驰,胡明安,李金发,张利国.宜昌高岭土粉体表面改性红外光谱分析与机理研究.中国矿业. 2006,15(1):45-47.
    99.张卫.农药阿维菌素在环境中降解和代谢研究[博士学位论文].杭州:浙江大学,2004.
    100.张秀尧,蔡欣欣,陈珞洛,郑三燕.缓冲QuEChERS法提取气相色谱火焰光度检测法快速测定水果蔬菜中39种有机磷农药残留[J].中国卫生检验杂志.2007,17(12): 3133- 2135 .
    101.张中明,张伟,蒋凡,秦蓁,王进军.甲磺隆在土壤中的吸附-解吸特性[J].西南大学学报(自然科学版).2009,31(3):154-163.
    102.张宗炳,樊德方,钱传范,施国涵.杀虫剂环境毒理学[M].北京:中国农业出版社.1989
    103.赵小兰,聂飞,马国新,丁志华,陈旭.太阳光紫外线强度检测技术研究[J].电子测量技术, 2008,31(1):112-114,117.
    104.郑巍,宣日成,刘维屏.新农药吡虫啉水解动力学和机理研究[J].环境科学学报,1999,19(1):101-104.
    105.郑巍.新农药吡虫啉的环境物理化学与生物化学行为研究[博士学位论文].杭州:浙江大学,2000.
    106.郑亚秋,曹湛,郭宏斌,张青杰,贺利民,陈清菊,等.替米考星分子印迹聚合物的制备及其固相萃取研究[J].分析化学. 2010,38 (1):95-99.
    107.郑永权,姚建仁.21世纪农药展望[J].植物保护,1998,24(4):39-40.
    108.中华人民共和国农业行业标准NY/T 295-1995中性土壤阳离子交换量和交换性盐基的测定
    109.中华人民共和国农业行业标准NY/T788-2004农药残留试验准则
    110.周风帆,蔡后建,金琦,蔡庆,王新光.多效唑土壤吸附及在模拟生态系统分布动态的研究[J].南京大学学报,1994,30(1)55-62.
    111.周晓冬,余兵,胡进.豆类蔬菜中氟虫腈残留分析方法的研究[J].农业环境科学学报,2007,26(增刊) :211-214.
    112.朱淮武.有机分子结构波谱解析[M].北京:化学工业出版社,2005.
    113.朱忠林,单正军,蔡道基.溴氟菊酯的光解、水解与土壤降解[J].农村生态环境,1996,12(4):5-7.
    114. Andrianiriaharivelo S , Mailhot G , Bolte M.Photodegradation of organic pollutants by complexation with transition metals (Fe3+ and Cu2+) present in natural waters [J] .Trends in Photochemistry and Photobiology,1994,3:361-369.
    115. Aybar-Mu?oz J, Fernández-González E, García-Ayuso L E, González-Casado, Cuadros- Rodríguez L. Semiqualitative method for detection of pesticide residues over established limits in vegetables by use of GC–μECD and GC–(EI) MS [J]. Chromatographia. 2005,9:505-513.
    116. Briggs G G. Theoretical and experimental relationships between soil adsorption, octanol-water partition coefficients, water solubilities, bioconcentration factors, and the parachor [J]. J Agric Food Chem. 1981, 29:1050-1059.
    117. Burrows H.D., Canle M., Santaballa J.A. Reaction pathways and mechanisms of photodegradation of pesticides [J]. Journal of photochemistry and photobiology B: Biology, 2002, 67:71-108.
    118. Consuelo Sánchez-Brunete, Beatriz Albero, Ester Miguel, JoséLuis Tadeo. Determination of insecticides in honey by matrix solid-phase dispersion and gas chromatography with nitrogen–phosphorus detection and mass spectrometric confirmation [J].Journal of AOAC International. 2002, 85(1):128-133.
    119. Coquet Y. Variation of pesticides sorption isotherm in soil at the catchment scale [J]. Pest Manage Sci, 2002, 58 (1): 69-78.
    120. Cox L, Hermosin M C, Koskinen W C & Cornejo J. Interactions of imidacloprid with organic and inorganic-exchanged smectites [J]. Clay Minerals. 2001, 36: 267-274.
    121. Cox L, Koskinen W C, Yen P Y. Sorption-desorption of imidacloprid and its metabolites in soils [J].J Agric Food Chem, 1997, 45: 1468-1472.
    122. Czapar G F, Horton R, Fawcett R S. Henbicide and tracer movement in soil columns containing an artificial maccropore [J]. J Environ Qual, 1992, 21: 110.
    123. D. Schlenk, D. B. Huggett, J. Allgood, et al. Toxicity of fipronil and its degradation products to Procambarus sp.: field and laboratory studies [J]. Arch. Environ. Contam. Toxicol, 2001, 41, 325–332.
    124. De lijser H J P, Tsai C H. Photosentized reactions of oxime ethers: a steady-state and laser flash potolysis study [J]. J Org Chem. 2004, 69 (9): 3057-3067.
    125. Dieter,Martens.Determination of pesticides in food,feed and water by LC/MS/MS.第四届上海国际分析化学研讨会论文摘要集,2008:113
    126. Dudley H W. Ian F.有机化学中的光谱方法(王剑波,施卫峰,译者)[M].北京:北京大学出版社,2001,30-46.
    127. Eisert R, Levsen K. Application of solid-phase microextraction and gas chromatography with electron-capture and mass spectrometric detection for the determination of hexachlorocychohexanes in soil solutions[J],J ChromatogrA, 1994,687:133.
    128. Eisert R , Levsen K , Wiinsch G. Element selective detection of pesticides by gaschromatogrphy-atomic emission detection and Solid phase microextraction [J]. J Chromatogr A,1994,683:175.
    129. El-Nahhal Y. Adsorptive behavior of acetochlor on organoclay complexes [J]. Bull Environ Contaim Toxicol. 2003, 70: 1104-1111.
    130. Erickson L E, Lee K H. Degradation of atrazine and related s-triazines [J]. Critical Reviews in Environmental Control.1989, 19 (1):1-14.
    131. F.W.McLafferty.质谱解析(王光辉,姜龙飞,汪聪慧,译) [M].第三版.北京:化学工业出版社, 1987:17-20,107-109.
    132. Greabin P, Frank M, Chib J S. Effects of fertilizers and soil components on pesticide photolysis [J]. Journal of Agricultural and Food Chemistry. 2002, 50(25): 7332-7339.
    133. Hessler D P.Gorenflo V. Frimmel F H. Degradation of Aqueous Solutions by UV and UV/H2O2:Influence of pH and Herbicide Concentration [J]. Acta Hydroch in Hydrobiologica. 1993, 21(4): 209-214.
    134. Hassall K A, The chemistry of pesticides-their metablism mode of action and uses in crop protection [J]. The Macmillam Press Ltd, London. 1982.
    135. Jablonkai I. Microbial and photolytic degradation of the herbicide acetochlor [J]. Intern. J. Environ. Anal. Chem. 2002, 78 (1): 1-8.
    136. Jackson R, Ghosh D & Paterson G. The soil degradation of the herbicide florasulam [J]. Pest. Manag. Sci. 2000, 56: 1065-1072.
    137. Kah M, Brown C D. Changes in pesticides adsorption with time at high soil to solution ratios [J]. Chemosphers. 2007, 68: 1335-1343.
    138. Katagi T. Photodegradation of the purethroid insecticide enfenvalerate on soil, clay minerald and humic acides surfaces [J].J Agric Chem.1991, 39: 1351-1356.
    139. Krzyszowska A J, Allen R D, Viqueira G F. Assessment of the fate of two herbicides in a wyoming rangeland soil: column studies [J]. J Environ Qual, 1994, 23:1051.
    140. Mader B T, Uwe-Goss K, Eisenreich S J. Sorption of nonionic, hydrophobic organic chemi- cals to mineral surface [J]. Environ Sci Technol. 1997,31: 1079-1086.
    141. Majors R E. LC.GC-Magazine of Separation Sci, 1998, 8(Suppl.s) (5):8-15.
    142. Mastovska K. Lehotay S J.Anastassiades M. Combination of analyte protectants to overcome matrix effects in routine GC analysis of pesticide residues in food matrixes [J].Anal Chem, 2005, 77(24):8129-8137.
    143. Mathene R. Photodegradation of metolachlor in water in the presence of soil mineral and organic constituents [J]. J Agric Food Chem. 1996, 44(12):3996-4000.
    144. Meunier L, Boule P. Direct and induced phototranseformation of mecoprop [2-(4-chloro-2-methyl phenoxy propionic acid)] in aqueous solution [J]. Pest Management Science. 2000, 56(12): 1077-1085.
    145. Mingelgrin U, Gerstl Z. Reevaluation of partitioning as a mechanism of nonionic chemicals adsorption in soils [J]. J Environ Qual, 1983: 12: 1-11.
    146. Mukherjee, KalpanaSorption of Fipronil in Tropical Soils. Bull. Environ [J]. Contam. Toxicol, 2006, 76:334–340.
    147. Mulbry W, Del Valle, Karns. Biodegradation of organophosphate pesticides coumaphos in highly contaminated soil and in liquid wastes [J]. Pestic Sci. 1999, 36: 831-834.
    148. National Exposure Research Laboratory Office of Research and Development U.S. Environmental Protection Agency, Method 526, Method 528, Method 532, Revision 1.0.
    149. Northcott G L, Jones K C. Experimental approaches and analytical techniques for determining organic compound bound residues in soil and sediment [J]. Environ Pollution. 2000, 108: 19-26.
    150. Orrisc H, Allenv K. Quality of the environment: an economic approach to some problems in using land, water and air.Baltimore, Maryland, the Johns Hopkins press [J], 1996.
    151. Patterson B M, Franzmann P D,Davis G B.Using polymermats to biodegrade atrazine in groundwater laboratory column experiments[J]. Journal of Contaminant Hydrology. 2002, 54 (3/4): 195-213.
    152. Pignatello J J, Xing B S.Mechanisms of slow sorption of organic chemicals to natural particles [J]. Environmental Science & Technology.1995, 30 (1):1-11.
    153. Porcino M E, Stenken J A , Corelli J C, Block R C, Clesceri, P.E N L. Degradation of mono chlorobenzene by ionizing radiation [J ]. Hazardous and Industrial Waste, 1999: 137-146.
    154. Pusino A, Braschi I, Gessa C. Adsorption and degradation of triasulfuron on homoionic montmor- illonites [J]. Clays and Clay Minerals. 2000, 48 (1): 19-25.
    155. Pusino A, Pinna V M, Gessa. Azimsulfuron sorption-desorption on soil [J]. J Agric Food Chem. 2004, 52: 3462-3466.
    156. Poulsen E J. Validation of a mutiresidue method for analysis of pesticides in fruit vegetables and cereals by a GC/MS ion trap system [J]. Spec. Pub. Rep. Soc. Chem. 2000, 256: 108-119.
    157. Rea J E, Copper C S, Parker A. Pesticides sorption onto aquifer sediments [J]. J Geochem Explor. 1998, 64 (2): 263-276.
    158. Robertson B K, Alexander M. Growth-linked and cometabolic biodegradation: possible reason for occurrence or absence of accelearated pesticide biodegradation [J].Pesticide Science. 1994, 41: 311 -318.
    159. Sander M, Lu Y, Pignatello J J. Conditioning annealing studies of natural organic matter solids linking irreversible sorption to irreversible structural expansion [J]. Environ Sci Technol, 2006, 40(1):170-178
    160. Sandra R R, Bernhard M A. Supercritical fluid extraction for pesticide multiresidue analysis in honey: determination by gas chromatography with electron-capture and mass spectrometry detection [J]. Journal of Chromatography A, 2004, 1048: 153-159.
    161. Sanz-Asensio J, Plaza-Medina M, Martinez-Soria M T. Kinetic study of the degradation of ethiofencarb in aqueous solutions [J].Pesticide Science.1997,50 (3):187-194.
    162. Sarmah A K, Kookana R S,Duffy M J,Alston A M, Harch B D. Hydrolysis of triasulfuron, metsulfuron-methyl and chlorsulfuron in alkaline soil and aqueous solutions[J].Pest ManagSci.2000,56:463-471.
    163. Sergey Piletsky, Anthony Turner. Molecular imprinting of polymers [M]. USA TEXAS: Landes Bioscience. 2006.
    164. Singh N. Sortion behavior of triazole fungicides in Indian soils and its correlation with soil propties [J]. J Agric Food Chem. 2002, 50: 6434-6439.
    165. Stumm G. Chemistry of solid-water interface [M]. New York: Wiley, 1992.
    166. Tomas B. Metsulfuron methyl sorption-desorption in field-moist soils [J]. J Agric Food Chem. 2003, 51(12): 3598-3603.
    167. Torrents A. The sorption nonionic pesticides onto clays and the influnce of natural organic carbon [J]. Chemosphere, 1997. 35(7): 1549-1565.
    168. T?íska J. Testing of membrane extraction disk for analysis of eighteen pesticides in marsh water samples by GC/MS [J]. Chromatographia. 1995, 40 (6):712-717.
    169. U.S.EPA. Fate, transport and transformation test guidelines, OPPTS 835.2110: Hydrolysis as a function of pH [S]. 1998, EPA 712-C-98-057.
    170. US EPA. Guidelines for registering pesticides in the United States [J].Federal Register, 1975, 40 (123): 26881.
    171. Vasilios A Sakkas, Triantafyllos A A lbanis. Photocatalyzed degradation of the biocides chlorothalonil and dichlofluanid over aqueous TiO2 suspensions [J]. Applied Catalysis. 2003, 46:175-188.
    172. Weber W J Jr, Huang W. A distributed reactivity model for sorption by soils and sediments 4 intraparticle heterogeneity and phase-distribution relationships under nonequilibrium condi- tions [J]. Environmental Science & Technology.1996, 30 (3): 881-888.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700