用户名: 密码: 验证码:
法尼基焦磷酸合酶的干扰对自发性高血压大鼠氧化应激的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分自发性高血压大鼠甲羟戊酸途径关键酶的表达改变与心血管组织重构的关系
     研究背景:
     甲羟戊酸途径是细胞内重要的代谢途径,其合成了固醇类异戊二烯(如胆固醇)和非固醇类异戊二烯中间产物,包括法尼基焦磷酸(farnesylpyrophosphate, FPP)和牻牛儿牻牛儿焦磷酸(geranylgeranylpyrophosphate, GGPP)。而非固醇类异戊二烯中间产物是小G蛋白翻译后修饰过程不可或缺的。异戊烯转移酶催化小G蛋白的羧基末端加上法尼基或牻牛儿牻牛儿基使之活化。最新研究证明,小G蛋白Ras, Rho家族参与了自发性高血压大鼠(SHR)的心血管组织的重构。
     目的:
     本研究探索在SHR大鼠的不同血压水平阶段,心脏、血管和肝脏中甲羟戊酸途径关键酶的改变以及其与心血管重构的关联性。
     方法:
     3、16和25周龄的雄性SHR大鼠和Wistar-Kyoto (WKY)大鼠用尾套法检测收缩压,用常规酶法测定血清胆固醇水平,组织学分析法检测左心室和胸主动脉肥厚指标。用Western blot法检测组织(心脏、主动脉和肝脏)中甲羟戊酸途径关键酶的蛋白表达:HMG-CoA还原酶(HMGR)、(?)去尼基焦磷酸合酶(FDPS).角鲨烯合成酶(SQS)、法尼基转移酶α亚基(FNTA).法尼基转移酶β亚基(FNTB).牻牛儿牻牛儿基转移酶(GGTase-Ⅰ).
     结果:
     3周龄SHR大鼠的血压与WKY大鼠相似,16周和25周的SHR大鼠血压随年龄而增高,且明显高于WKY大鼠。3周龄的SHR大鼠的低密度脂蛋白胆固醇(LDL-C)水平明显低于WKY大鼠,而高密度脂蛋白胆固醇(HDL-C)和总胆固醇(STC)水平与WKY大鼠相似。16周和25周SHR大鼠的STC、LDL-C和HDL-C水平都显著低于WKY大鼠。3周的SHR大鼠已经出现一定程度的心室肥厚和血管重构,而在16周和25周时SHR大鼠与WKY大鼠相比,则形成了更加显著的差异。SHR大鼠在各周龄的心脏组织中HMGR、FDPS、GGTase-Ⅰ蛋白表达明显上调,而SQS表达下调。在SHR大鼠的胸主动脉中,除了与心脏组织中HMGR、FDPS、GGTase-Ⅰ和SQS相似的蛋白表达改变外,FNTA在16和25周龄时上调,FNTB在25周龄时上调。SHR大鼠的肝脏组织中,在各个周龄都表现了HMGR的上调和SQS的下调。
     结论:
     SHR大鼠的心血管重构出现早于血压的形成和发展,而其低水平的血清胆固醇浓度可能由于肝脏胆固醇合成分支的关键酶SQS表达的下调。而在心脏和血管中甲羟戊酸途径的非固醇类异戊二烯分支合成途径中的相关酶的表达上调,SQS表达的下调可能诱导了小G蛋白的过度活化,进而导致SHR大鼠的心血管肥厚和重构。
     第二部分在体法尼基焦磷酸合酶的抑制对自发性高血压大鼠内皮功能的影响及可能机制---抗氧化应激
     研究背景:
     法尼基焦磷酸合酶(farnesyl pyrophosphate synthase, FDPS)是甲羟戊酸途径的关键酶之一,既往研究发现:自发性高血压大鼠(SHR)中甲羟戊酸途径的一些关键酶表达显著高于正常的Wistar-Kyoto (WKY)大鼠,其中包括FDPS。并且用二膦酸盐阿仑膦酸钠抑制FDPS从而改善了SHR大鼠的内皮功能障碍,可能机制包括通过抑制FDPS,从而减少类异戊二烯中间产物的产生包括法尼基焦磷酸(farnesylpyrophosphate, FPP)和牻牛儿牻牛儿焦磷酸(geranylgeranylpyrophosphate, GGPP).进而抑制了小G蛋白的类异戊烯化修饰过程,包括了法尼基化和牻牛儿牻牛基儿化,而GGPP对于小G蛋白RhoA的牻牛儿牻牛儿基化和活化非常重要。抑制了小G蛋白RhoA的活化,进而上调内皮一氧化氮合酶(eNOS)的表达。
     除此,另有大量实验证明SHR中活性氧族(ROS)终产物显著增多,SHR的内皮功能损伤与过度活跃的氧化应激有关,同样,Rac1的活化也依赖于牻牛儿牻牛儿基化,活化的Rac1可正向调节烟酰胺腺嘌呤二核苷酸磷酸(NADPH)氧化酶的表达和活性,从而调控ROS终产物。
     目的:
     本研究主要探索FDPS抑制剂二膦酸盐伊班膦酸钠(Ibandronate)能否通过抑制过度氧化应激从而改善SHR大鼠的内皮功能,并探索可能途径。
     方法:
     10周龄雄性SHR大鼠和WKY大鼠用Ibandronate (1 mg/kg/day)灌胃处理30天。用离体血管环灌流技术检测内皮依赖性和非内皮依赖性血管舒张作用,观察SHR和WKY大鼠的血管环功能状况1. Ibandronate、GGTI-286、C3 exoenzyme、Y-27632、Rac1 inhibitor或apocynin预孵30 mins,检测血管环功能;2. Ibandronate与GGOH、FOH或MEV共孵2h。以上分别操作后都用AngⅡ进行预收缩,观察Ach浓度梯度(10-9to 10-5M)曲线舒张情况。用荧光分析法检测胸主动脉中活性氧02-的相对含量和NADPH氧化酶的活性,pull-down法测定胸主动脉Rac1的活性,用Western blot法检测胸主动脉NADPH氧化酶亚基p47phox的表达水平
     结果:
     Ibandronate能部分改善SHR大鼠受伤的内皮依赖性血管舒张作用,其干预可降低胸主动脉中Rac1的活性,下调NADPH氧化酶亚基p47phox的表达和活性氧ROS的含量。
     结论:
     FDPS的抑制剂Ibandronate可以改善SHR大鼠的内皮功能,其机制可能是通过抑制了Rac1的活化,下调NADPH氧化酶的表达、活性进而抑制了过度的氧化应激反应。
     第三部分法尼基焦磷酸合酶在血管紧张素Ⅱ诱导的氧化应激中的作用
     研究背景:
     既往研究证明在血管细胞中,活性氧族(ROS)的产生可被许多体液因子如血管紧张素Ⅱ(angiotensinⅡ,AngⅡ)诱导,自发性高血压大鼠(SHR)中过度活跃的氧化应激与增高的AngⅡ水平有关。多种血管细胞包括平滑肌细胞参与了AngⅡ诱导的过度氧化应激,而且有多种细胞通路参与了AngⅡ诱导的氧化应激,其中包括Rac1/烟酰胺腺嘌呤二核苷酸磷酸(NADPH)氧化酶通路。法尼基焦磷酸合酶(FDPS)能催化合成类异戊二烯中间产物牻牛儿牻牛儿焦磷酸(geranylgeranylpyrophosphate,GGPP),后者在小G蛋白异戊二烯化过程中是不可或缺的,小G蛋白Rac1的异戊二烯化和活化也是必需的。而活化的Rac1可正向调节NADPH氧化酶的表达和活性,从而调控ROS终产物。
     目的:
     本研究主要明确用二膦酸盐伊班膦酸钠(Ibandronate)抑制FDPS可否影响SHR大鼠血管平滑肌细胞(VSMCs)在AngⅡ诱导下的氧化应激反应,同时研究该作用是否与Rac1/NADPH氧化酶途径相关。
     方法:
     来源于SHR大鼠和WKY大鼠的原代VSMCs用AngⅡ刺激3h,或者在实验中,VSMCs在AngⅡ刺激前分别先孵育24 h的Ibandronate(10-8 to 10-5 M)、Ibandronate(10-5M)加牻牛儿牻牛儿醇(GGOH,Geranylgeraniol,3×10-5 mol/L)、Ibandronate加法尼醇(FOH,Farnesol,3×10-5 mol/L)、Ibandronate加甲羟戊酸(MEV,Mevalonate, 10-4 mol/L)、GGTI-286(牻牛儿牻牛儿基转移酶抑制剂,10-5 mol/L)或Rac1inhibitor(10-4 mol/L).然后用荧光测定法检测细胞中的ROS,用试剂盒检测细胞NADPH氧化酶活性,用pull-down(?)去检测细胞中Rac1的活性,用Western blot检测NADPH氧化酶关键亚基p47phox的蛋白表达情况和Rac1总蛋白表达情况。
     结果:
     (1)AngⅡ可浓度依赖性诱导氧化应激产物ROS的产生,而SHR大鼠的VSMCs比WKY大鼠在AngⅡ诱导下出现更大的氧化应激反应。FDPS抑制剂Ibandronate可浓度依赖性抑制.AngⅡ诱导的ROS的产生。也抑制了AngⅡ对Rac1, NADPH oxidase的激活和p47phox的蛋白上调。
     (2) GGOH部分逆转了Ibandronate的抗氧化应激反应,而FOH或MEV没有逆转作用。
     (3)抑制剂GGTI-286、Racl inhibitor可模拟Ibandronate对AngⅡ诱导的过度氧化应激反应的抑制作用。
     结论:
     本研究结果表明Ibandronate通过抑制FDPS可以有效逆转SHR大鼠VSMCs中AngⅡ诱导的过度氧化应激,这种作用与抑制Rac1的牻牛儿牻牛儿基化过程从而降低Rac1的活性相关。
Part One Alteration of enzymes expression in mevalonate pathway: possible role for cardiovascular remodeling in spontaneously hypertensive rats
     Background:
     Mevalonate pathway is an important metabolic pathway which plays a key role in multiple cellular processes by synthesizing sterol isoprenoids, like cholesterol, and non-sterol isoprenoids, including farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP). These non-sterol isoprenoid intermediates of the mevalonate biosynthetic pathway play important roles in the post-translational modification of small GTP-binding proteins (GTPases). Protein prenyltransferases catalyze the addition of the isoprenoids, farnesyl or geranylgeranyl to the C-terminal of GTPases, facilitating their activation. Recent studies have suggested that small GTP-binding proteins Ras and Rho are involved substantially in functional and structural alterations of hypertensive blood vessels and hearts in SHR.
     Aims:
     To determine whether the key enzymes expressions of mevalonate pathway in heart, aorta and liver during the process of hypertension in SHR are altered and whether these changes are associated with the cardiovascular remodelling.
     Methods:
     At the ages of 3,16 and 25 weeks, systolic blood pressure of SHR and WKY was measured by the tail-cuff method. Serum cholesterol concentrations were determined by +enzymatic methods. Hearts and thoracic aortas were removed for the study of cardiovascular remodelling. The protein expressions of enzymes in hearts, aortas and livers were analysed by western blot, including 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR)、farnesyl diphosphate synthase (FDPS)、squalene synthetase (SQS)、farnesyltransferase alpha (FNTA)、farnesyltransferase beta (FNTB)、geranylgeranyltransferase type I (GGTase-Ⅰ).
     Results:
     The systolic blood pressure developed gradually over weeks in SHR after 3-week-old, but only slightly in WKY. At 3 weeks of age, blood pressure was not significantly different between SHR and WKY, whereas in both 16-week-old and 25-week-old age groups, blood pressure was significantly higher in SHR than in WKY. SHR had a lower LDL-C level but similar values of STC and HDL-C compared with WKY at 3 weeks of age. At adult stage of 16-week-old and 25-week-old age, STC, LDL-C and HDL-C were lower in SHR than in WKY. The histological measurements showed the mass and myocyte sizes of heart, the media thickness (MT) and media cross-sectional area (MCSA) of thoracic aorta were all increased in SHR since 3 weeks. In heart, there were overexpressions of some enzymes, including HMGR, FDPS. GGTase-Ⅰ, and a downregulation of SQS in SHR since 3-week-old age. In aorta, besides similar expressions of HMGR, SQS, FDPS and GGTase-Ⅰwith heart, there were upregulations of FNTA at 16-and 25-week-old age and FNTB at 25-week-old SHR. Western blot demonstrated an overexpression of HMGR and a downregulation of SQS in SHR liver at all ages tested.
     Conclusions:
     The cardiovascular remodeling of SHR preceded development of hypertension. The serum cholesterol level was significantly decreased in SHR, and these findings may be associated with lower expression of key enzyme SQS in sterol pathways in liver from SHR at all ages. The up regulation expression of several key enzymes in non-sterol mevalonate pathways, and down regulation expression of SQS in heart and aorta may play a potential pathophysiological role for cardiovascular remodeling in SHR via excessive activation of small GTP-binding proteins.
     Part Two Effect of farnesyl diphosphate synthase inhibition on endothelial function in spontaneously hypertensive rats vivo—antioxidative stress
     Background:
     Farnesyl diphosphate synthase (FDPS) is a key enzyme in the mevalonate pathway. In previous studies, we found that the expression of key enzymes in the mevalonate pathway, including FDPS, are significantly upregulated in the spontaneously hypertensive rat (SHR). Bisphosphonates inhibit farnesyl pyrophosphate (FPP) synthase, through inhibition of isoprenylation including farnesylation and geranylgeranylation by preventing the synthesis of various isoprenoids such as FPP and geranylgeranyl pyrophosphate (GGPP). Bisphosphonate alendronate was able to improve the endothelial function in SHR and the upregulation of eNOS expression by suppression of small GTPase RhoA activation, which needs geranylgeranylation by GGPP. Excess of ROS generation synthesized by NADPH oxidase is critically involved in the breakdown of endothelial function in SHR. The activated Racl by geranylgeranylation is a prerequisite of NADPH oxidase activation.
     Aims:
     To determine whether FDPS inhibitor ibandronate improves the endothelial function in SHR, at least in part, through inhibition of excessive oxidative response via the Rac1/NADPH oxidase pathway. Methods:
     After 4-week administration of ibandronate (1mg/kg/day), endothelium-dependent and independent vasorelaxation were measured in isolated aortic rings. The level of ROS in aorta was then quantitatively measured fluorometrically. and the enzymatic activities of NADPH oxidase was evaluated spectrophotometrically with commercial assay kits. Activation of Rac1 in aorta was determined by pull-down assay. Aortic expression of p47phox in both cytoplasmic and membrane fractions and Rac1 was determined by western blot.
     Conclusions:
     FPP synthase inhibitor ibandronate exerted antioxidant effects in the vasculature of SHR mediated by Racl/NADPH oxidase pathway. These effects of ibandronate may contribute to the vasoprotective effects for impaired endothelium in SHR.
     Part Three Role of farnesylpyrophosphate synthase in angiotensinⅡ-mediated oxidative stress
     Background:
     In vascular cells, ROS production can be induced by humoral factors such as angiotensinⅡ(AngⅡ). An abnormal elevation of circulating AngⅡis critically involved in the excess oxidative stress in spontaneously hypertensive rat (SHR). Many kinds of pathways are involved in AngⅡ-induced excess oxidative stress response of vascular smooth muscle cells including the Rac1/NADPH oxidase signaling.
     Farnesyl pyrophosphate synthase (FDPS) synthesize of various isoprenoids such as FPP and geranylgeranyl pyrophosphate (GGPP). The latter is needed for protein isoprenylation and activation of small GTP-binding protein, including Racl. Activation and translocation of Rac1 from the cytosolic compartment to the cell membrane induce activation and upregulation of NADPH oxidase expression, which contributes to the excessive generation of ROS.
     Aims:
     To explore whether inhibition of FDPS synthase by ibandronate (IBAN) could interfere with the oxidative stress responses induced by AngⅡin cultured vascular smooth muscle cells (VSMCs). and whether it involves Racl/NADPH oxidase pathway.
     Methods:
     VSMCs from SHR and Wistar-Kyoto rats (WKY) were stimulated with AngⅡfor 3 h. In some experiments, cells were pre-exposed for 24 h to IBAN (10-5 mol/L), IBAN plus Geranylgeraniol (GGOH,3×10-5 mol/L), IBAN plus Farnesol (FOH,3×10-5 mol/L), IBAN plus Mevalonate (MEV,10"4 mol/L),GGTI-286 (selective inhibitor of GGTase I, 10-5 mol/L) or Racl Inhibitor (10-4 mol/L). The generation of ROS for the VSMCs was evaluated by a fluorometry assay using intracellular oxidation of DCFH-DA, and the enzymatic activities of NADPH oxidase was evaluated spectrophotometrically with commercial assay kits. Activation of Rac1 was determined by pull-down assay. The expression of p47phox in both cytoplasmic and membrane fractions and Racl in VSMCs were determined by western blot.
     Results:
     AngiotensinⅡ(AngⅡ) concentration dependently increased ROS production in cultured VSMCs from WKY and SHR. The AngⅡ-induced responses were greater in SHR VSMCs, but significantly reduced by ibandronate pretreatment. Treatment with ibandronate significantly decreased the production of ROS, expression of NADPH oxidase subunit p47phox, NADPH oxidase and Racl GTP-binding activity in VSMCs. Addition of GGOH, but not FOH or MEV reversed the inhibitory effects of ibandronate. Moreover, inhibitor of geranylgeranyl-transferase GGTI-286 and Racl mimicked the effect of ibandronate on this excessive oxidative response.
     Conclusions:
     FDPS inhibitor ibandronate exerted cellular antioxidant effects induced on AngⅡstimulation in cultured SHR VSMCs, and this effect may be mediated at least partly by reduction the activated form of Rac1 via blocking of geranylgeranylation.
引文
[1]Goldstein JL, Brown MS. Regulation of the mevalonate pathway. Nature,1990; 343:425-430.
    [2]Takai Y, Sasaki T, Matozaki T. Small GTP-binding proteins. Physiol Rev,2001; 81:153-208.
    [3]Adamson P, Marshall CJ, Hall A, Tilbrook PA. Post-translational modifications of p21rho proteins. J Biol Chem,1992; 267:20033-20038.
    [4]Allal C, Favre G, Couderc B, Salicio S, Sixou S, Hamilton AD. RhoA prenylation is required for promotion of cell growth and transformation and cytoskeleton organization but not for induction of serum response element transcription. J Biol Chem,2000; 275:31001-31008.
    [5]Pravenec M, Kurtz TW. Recent advances in genetics of the spontaneously hypertensive rat. Curr Hypertens Rep,2010; 12:5-9.
    [6]Johns DG, Dorrance AM, Leite R, Weber DS. Webb RC. Novel signaling pathways contributing to vascular changes in hypertension. J Biomed Sci,2000; 7:431-443.
    [7]Aikawa R, Komuro I, Yamazaki T, Zou Y, Kudoh S, Zhu W. Rho family of small G proteins play critical roles in mechanical stress-induced hypertrophic responses in cardiac myocytes. Circ Res,1999; 84:458-66.
    [8]Hunter JJ, Tanaka N, Rockman HA, Ross J Jr, Chien KR. Ventricular expression of a MLC-2v-ras fusion gene induces cardiac hypertrophy and selective diastolic dysfunction in transgenic mice. J Biol Chem,1995; 270:23173-23178.
    [9]Klemke RL, Cai S, Giannini AL. Gallagher PJ, de Lanerolle P. Cheresh DA. Regulation of cell motility by mitogen-activated protein kinase. J Cell Biol.1997; 137:481-492.
    [10]Okamoto K, Aoki K. Development of a strain of spontaneously hypertensive rats. Jap Circ J,1963; 27:202-293.
    [11]Lais LT, Rios LL, Boutelle S, DiBona GF. Brody MJ. Arterial pressure development inneonatal and young spontaneously hypertensive rats. Blood Vessels,1977; 14:277-284.
    [12]Kubota Y, Umegaki K, Kagota S, Tanaka N, Nakamura K, Kunitomo M, et al. Evaluation of blood pressure measured by tail-cuff methods (without heating) in spontaneously hypertensive rats. Biol Pharm Bull,2006; 29:1756-1758.
    [13]Kennelly PJ, Rodwell VW. Regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase by reversible phosphorylation-dephosphorylation. J Lipid Res 1985; 26:903-914.
    [14]Do R, Kiss RS, Gaudet D, Engert JC. Squalene synthase:a critical enzyme in the cholesterol biosynthesis pathway. Clin Genet 2009; 75:19-29.
    [15]Szkopinska A, Plochocka D. Famesyl diphosphate synthase; regulation of product specificity. Acta Biochim Pol,2005; 52:45-55.
    [16]Casey P.J, Seabra M.C. Protein prenyltransferases. J Bio Chem.1996;271: 5289-5292.
    [17]Zhang FL, Casey. Protein prenylation:molecular mechanisms and functional consequences. Annu Rev Biochem,1996; 65:241-269.
    [18]Michael A. Adams, Alexander Bobik, Paul I. Korner. Differential development of vascular and cardiac hypertrophy in genetic hypertension Relation to sympathetic function. Hypertension,1989; 14:191-202.
    [19]Jin X, Xia L. Wang LS, Shi JZ, Zheng Y, Chen WL. Differential protein expression in hypertrophic heart with and without hypertension in spontaneously hypertensive rats. Proteomics.2006:6:1948-1956.
    [20]van Gorp AW, Schenau DS, Hoeks AP, Boudier HA, de Mey JG, Reneman RS. In spontaneously hypertensive rats alterations in aortic wall properties precede development of hypertension. Am J Physiol Heart Circ Physiol 2000; 278: H1241-1247.
    [21]Mukai Y, Shimokawa H, Matoba T, Kandabashi T, Satoh S, Hiroki J. Involvement of Rho-kinase in hypertensive vascular disease:a novel therapeutic target in hypertension. FASEB J,2001; 15:1062-1064.
    [22]Shirai H, Autieri M, Eguchi S. Small GTP-binding proteins and mitogen-activated protein kinases as promising therapeutic targets of vascular remodeling. Curr Opin Nephrol Hypertens,2007; 16:111-115.
    [23]Indolfi C, Di Lorenzo E, Perrino C, Stingone AM, Curcio A, Torella D. Hydroxymethylglutaryl coenzyme A reductase inhibitor simvastatin prevents cardiac hypertrophy induced by pressure overload and inhibits p21ras activation. Circulation,2002; 106:2118-2124.
    [24]Hall A. Small GTP-binding proteins and the regulation of the actin cytoskeleton. Annu Rev Cell Biol,1994; 10:31-54.
    [25]Aikawa R, Komuro I, Nagai R, Yazaki Y. Rho plays an important role in angiotensin II-induced hypertrophic responses in cardiac myocytes. Mol Cell Biochem,2000:212:177-182.
    [26]Numaguchi K, Eguchi S, Yamakawa T, Motley ED, Inagami T. Mechanotransduction of rat aortic vascular smooth muscle cells requires RhoA and intact actin filaments. Circ Res,1999; 85:5-11.
    [27]Bagrodia S, Cerione RA. PAK to the future. Trends Cell Biol,1999; 9:350-355.
    [28]Hunter JJ, Chien KR. Signaling pathways for cardiac hypertrophy and failure. N Engl J Med 1999;341:1276-1283.
    [29]Takai Y, Sasaki T, Matozaki T. Small GTP-binding proteins. Physiol Rev.2001; 81:153-208.
    [30]Brown MS, Goldstein JL. Multivalent feedback regulation of HMG CoA reductase, a control mechanism coordinating isoprenoid synthesis and cell growth. J Lipid Res,1980; 21:505-517.
    [31]Li L, Chen GP, Yang Y, Ye Y, Yao L, Hu SJ. Chronic inhibition of famesyl pyrophosphate synthase attenuates cardiac hypertrophy and fibrosis in spontaneously hypertensive rats. Biochem Pharmacol,2010; 79:399-406.
    [32]Seasholtz TM, Zhang T, Morissette MR, Howes AL, Yang AH, Brown JH. Increased expression and activity of RhoA are associated with increased DNA synthesis and reduced p27 (Kipl) expression in the vasculature of hypertensive rats. Circ Res,2001; 89:488-495.
    [33]Hu WY, Han YJ, Gu LZ, Piano M, de Lanerolle P. Involvement of Ras-regulated myosin light chain phosphorylation in the captopril effects in spontaneously hypertensive rats. Am J Hypertens,2007; 20:53-61.
    [34]Sever PS, Dahlof B, Poulter NR, Wedel H, Beevers G, Caulfield M. Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial-Lipid Lowering Arm (ASCOT-LLA):a multicentre randomised controlled trial. Lancet,2003; 361: 1149-1158.
    [35]Borghi C. Interactions between hypercholesterolemia and hypertension: implications for therapy. Curr Opin Nephrol Hypertens,2002; 11:489-496.
    [36]Zhou Q, Liao JK. Pleiotropic effects of statins. Basic research and clinical perspectives. Circ J,2010; 74:818-826.
    [37]Rikitake Y, Hirata K. Inhibition of RhoA or Racl? Mechanism of cholesterol-independent beneficial effects of statins. Circ J,2009; 73:231-232.
    [38]Rashid M, Tawara S, Fukumoto Y, Seto M, Yano K, Shimokawa H. Importance of Racl signaling pathway inhibition in the pleiotropic effects of HMG-CoA reductase inhibitors. Circ J,2009;73:361-370.
    [39]Lever AF, Harrap SB. Essential hypertension:A disorder of growth with origins in childhood? J Hypertens,1992:10:101-120.
    [40]Mulvany MJ. The development and regression of vascular hypertrophy. J Cardiovasc Pharmacol,1992; 19:S22-27.
    [41]Korner PI, Bobik A, Angus JJ. Are cardiac and vascular "amplifiers" both necessary for the development of hypertension? Kidney Int Suppl,1992; 37: S38-44.
    [42]Seasholtz TM, Majumdar M, Kaplan DD, Brown JH. Rho and Rho kinase mediate thrombin-stimulated vascular smooth muscle cell DNA synthesis and migration. Circ Res,1999; 84:1186-1193.
    [43]Kishi H, Bao J, Kohama K. Inhibitory effects of ML-9, wortmannin, and Y-27632 on the chemotaxis of vascular smooth muscle cells in response to platelet-derived growth factor-BB. J Biochem,2000; 128:719-22.
    [44]Funakoshi Y, Ichiki T, Shimokawa H, Egashira K, Takeda K, Kaibuchi K, et al. Rho-kinase mediates angiotensin Ⅱ-induced monocyte chemoattractant protein-1 expression in rat vascular smooth muscle cells. Hypertension,2001; 38:100-104.
    [45]Numaguchi K, Eguchi S, Yamakawa T, Motley ED, Inagami T. Mechanotransduction of rat aortic vascular smooth muscle cells requires RhoA and intact actin filaments. Circ Res,1999; 85:5-11.
    [46]Li S, Chen BP, Azuma N, Hu YL, Wu SZ, Sumpio BE, et al. Distinct roles for the small GTPases Cdc42 and Rho in endothelial responses to shear stress. J Clin Invest.1999; 103:1141-1150.
    [47]Gould RG. Lipid metabolism and atherosclerosis. Am J Med,1951; 11:209-227.
    [48]Iritani N, Fukuda E, Nara Y, Yamori Y. Lipid metabolism in spontaneously hypertensive rats (SHR). Atherosclerosis,1977; 28:217-222.
    [1]Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases:the role of oxidant stress. Circ Res,2000; 87:840-844.
    [2]Sanchez M, Galisteo M, Vera R, Villar IC, Zarzuelo A, Tamargo J. Quercetin downregulates NADPH oxidase, increases eNOS activity and prevents endothelial dysfunction in spontaneously hypertensive rats. J Hypertens,2006; 24:75-84.
    [3]Suzuki H, Swei A, Zweifach BW, Schmid-Schonbein GW. In vivo evidence for microvascular oxidative stress in spontaneously hypertensive rats. Hydroethidine microfluorography. Hypertension,1995; 25:1083-1089.
    [4]Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW. Angiotensin Ⅱ stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res,1994; 74:1141-1148.
    [5]Rajagopalan S, Kurz S, Muenzel T, Tarpey M, Freeman BA, Griendling KK. Angiotensin Ⅱ-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation:contribution to alterations of vasomotor tone. J Clin Invest,1996; 97:1916-1923.
    [6]Babior BM. NADPH oxidase:an update. Blood,1999; 93:1464-1476.
    [7]Griendling KK, Sorescu D, Ushio-Fukai M. NAD(P)H oxidase:role in cardiovascular biology and disease. Circ Res,2000; 86:494-501.
    [8]Suh YA, Arnold RS, Lassegue B, Shi J, Xu X, Sorescu Dl. Cell transformation by the superoxidegenerating oxidase moxl. Nature,1999; 401:79-82.
    [9]Xiao, L., Pimental, D.R.,Wang. J., Singh, K. Role of reactive oxygen species and NADPH oxidase in adrenoceptor signaling in adult rat cardiac myocytes. Am. J. Physiol. Cell. Physiol,2002; 282:C926-34.
    [10]Dusi S, Domini M, Rossi F. Mechanisms of NADPH oxidase activation in human neutrophils:p67phox is required for the translocation of racl but not rac2 from cytosol to the membranes. Biochem J,1995; 308:991-994.
    [11]Rinckel LA, Faris SL, Hitt ND, Kleinberg ME. Racl disrupts p67phox/p40phox binding:a novel role for rac in NADPH oxidase activation. Biochem Biophys Res Commun,1999; 263:118-122.
    [12]Russell RG, Watts NB, Ebetino FH, Rogers MJ. Mechanisms of action of bisphosphonates:similarities and differences and their potential influence on clinical efficacy. Osteoporos Int,2008; 19:733-759.
    [13]Szkopinska A, Plochocka D. Farnesyl diphosphate synthase; regulation of product specificity. Acta Biochim Pol,2005; 52:45-55.
    [14]Scita G, Tenca P, Frittoli E, Tocchetti A, Innocenti M, Giardina G, et al. Signaling from Ras to Rac and beyond:Not just a matter of GEFs. EMBO J, 2000:19:2393-2398.
    [15]Takai Y, Sasaki T, Matozaki T. Small GTP-binding proteins. Physiol Rev,2001; 81:153-208.
    [16]Barbara E. Rolfe. Nathalie F. Worth, Cameron J. World. Rho and vascular disease. Atherosclerosis,2005; 183:1-16.
    [17]Chen GP, Yao L, Lu X, Li L, Hu SJ. Tissue-specific effects of atorvastatin on 3-hydroxy-3- methylglutarylcoenzyme A reductase expression and activity in spontaneously hypertensive rats. Acta Pharmacol Sin,2008; 29:1181-1186.
    [18]Li L. Hu SJ, Dong HT, Kang L, Chen NY, Fang YQ. Alterations in gene expression of series key enzymes in mevalonic acid pathway detected by RNA array in spontaneously hypertensive rats. Chinese Journal of Pathophysiology, 2008; 24:54-59.
    [19]Chen GP, Li L, Yang Y, Fu M, Yao L, Wu T. Chronic inhibition of farnesyl pyrophosphate synthase improves endothelial function in spontaneously hypertensive rats. Biochem Pharmacol,2010; 80:1684-1689.
    [20]Moomaw, J.F. and Casey, P.J. Mammalian protein geranylgeranyl transferase. Subunit composition and metal requirements. J. Biol. Chem,1992; 267: 17438-17443.
    [21]Hayashi, M, Sakata, M., Takeda, T., Tahara, M., Yamamoto, T., Minekawa, R.,et al. Hypoxia upregulates hypoxia-inducible factor-1 alpha expression through RhoA activation in trophoblast cells. J. Clin. Endocrinol. Metab,2005; 90:1712-1719.
    [22]Woods, A., Wang, G. and Beier, F. RhoA/ROCK signaling regulates Sox9 expression and actin organization during chondrogenesis. J. Biol. Chem,2005; 280:11626-11634.
    [23]Gao Y, Dickerson JB, Guo F, Zheng J, Zheng Y. Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proc Natl Acad Sci U S A,2004; 101:7618-7623.
    [24]Carlene A. Hamilton, M. Julia Brosnan, Martin McIntyre, Delyth Graham, Anna F. Dominiczak. Superoxide Excess in Hypertension and Aging:A Common Cause of Endothelial Dysfunction. Hypertension,2001; 37:529-534.
    [25]Masao Kakoki, Yasunobu Hirata, Hiroshi Hayakawa, Hiroaki Nishimatsu, Yasuko Suzuki, Daisuke Nagata. Effects of Vasodilatory B-Adrenoceptor Antagonists on Endothelium-Derived Nitric Oxide Release in Rat Kidney. Hypertension,1999; 33:467-471.
    [26]Junjie Xiao, Hong Zhao, Dandan Liang,Ying Liu, Hong Zhang, Yi Liu. Jun Li, Luying Peng, Zhaonian Zhou. Taxol, a Microtubule Stabilizer, Improves Cardiac Contractile Function during Ischemia in vitro. Pharmacology,2010; 85:301-310.
    [27]Vanhoutte PM. Endothelial dysfunction in hypertension. J Hypertens.1996; 14: S83-93.
    [28]Vanhoutte PM, Miller VM. Heterogeneity of endothelium- dependent responses in mammalian blood vessels. J Cardiovasc Pharmacol.1985:7:S12-23.
    [29]Nagao, T., Illiano, S., Vanhoutte, P. M. Heterogeneous distribution of endothelium- dependent relaxations resistant to NG-nitro-L-arginine in rats. Am. J. Physiol,1992; 263:H1090-1094.
    [30]Fisher JE, Rogers MJ, Halasy JM, Luckman SP, Hughes DE, Masarachia PJ. Alendronate mechanism of action:geranylgeraniol, an intermediate in the mevalonate pathway, prevents inhibition of osteoclast formation, bone resorption, and kinase activation in vitro. Proc. Natl. Acad. Sci,1999; 96:133-138.
    [1]Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signalling. Am J Physiol,2000; 279:L1005-L1028.
    [2]Droge W. Free radicals in the physiological control of cell function. Physiol Rev,2002; 82:47-95.
    [3]Babior, B.M. NADPH oxidase:an update. Blood,1999; 93:1464-1476.
    [4]Lassegue B, Sorescu D, Szocs K, Yin Q, Akers M, Zhang Y, Grant SL, Lambeth JD, Griendling KK. Novel gp91phox homologues in vascular smooth muscle cells:noxl mediates angiotensin Ⅱ-induced superoxide formation and redox-sensitive signaling pathways. Circ Res,2001; 88:888-894.
    [5]Xiao, L, Pimental, D.R, Wang, J, Singh, K. Role of reactive oxygen species and NADPH oxidase in -adrenoceptor signaling in adult rat cardiac myocytes. Am.J. Physiol. Cell. Physiol,2002; 282:C926-C934.
    [6]Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW. Angiotensin Ⅱ stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res,1994; 74:1141-1148.
    [7]Rajagopalan S, Kurz S, Muenzel T, Tarpey M, Freeman BA, Griendling KK. Angiotensin Ⅱ-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J Clin Invest,1996; 97:1916-1923.
    [8]Wolf G. Free radical production and angiotensin. Curr Hyper Rep.2000; 2:167-173.
    [9]Zalba G, San Jose G, Moreno MU. Fortuno MA, Fortuna A, Beaumont FJ, Diez J. Oxidative stress in arterial hypertension. Role of NAD(P)H oxidase. Hypertension,2001; 38:1395-1399.
    [10]Touyz RM, Schiffrin EL. Ang Ⅱ-stimulated generation of reactive oxygen species in human vascular smooth muscle cells is mediated via PLD-dependent pathways. Hypertension,1999; 34:976-982.
    [11]Zalba G, San Jose G, Moreno MU, Fortuno MA, Fortuna A, Beaumont FJ, Diez J. Oxidative stress in arterial hypertension. Role of NAD(P)H oxidase. Hypertension,2001;38:1395-1399.
    [12]Berk BC. Redox signals that regulate the vascular response to injury. Thromb Haemost,1999; 82:810-817.
    [13]Touyz RM, Tabet F, Schiffrin EL. Redox-dependent signaling by angiotensin II and vascular remodelling in hypertension. Clin Exp Pharmacol Physiol,2003; 30:860-866.
    [14]Xiao, L., Pimental, D.R.,Wang, J., Singh, K. Role of reactive oxygen species and NADPH oxidase in adrenoceptor signaling in adult rat cardiac myocytes. Am. J. Physiol. Cell. Physiol,2002; 282:C926-934.
    [15]Dusi S, Domini M, Rossi F. Mechanisms of NADPH oxidase activation in human neutrophils:p67phox is required for the translocation of racl but not rac2 from cytosol to the membranes. Biochem J,1995; 308:991-994.
    [16]Rinckel LA. Faris SL, Hitt ND, Kleinberg ME. Racl disrupts p67phox/p40phox binding:a novel role for rac in NADPH oxidase activation. Biochem Biophys Res Commun,1999; 263:118-122.
    [17]Zhou Q, Liao JK. Pleiotropic effects of statins:Basic research and clinical perspectives. Circ J,2010; 74:818-826.
    [18]Rikitake Y, Hirata K. Inhibition of RhoA or Rac1? Mechanism of cholesterol-independent beneficial effects of statins. Circ J.2009; 73:231-232.
    [19]Rashid M, Tawara S, Fukumoto Y, Seto M, Yano K, Shimokawa H. Importance of Racl signaling pathway inhibition in the pleiotropic effects of HMG-CoA reductase inhibitors. Circ J.2009;73(2):361-370.
    [20]Takai Y, Sasaki T, Matozaki T. Small GTP-binding proteins. Physiol Rev,2001; 81:153-208.
    [21]Adamson P, Marshall CJ, Hall A, Tilbrook PA. Post-translational modifications of p21rho proteins. J Biol Chem,1992; 267:20033-20038.
    [22]Allal C, Favre G, Couderc B, Salicio S, Sixou S, Hamilton AD. RhoA prenylation is required for promotion of cell growth and transformation and cytoskeleton organization but not for induction of serum response element transcription. J Biol Chem,2000; 275:31001-31008.
    [23]Sven Wassmann, Ulrich Laufs, Kirsten Muller, Christian Konkol, Katja Ahlbory. Cellular Antioxidant Effects of Atorvastatin In Vitro and In Vivo. Arterioscler. Thromb. Vasc. Biol,2002; 22:300-305
    [24]Russell RG, Watts NB, Ebetino FH, Rogers MJ. Mechanisms of action of bisphosphonates:similarities and differences and their potential influence on clinical efficacy. Osteoporos Int,2008; 19:733-759.
    [25]Battle T, Arnal JF, Challah M, Michel JB. Selective isolation of rat aortic wall layers and their cell types in culture application to converting enzyme activity measurement. Tissue Cell,1994:26:943-955.
    [26]Chen GP, Li L, Yang Y, Fu M, Yao L, Wu T. Chronic inhibition of famesyl pyrophosphate synthase improves endothelial function in spontaneously hypertensive rats. Biochem Pharmacol,2010; 80:1684-1689.
    [27]Moomaw, J.F. and Casey, P.J. Mammalian protein geranylgeranyl transferase. Subunit composition and metal requirements. J. Biol. Chem,1992; 267: 17438-17443.
    [28]Gao Y, Dickerson JB. Guo F, Zheng J, Zheng Y. Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proc Natl Acad Sci U S A,2004; 101:7618-7623.
    [29]Harrison DG. Endothelial function and oxidant stress. Clin Cardiol,1997; 20(suppl):Ⅱ-11-Ⅱ-17.
    [30]Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases:the role of oxidant stress. Circ Res,2000; 87:840-844.
    [31]Darley-Usmar VM, McAndrew J, Patel R, Moellering D, Lincoln TM, Jo H, Cornwell T, Digerness S, White CR. Nitric oxide, free radicals and cell signalling in cardiovascular disease. Biochem Soc Trans,1997;25:925-929.
    [32]Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW. Angiotensin Ⅱ stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res,1994;74:1141-1148.
    [33]Rajagopalan S, Kurz S, Muenzel T, Tarpey M, Freeman BA, Griendling KK, Harrison DG. Angiotensin Ⅱ-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation:contribution to alterations of vasomotor tone. J Clin Invest,1996;97: 1916-1923.
    [34]Babior BM. NADPH oxidase:an update. Blood,1999;93:1464-1476.
    [35]Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW. Angiotensin Ⅱ stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res,1994; 74:1141-1148.
    [36]Rajagopalan S, Kurz S, Muenzel T, Tarpey M, Freeman BA, Griendling KK. Angiotensin Ⅱ-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J Clin Invest,1996; 97:1916-1923.
    [37]Bolterman RJ, Manriquez MC, Ortiz Ruiz MC, Juncos LA, Romero JC. Effects of aptopril on the renin angiotensin system, oxidative stress, and endothelin in normal and hypertensive rats. Hypertension,2005; 46:943-947.
    [38]Federica Lodi. Angel Cogolludo. Juan Duarte. Laura Moreno, Alfredo Coviello Maria Peral De Bruno, Rocio Vera. Increased NADPH oxidase activity mediates spontaneous aortic tone in genetically hypertensive rats. European Journal of Pharmacology,2006; 544:97-103.
    [39]Lavigne, M.C., Malech, H.L., Holland, S.M., Leto, T.L. Genetic demonstration of p47phox-dependent superoxide anion production in murine vascular smooth muscle cells. Circulation,2001; 104:79-84.
    [40]Chabrashvili, T., Tojo, A., Onozato, M.L., Kitiyakara, C., Quinn, M.T., Fujita, T., Quinn, M.T., Fujita, T.,Welch, W.J., Wilcox, C.S.. Expression and cellular localization of classic NADPH oxidase subunits in the spontaneously hypertensive rat kidney. Hypertension,2002; 39:269-274.
    [41]Takai Y, Sasaki T, Matozaki T. Small GTP-binding proteins. Physiol Rev,2001; 81:153-208.
    [42]Ridley AJ, Hall A. The small GTP-binding protein Rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell, 1992; 70:389-400.
    [43]Takai Y, Sasaki T. Matozaki T. Small GTP-binding proteins. Physiol Rev,2001; 81:153-208.
    [44]Fisher JE, Rogers MJ, Halasy JM, Luckman SP, Hughes DE, Masarachia PJ. Alendronate mechanism of action:geranylgeraniol, an intermediate in the mevalonate pathway, prevents inhibition of osteoclast formation, bone resorption, and kinase activation in vitro. Proc. Natl. Acad. Sci,1999; 96: 133-138.
    [45]Brian S. Zuckerbraun, Joel E. Barbato, Andrew Hamilton, Said Sebti, Edith Tzeng. Inhibition of Geranylgeranyltransferase I Decreases Generation of Vascular Reactive Oxygen Species and Increases Vascular Nitric Oxide Production. Journal of Surgical Research,2005; 124:256-263.
    [1]Klaudia Budzyn, Philip D. Marley, Christopher G. Sobey. Targeting Rho and Rho-kinase in the treatment of cardiovascular disease. Trends in Pharmacological Sciences,2006; 27(2):97-104.
    [2]Uehata, M. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature,1997;389:990-994
    [3]Tachibana E, Harada T, Shibuya M, Saito K, Takayasu M, Suzuki Y, Yoshida J. Intra-arterial infusion of fasudil hydrochloride for treating vasospasm following subarachnoid haemorrhage. Acta Neurochir. (Wien),1999;141:13-19
    [4]Olofsson, B. Rho guanine dissociation inhibitors:pivotal molecules in cellular signalling. Cell. Signal,1999;11:545-554
    [5]Schmidt, A. and Hall, A. Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev,2002; 16:1587-1609
    [6]Takai Y, Sasaki T, Matozaki T. Small GTP-binding proteins. Physiol Rev,2001; 81:153-208.
    [7]Adamson P, Marshall CJ, Hall A, Tilbrook PA. Post-translational modifications of p21rho proteins. J Biol Chem,1992; 267:20033-20038.
    [8]Allal C, Favre G, Couderc B, Salicio S, Sixou S, Hamilton AD. RhoA prenylation is required for promotion of cell growth and transformation and cytoskeleton organization but not for induction of serum response element transcription. J Biol Chem,2000; 275:31001-31008.
    [9]Sytkowski PA, Kannel WB, D'Agostino RB. Changes in risk factors and the decline in mortality from cardiovascular disease. The Framingham Heart Study. N Engl J Med,1990; 322:1635-1641.
    [10]Gordon T, Kannel WB. Premature mortality from coronary heart disease. The Framingham study. JAMA.1971; 215:1617-1625.
    [11]Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease:the Scandinavian Simvastatin Survival Study (4S). Lancet,1994; 344: 1383-1389.
    [12]Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals:a randomised placebo-controlled trial. Lancet,2002; 360:7-22.
    [13]Tamai O, Matsuoka H, Itabe H, Wada Y, Kohno K, Imaizumi T. Single LDL apheresis improves endothelium-dependent vasodilatation in hypercholesterolemic humans. Circulation,1997; 95:76-82.
    [14]Anderson TJ, Meredith IT, Yeung AC, Frei B, Selwyn AP, Ganz P. The effect of cholesterol-lowering and antioxidant therapy on endotheliumdependent coronary vasomotion. N Engl J Med,1995; 332:488-493.
    [15]Treasure CB, Klein JL, Weintraub WS, Talley JD, Stillabower ME, Kosinski AS, Zhang J, Boccuzzi SJ, Cedarholm JC, Alexander RW. Beneficial effects of cholesterol-lowering therapy on the coronary endothelium in patients with coronary artery disease. N Engl J Med,1995; 332:481-487.
    [16]O'Driscoll G, Green D, Taylor RR. Simvastatin, an HMG-coenzyme A reductase inhibitor, improves endothelial function within 1 month. Circulation, 1997; 95:1126-1131.
    [17]Landmesser U, Bahlmann F, Mueller M, Spiekermann S, Kirchhoff N, Schulz S, Manes C, Fischer D, de Groot K, Fliser D, Fauler G, Marz W. Drexler H. Simvastatin versus ezetimibe:pleiotropic and lipid-lowering effects on endothelial function in humans. Circulation,2005; 111:2356-2363.
    [18]Laufs U, La Fata V, Plutzky J, Liao JK. Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors. Circulation,1998;97:1129-1135.
    [19]Goldstein JL, Brown MS. Regulation of the mevalonate pathway. Nature. 1990;343:425-430.
    [20]Van Aelst L. D'Souza-Schorey C. Rho GTPases and signaling networks. Genes Dev,1997;11:2295-2322.
    [21]Hall A. Rho GTPases and the actin cytoskeleton. Science,1998;279:509-514.
    [22]Laufs U, Liao JK. Post-transcriptional regulation of endothelial nitric oxide synthase mRNA stability by Rho GTPase. J Biol Chem,1998;273: 24266-24271.
    [23]Laufs U, Endres M, Stagliano N, Amin-Hanjani S, Chui DS, Yang SX, Simoncini T, Yamada M, Rabkin E, Allen PG, Huang PL, Bohm M, Schoen FJ, Moskowitz MA, Liao JK. Neuroprotection mediated by changes in the endothelial actin cytoskeleton. J Clin Invest,2000; 106:15-24.
    [24]Eto M, Barandier C, Rathgeb L, Kozai T, Joch H, Yang Z, Luscher TF. Thrombin suppresses endothelial nitric oxide synthase and upregulates endothelin-converting enzyme-1 expression by distinct pathways:role of Rho/ROCK and mitogen-activated protein kinase. Circ Res,2001;89:583-590.
    [25]Takemoto M, Sun J, Hiroki J, Shimokawa H, Liao JK. Rho-kinase mediates hypoxia-induced downregulation of endothelial nitric oxide synthase. Circulation,2002;106:57-62.
    [26]Rikitake Y, Kim HH, Huang Z, Seto M, Yano K, Asano T, Moskowitz MA, Liao JK. Inhibition of Rho kinase (ROCK) leads to increased cerebral blood flow and stroke protection. Stroke,2005;36:2251-2257.
    [27]Lambeth JD. NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol,2004; 4:181-189.
    [28]Bokoch GM, Diebold BA. Current molecular models for NADPH oxidase regulation by Rac GTPase. Blood,2002; 100:2692-2696.
    [29]Lassegue B, Clempus RE. Vascular NAD(P)H oxidases:specific features, expression, and regulation. Am J Physiol Regul Integr Comp Physiol,2003;285: R277-R297.
    [30]Madamanchi NR, Vendrov A. Runge MS. Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol,2005;25:29-38.
    [31]Harrison D, Griendling KK, Landmesser U, Hornig B, Drexler H. Role of oxidative stress in atherosclerosis. Am J Cardiol,2003;91:7A-11 A.
    [32]Gregg D, Rauscher FM, Goldschmidt-Clermont PJ. Rac regulates cardiovascular superoxide through diverse molecular interactions:more than a binary GTP switch. Am J Physiol Cell Physiol,2003;285:C723-C734.
    [33]Seshiah PN, Weber DS, Rocic P, Valppu L, Taniyama Y, Griendling KK. Angiotensin Ⅱ stimulation of NAD(P)H oxidase activity:upstream mediators. Circ Res,2002; 91:406-413.
    [34]Zuo L, Ushio-Fukai M, Ikeda S, Hilenski L, Patrushev N, Alexander RW. Caveolin-1 is essential for activation of Racl and NAD(P)H oxidase after angiotensin Ⅱ type 1 receptor stimulation in vascular smooth muscle cells. Role in redox signaling and vascular hypertrophy. Arterioscler Thromb Vasc Biol, 2005:25:1824-1830.
    [35]del Pozo MA, Balasubramanian N, Alderson NB, Kiosses WB, Grande-Garcia A, Anderson RG, Schwartz MA. Phospho-caveolin-1 mediates integrin-regulated membrane domain internalization. Nat Cell Biol.2005;7: 901-908.
    [36]Kim KS, Takeda K. Sethi R. Pracyk JB, Tanaka K, Zhou YF, Yu ZX, Ferrans VJ, Bruder JT, Kovesdi I, Irani K, Goldschmidt-Clermont P, Finkel T. Protection from reoxygenation injury by inhibition of racl. J Clin Invest, 1998;101:1821-1826.
    [37]Lassegue B, Clempus RE. Vascular NAD(P)H oxidases:specific features. expression, and regulation. Am J Physiol Regul Integr Comp Physiol,2003;285: R277-297.
    [38]Seshiah PN, Weber DS. Rocic P. Angiotensin Ⅱ stimulation of NAD(P)H oxidase activity:upstream mediators. Circ Res.2002:91:406-413.
    [39]Wagner AH, Kohler T, Ruckschloss U, Just I, Hecker M. Improvement of nitric oxide-dependent vasodilatation by HMG-CoA reductase inhibitors through attenuation of endothelial superoxide anion formation. Arterioscler Thromb Vase Biol,2000;20:61-69.
    [40]Takemoto M, Node K, Nakagami H. Statins as antioxidant therapy for preventing cardiac myocyte hypertrophy. J Clin Invest,2001;108:1429-1437.
    [41]Wassmann S, Laufs U, Muller K. Cellular antioxidant effects of atorvastatin in vitro and in vivo. Arterioscler Thromb Vase Biol,2002;22:300-305.
    [42]Wassmann S, Laufs U, Baumer AT. Inhibition of geranylgeranylation reduces angiotensin Ⅱ-mediated free radical production in vascular smooth muscle cells: involvement of angiotensin AT1 receptor expression and Racl GTPase. Mol Pharmacol,2001:59:646-654.
    [43]Diebold BA, Fowler B, Lu J, Dinauer MC, Bokoch GM. Antagonistic cross-talk between Rac and Cdc42 GTPases regulates generation of reactive oxygen species. J Biol Chem,2004;279:28136-28142.
    [44]Higashi M, Shimokawa H, Hattori T. Long-term inhibition of Rho-kinase suppresses angiotensin II-induced cardiovascular hypertrophy in rats in vivo: effect on endothelial NAD(P)H oxidase system. Circ Res,2003;93:767-775.
    [45]Jin L, Ying Z, Webb RC. Activation of Rho/Rho kinase signaling pathway by reactive oxygen species in rat aorta. Am J Physiol Heart Circ Physiol,2004;287: H1495-1500.
    [46]Laufs, U. and Liao, J.K. Post-transcriptional regulation of endothelial nitric oxide synthase mRNA stability by Rho GTPase. J. Biol. Chem,1998; 273: 24266-24271
    [47]Kobayashi. N.. Involvement of Rho-kinase pathway for angiotensin II-induced plasminogen activator inhibitor-1 gene expression and cardiovascular remodeling in hypertensive rats. J. Pharmacol. Exp. Ther,2002; 301:459-466
    [48]Takeda, K. Critical role of Rho-kinase and MEK/ERK pathways for angiotensin Ⅱ-induced plasminogen activator inhibitor type-1 gene expression. Arterioscler. Thromb. Vase. Biol,2001; 21:868-873
    [49]Mallat, Z. Rho-associated protein kinase contributes to early atherosclerotic lesion formation in mice. Circ. Res,2003;93:884-888
    [50]Ming, X.F. Thrombin stimulates human endothelial arginase enzymatic activity via RhoA/ROCK pathway:implications for atherosclerotic endothelial dysfunction. Circulation,2004;110:3708-3714
    [51]Wolfrum, S. Inhibition of Rho-kinase leads to rapid activation of phosphatidylinositol 3-kinase/protein kinase Akt and cardiovascular protection. Arterioscler. Thromb. Vase. Biol,2004;24:1842-1847
    [52]Budzyn, K. Opposing roles of endothelial and smooth muscle phosphatidylinositol 3-kinase in vasoconstriction:effects of rho-kinase and hypertension. J. Pharmacol. Exp. Ther,2005:313:1248-1253
    [53]Langille BL, Reidy MA, Kline RL. Injury and repair of endothelium at sites of flow disturbances near abdominal aortic coarctations in rabbits. Arteriosclerosis, 1986;6:146-154.
    [54]Davies PF. Overview:temporal and spatial relationships in shear stressmediated endothelial signalling. J Vasc Res,1997;34:208-211.
    [55]Takahashi M, Ishida T, Traub O, Corson MA, Berk BC. Mechanotransduction in endothelial cells:temporal signaling events in response to shear stress. J Vasc Res.1997;:34:212-219.
    [56]Davies PF. Flow-mediated endothelial mechanotransduction. Physiol Rev, 1995;75:519-560.
    [57]Gimbrone MA Jr. Topper JN. Nagel T. Anderson KR, Garcia-Cardena G. Endothelial dysfunction, hemodynamic forces, and atherogenesis. Ann N Y Acad Sci,2000;902:230-239.
    [58]Takai Y, Sasaki T, Matozaki T. Small GTP-binding proteins. Physiol Rev, 2001;81:153-208.
    [59]Wennerberg K, Rossman KL, Der CJ. The Ras superfamily at a glance. J Cell Sci,2005;118(pt 5):843-846.
    [60]Hall A, Nobes CD. Rho GTPases:molecular switches that control the organization and dynamics of the actin cytoskeleton. Philos Trans R Soc Lond B Biol Sci,2000;355:965-970.
    [61]Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature,2002; 420: 629-635.
    [62]Davies PF. Flow-mediated endothelial mechanotransduction. Physiol Rev, 1995;75:519-560.
    [63]Jo H, Sipos K, Go YM, Law R, Rong J, McDonald JM. Differential effect of shear stress on extracellular signal-regulated kinase and N-terminal Jun kinase in endothelial cells. Gi2- and Gbeta/gamma-dependent signaling pathways. J Biol Chem,1997;272:1395-1401.
    [64]Wan Y, Kurosaki T, Huang XY. Tyrosine kinases in activation of the MAP kinase cascade by G-protein-coupled receptors. Nature,1996;380:541-544.
    [65]Eleni Tzima. Role of Small GTPases in Endothelial Cytoskeletal Dynamics and the Shear. Circ. Res.2006; 98:176-185
    [66]Lan, C. et al. Endothelin-1 modulates hemoglobin-mediated signaling in cerebrovascular smooth muscle via RhoA/Rho kinase and protein kinase C. Am. J. Physiol. Heart Circ. Physiol,2004;286:H165-H173
    [67]Uehata M, Ishizaki T, Satoh H, Ono T, Kawahara T, Morishita T, Tamakawa H, Yamagami K, Inui J, Maekawa M, Narumiya S. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature,1997:389:990-994.
    [68]Seko T. Ito M, Kureishi Y, Okamoto R, Moriki N, Onishi K, Isaka N, Hartshorne DJ, Nakano T. Activation of RhoA and inhibition of myosin phosphatase as important components in hypertension in vascular smooth muscle. Circ Res,2003;92:411-418.
    [69]Mukai Y, Shimokawa H, Matoba T, Kandabashi T, Satoh S, Hiroki J, Kaibuchi K, Takeshita A. Involvement of Rho-kinase in hypertensive vascular disease:a novel therapeutic target in hypertension. FASEB J,2001;15:1062-1064.
    [70]Kataoka C, Egashira K, Inoue S, Takemoto M, Ni W, Koyanagi M, Kitamoto S, Usui M, Kaibuchi K, Shimokawa H, Takeshita A. Important role of Rho-kinase in the pathogenesis of cardiovascular inflammation and remodeling induced by long-term blockade of nitric oxide synthesis in rats. Hypertension,2002;39: 245-250.
    [71]Higashi M, Shimokawa H, Hattori T, Hiroki J, Mukai Y, Morikawa K, Ichiki T, Takahashi S, Takeshita A. Long-term inhibition of Rho-kinase suppresses angiotensin II-induced cardiovascular hypertrophy in rats in vivo:effect on endothelial NAD(P)H oxidase system. Circ Res,2003;93:767-775.
    [72]Takeda K, Ichiki T, Tokunou T, Iino N, Fujii S, Kitabatake A, Shimokawa H, Takeshita A. Critical role of Rho-kinase and MEK/ERK pathways for angiotensin II-induced plasminogen activator inhibitor type-1 gene expression. Arterioscler Thromb Vasc Biol.2001;21:868-873.
    [73]Joan Heller Brown. Dominic P. Del Re and Mark A. Sussman. The Rac and Rho Hall of Fame:A Decade of Hypertrophic Signaling Hits. Circ. Res, 2006:98:730-742
    [74]Torsoni AS, Fonseca PM. Crosara-Alberto DP, Franchini KG. Early activation of p160ROCK by pressure overload in rat heart. Am J Physiol Cell Physiol, 2003:284:C1411-C1419.
    [75]Mita S, Kobayashi N, Yoshida K, Nakano S, Matsuoka H. Cardioprotective mechanisms of Rho-kinase inhibition associated with eNOS and oxidative stress-LOX-1 pathway in Dahl salt-sensitive hypertensive rats. J Hypertens, 2005;23:87-96.
    [76]Kobayashi N, Horinaka S, Mita S, Nakano S, Honda T, Yoshida K, Kobayashi T, Matsuoka H. Critical role of Rho-kinase pathway for cardiac performance and remodeling in failing rat hearts. Cardiovasc Res,2002;55:757-767.
    [77]Wang YX, da Cunha V, Martin-McNulty B, Vincelette J, Li W, Choy DF, Halks-Miller M, Mahmoudi M, Schroeder M, Johns A, Light DR, Dole WP. Inhibition of Rho-kinase by fasudil attenuated angiotensin II-induced cardiac hypertrophy in apolipoprotein E deficient mice. Eur J Pharmacol,2005;512: 215-222.
    [78]Hattori T, Shimokawa H, Higashi M, Hiroki J, Mukai Y, Tsutsui H, Kaibuchi K, Takeshita A. Long-term inhibition of Rho-kinase suppresses left ventricular remodeling after myocardial infarction in mice. Circulation,2004;109: 2234-2239.
    [79]Takemoto M, Node K, Nakagami H, Liao Y, Grimm M, Takemoto Y, Kitakaze M, Liao JK. Statins as antioxidant therapy for preventing cardiac myocyte hypertrophy. J Clin Invest,2001;108:1429-1437.
    [80]Laufs U, Kilter H, Konkol C, Wassmann, Bohm M, Nickenig G. Impactb of HMG CoA reductase inhibition on small GTPases in the heart. Cardiovasc Res. 2002;53:911-920.
    [81]Indolfi C, Di Lorenzo E, Perrino C, Stingone AM, Curcio A, Torella D, Cittadini A, Cardone L. Coppola C, Cavuto L, Arcucci O, Sacca L Hydroxymethylglutaryl coenzyme A reductase inhibitor simvastatin prevents cardiac hypertrophy induced by pressure overload and inhibits p21ras activation. Circulation,2002;15;106(16):2118-2124.
    [82]Liao JK. Statin therapy for cardiac hypertrophy and heart failure. J Investig Med,2004;52:248-253.
    [83]Liao JK, Laufs U. Pleiotropic effects of statins. Annu Rev Pharmacol Toxicol, 2005;45:89-118.
    [84]Dudley SC Jr, Hoch NE, McCann LA, Honeycutt C, Diamandopoulos L, Fukai T, Harrison DG, Dikalov SI, Langberg J:Atrial fibrillation increases production of superoxide by the left atrium and left atrial appendage:role of the NADPH and xanthine oxidases. Circulation,2005; 112:1266-1273.
    [85]Adam O, Frost G, Custodis F, Sussman MA, Schafers HJ, BohmM, Laufs U: Role of Racl GTPase activation in atrial fibrillation. J Am Coll Cardiol,2007; 50:359-367.
    [86]Tsai CT, Lai LP, Kuo KT, Hwang JJ, Hsieh CS, Hsu KL, Tseng CD, Tseng YZ, Chiang FT, Lin JL:Angiotensin II activates signal transducer and activators of transcription 3 via Racl in atrial myocytes and fibroblasts:implication for the therapeutic effect of statin in atrial structural remodeling. Circulation,2008; 117: 344-355.
    [87]Simeone-Penney MC, Severgnini M, Rozo L, Takahashi S, Cochran BH, Simon AR:PDGF-induced human airway smooth muscle cell proliferation requires STAT3 and the small GTPase Rac1. Am J Physiol Lung Cell Mol Physiol,2008; 294:L698-L704.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700