用户名: 密码: 验证码:
油菜抗菌核病品种的筛选和抗性机理分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核盘菌Sclerotinia sclerotiorum导致的菌核病是我国油菜上危害最严重的病害。本文应用苗期、成株期病菌接种和草酸处理等4种方法,测定了来自江苏省的37个甘蓝型油菜品种对菌核病的抗性,并比较了不同鉴定方法之间的差异。结果表明,4种鉴定方法均显示出不同品种间的抗(耐)性存在显著性差异,但不同鉴定方法的吻合度不高。根据油菜菌核病的发病过程,提出成株期叶柄菌丝块接种方法,该方法操作简便、发病率高。利用此方法对83个油菜品种(系)抗菌核病性的抗性进行了鉴定。
     在品种抗性比较的基础上,选取4个抗感不同的油菜品种,比较在Sclerotiniasclerotiorum侵染后,不同品种组织内活性氧产生情况。通过DAB和伊文思兰染色,分别检测接种病菌后不同抗感品种的氧进发(Reactive Oxygen Intermediares,ROIs)的产生及其诱导的细胞死亡情况。结果表明,抗性品种中双9号、皖油14产生ROIs及细胞死亡的程度均轻于感病品种沪油15、史力丰。使用抗氧化剂如抗坏血酸、H_2O_2酶预处理叶片后,病斑比对照减小。H_2O_2预处理则能显著增大病斑,忍受ROIs可能是油菜抗S.sclerotiorum的机理之一。通过甲苯胺蓝染色检测细胞壁修复情况的结果表明,抗性品种叶片在菌丝定殖早期的细胞壁中多酚化合物过氧化结合物的产生量大于感病品种。
     本文通过RT-PCR的方法,检测了不同抗感品种在接种病原菌后不同时间段PDF1.2、PR-1、EDS1、Cu/ZnSOD、FeSOD、PAL、nsLTP、GLP等8个基因的表达。结果表明,核盘菌的侵染激活了油菜的JA/ET途径,抗病品种组织内的标记基因PDF1.2上调表达。病菌接种后,抗性品种的EDS1的表达量下调,Cu/ZnSOD、FeSOD的表达水平提高,从而抑制细胞死亡。抗性品种在接种病原菌后,与具有细胞壁修复等功能的GLP和nsLTP表达也被上调。参与产生次生代谢物质的PAL表达在接种后24h被明显上调。首次在油菜上扩得EDS1基因的部分序列。
The stem rot caused by Sclerotinia sclerotiorum is a devastating disease of rapeseed in China.In this study,to determine resistance of 37 rapeseed varieties(Brassica napus L.) from Jiangsu province to S.sclerotiorum,the methods including mycelium inoculation at seedling and flowering stage and oxalic acid infiltration were employed.The consistency of methods was analyzed.Results indicated that tested varieties showed significant difference in resistance to S.sclerotiorum with 4 identification methods,but the similarity level among methods was low.A petiole inoculation method at flowing stage was proposed because it was easy to implement and had higher disease incidence.Eight-three rapeseed varieties(stains) were identified for resistance to S.sclerotiorum by this method.
     For comparison of ROIs(Reactive Oxygen Intermediates) production and cell death in rapeseed leaves after inoculated with S.sclerotiorum at first,DAB and Evans blue staining were used.Results indicated that the resistant variety Zhongshuang 9 and Wanyou 14 produced less ROIs and cell death than the susceptible variety Huyou 15 and Shilifeng after inoculation with S.sclerotiorum.The pretreatment of rapeseed leaves with antioxidants such as ascorbic acid、catalase made all varieties much more resistant than controls,and H_2O_2 pretreatment increased lesions significantly.It suggested ROIs tolerance is likely one of the resistance mechanisms of rapeseed against S.sclerotiorum.In addition,toluidine bule staining was used to detect the peroxidative incorporation of phenolic compounds into the cell wall.Results showed that the resistant varieties had more peroxidative incorporation of phenolic compounds than the susceptible varieties during the early S. sclerotiorum infection stage.
     In this study,the leaves of different rapeseed varieties were inoculated with S. sclerotiorum,and the expression of defense genes such as PDF1.2、PR-1、EDS1、Cu/ZnSOD、FeSOD、PAL、nsLTP、GLP was respectively detected by RT-PCR from 0-24 h after inoculation.Results indicated that the interaction of rapeseed and S.sclerotiorum induced the jasmonic acid and ethylene(JA/ET)-dependent pathway,and PDF1.2 was up-regulated.Upregulated expression of EDS1 and downregulted expression of Cu/ZnSOD and FeSOD of resistance varieties after inoculation meant that the hypersensitive(HP) cell death could be decreased.Expression of nsLTP and GLP that were related to cell wall modification was up-regulated after inoculation in the resistant varieties.PAL expression of resistance varieties also increased at 24h after inoculation.EDS1 partial mRNA sequence on rapeseed varieties was obtained.
引文
1.Adams P B,Ayers W A.Ecology of Sclerotinia species[J].Phytopathology,1979,69:896-899.
    2.Alghisi P,Favaron F.Pectin-degrading enzymes and plant parasite interactions[J].Eur.J.Plant Pathol,1995,101:365-375.
    3.Annis S L,Goodwin P H.Recent advances in the molecular genetics of plant cell wall-degrading enzymes produced by plant pathogenic fungi[J].Eur.J.Plant Pathol.1997,103:1-14.
    4.Barbara K,Marlene K,Helga S,Steffen S,Karl-Heinz S,Michael M,Gunnar W.A Novel Superoxide Dismutase with a High Isoelectric Point in Higher Plants,Expression,Regulation,and Protein Localization[J].Plant Physiology,2001,126:1668-1677.
    5.Baswana K S,Rastogi K B,Sharma P P.Inheritance of stalk rot resistance in cauliflower Brassica oleracea var.botrytis L[J].Euphytica,1991,57(2):93-96.
    6.Bent A F.Plant disease resistance genes:function meets structure[J].Plant cell,1996,8:1757-1771.
    7.Bernier F,Berna A.Germins and germin-like proteins:plant do-all proteins.But what do they do exactly [J]? Plant Physiology and Biochemistry, 2001, 39: 545-554.
    8. Boland G J, Hall R. Evaluating soybean cultivars for resistance to Sclerotinia sclerotiorum under field conditions [J]. Plant Dis, 1987, 71: 934-936.
    9. Bolton M D, Thomma B P, Nelson B D. Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen [J]. Mol. Plant Pathol, 2006, 7: 1-16.
    10. Bowler C, Van Montagu M, Inze D. Superoxide dismutase and stress tolerance [J]. Annu Rev Plant Physiol Plant Mol Biol, 1992,43: 83-116.
    11. Brodersen P, Petersen M, Bjorn Nielsen H, Zhu S, Newman M A, Shokat K M, Rietz S, Parker J, Mundy J. Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4 [J]. Plant Journal, 2006,47: 532-546.
    12. Brosch G, Ransom R, Lechner T, Walton J D, Loidl P. Inhibition of maize histone deacetylases by HC toxin, the host-selective toxin of Cochliobolus carbonum [J]. Plant Cell, 1995, 7: 1941-1950.
    13. Buschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, van Daelen R, van der Lee T, Diergaarde P, Groenendijk J, Topsch S, Vos P, Salamini F, SchuLze-Lefert P. The barely Mlo gene: a novel control element of plant pathogen resistance [J]. Cell, 1997, 88: 695-705.
    14. Carpita N C, Gibeaut D M. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the wall during growth [J]. Plant J., 1993, 3: 1-30.
    15. Carter C, Thornburg R W. Germin-like proteins: structure, phyologeny, and function [J]. Journal of Plant Biology, 1999,42: 97-108.
    16. Castano F, Labrouhe D T. Resistance of sunflower inbred lines to various forms of attack by Sclerotinia sclerotiorum and relations with some morphological characters [J]. Euphytica, 1993, 68(1-2): 85-98.
    17. Castano F, Hemerytardin M C, Labrouhe D T, Vear F. The inheritance biochemistry of resistance to Sclerotinia sclerotiorum leaf infections in sunflower (Helianthus annuus L.) [J]. Euphytica, 1991, 58(3): 209-219.
    18. Ce' line C, Christiane N, Jean-Pierre M. Cuticular defects lead to full immunity to a major plant pathogen [J]. The Plant Journal, 2007,49: 972-980.
    19. Cessna S G, Sears V E, Dickman M B, Low P S. Oxalic acid, a pathogenicity factor for Sclerotinia sclerotiorum, suppresses the oxidative burst of the host plant [J]. Plant Cell, 2000,12:2191-2199.
    20. Chen C, Harel A, Gorovoits R, Yarden O, Dickman M B. MAPK regulation of sclerotial development in Sclerotinia sclerotiorum is linked with pH and cAMP sensing [J]. Mol.Plant-Microbe Interact, 2004, 17: 404-413.
    21. Christensen A B, Thordal-Christensen H, Zimmermann G, Gjetting T, Lyngkjaer M F, Dudler R, Schweizer P. The germin-like protein GLP4 exhibits superoxide dismutase activity and is an important component of quantitative resistance in wheat and barley [J]. Molecular Plant-Microbe Interactions, 2004, 17: 109-117.
    22. Conti A, Fortunato D, Ortolani C, Giuffrida M G, Pravettoni V, Napolitano L, Farioli L, Perono G L, Trambaioli C, Pastorello E A. Determination of the primary structure of two lipid transfer proteins from apricot (Prunus akmeniaca) [J]. J Chromatog B Biomed Sci Appl, 2001, 756(1-2): 123-129.
    23. Cotton P, Kasza Z, Bruel C, Rascle C, Fevre M. Ambient pH controls the expression of endopolygalacturonase genes in the necrotrophic fungus Sclerotinia sclerotiorum [J]. FEMS Microbiol. Lett, 2003,227:163-169.
    24. Cotton P, Rascle C, Fevre M. Characterization of PG2, an early endoPG produced by Sclerotinia sclerotiorum, expressed in yeast [J]. FEMS Microbiol. Lett, 2002, 213: 239-244.
    25. Davis K R, Darvill A G, Albersheim P, Dell A. Host-pathogen interactions: XXIX. Oligogalacturonides released from sodium polypectate by endopolygalacturonic acid lyase are elicitors of phytoalexin in soybean [J]. Plant Physiol, 1986, 80: 568-577.
    26. De Lorenzo G, D'Ovidio R, Cervone F. The role of polygalacturonase-inhibiting proteins (PGIPs) in defense against pathogenic fungi [J]. Annu. Rev. Phytopathol, 2001, 39: 313-335.
    27. De S A, Bolton M D, Nelson B D. Transformation of Sclerotinia sclerotiorum with the green fluorescent protein gene and expression of fluorescence in host tissues [J]. Phytopathology, 2005, 95, S23.
    28. Dickman M B, Park Y K, Oltersdorf T, Li W, Clemente T, French R. Abrogation of disease development in plants expressing animal anti-apoptotic genes [J]. Proc. Natl. Acad. Sci. USA, 2001, 98: 6957-6962.
    29. Dixon R A, Fuller K W. Effects of synthetic auxin levels on phaseollin production and phenylalanine ammonia-lyase (PAL) activity in tissue cultures of Phaseolus vulgaris L [J]. PhysioLPlant Pathol, 1976, 9: 299-312.
    30. Donaldson P A, Anderson T, Lane B G, Davidson A L, Simmonds D H. Soybean plants expressing an active oligomeric oxalate oxidase from the wheat gf-2.8 (germin) gene are resistant to the oxalate-secreting pathogen Sclerotinia sclerotiorum [J]. Physiol Mol Plant Pathol, 2001, 59: 297-307.
    31. Dong X. SA, JA, ethylene, and disease resistance in plants [J]. Curr opin Plant Biol, 1998, 1: 316-323.
    32. Dumas B, Freyssinet G, Pallett K E. Tissue-specific expression of germin-like oxalate oxidaze during development and fungal infection of barley seedlings [J]. Plant Physiology, 1995, 107(4): 1091-1096.
    33. Dumas B, Sailland A, Cheviet J P, Freyssinet G, Pallett K. Identification of barley oxalate oxidase as a germin-like protein [J]. Comptes Rendus de l'Academie des Sciences Serie Ill-Sciences de la Vie, 1993,316:793-798.
    34. Dutton M V, Evans C S. Oxalate production by fungi: Its role in pathogenicity and ecology in the soil environment [J]. Can J Microbiol, 1996, 42: 881-895.
    35. Elad Y. The use of antioxidants (free radical scavengers) to control grey mould (Botrytis cinerea) and white mould (Sclerotinia sclerotiorum) in various crops [J]. Plant Pathol, 1992,41: 417—426.
    36. Favaron F, Sella L, D'Ovidio, R. Relationships among endopolygalacturonase, oxalate, pH, and plant polygalacturonaseinhibiting protein (PGIP) in the interaction between Sclerotinia sclerotiorum and soybean [J]. Mol. Plant-Microbe Interact, 2004, 17: 1402-1409.
    37. Favaron F, D'Ovidio R, Porceddu E. Purification and molecular characterization of a soybean polygalacturonase-inhibiting protein [J]. Planta, 1994,195: 80-87.
    38. Favaron F, Sella L, D'Ovidio R. Relationships among endopolygalacturonase, oxalate, pH, and plant polygalacturonase inhibiting protein (PGIP) in the interaction between Sclerotinia sclerotiorum and soybean [J]. Mol. Plant-Microbe Interact, 2004, 17: 1402-1409.
    39. Ferrar P H, Walker J R L. O-Diphenol oxidase inhibition - an additional role for oxalic acid in the phytopathogenic arsenal of Sclerotinia sclerotiorum and Sclerotium rolfsii [J]. Physiol. Mol. Plant Pathol, 1993,43:415-422.
    40. Ferraz L C L, Filho A C C, Nasser L C B. Effects of soil moisture, organic matter and grass mulching on the carpogenic germination of sclerotia and infection of bean by Sclerotinia sclerotiorum [J]. Plant Pathol, 1999,48: 77-82.
    41. Feys B J, Parker J E. Interplay of signaling pathways in plant disease resistance [J]. Trends Genet, 2000,16:449-455.
    42. Flor H H. Current status of the gene-for-gene concept [J]. Ann Rev Phytopathol, 1971, 9: 275-296.
    43. Fraissinet-Tachet L, Fevre M. Regulation by galacturonic acid of pectinolytic enzyme production by Sclerotinia sclerotiorum [J]. Curr. Microbiol, 1996,33: 49-53.
    44. Fraissinet-Tachet L, Reymond-Cotton R, Fevre M. Characterization of a multigene family encoding an endopolygalacturonase in Sclerotinia sclerotiorum [J]. Curr. Microbiol, 1995, 29: 96-100.
    45. Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens [J]. Annual Review of Phytopathology, 2005, 43: 205-227.
    46. Glazebrook J. Genes controlling expression of defense responses in Arabidopsis - 2001 status [J]. Current Opinion in Plant Biology, 2001,4: 301-308.
    47. Glazener J A. Accumation of phenolic compounds in ceils and formation of lignin-like polymers in cell walls of young tomato fruits after inoculation with Botryis cinerea [J]. Physiol. Plant Pathol, 1982,20:11-25.
    48. Godoy G, Steadman J R, Dickman M B, Dam R. Use of mutants to demonstrate the role of oxalic acid in pathogenicity of Sclerotinia sclerotiorum on Phaseolus vulgaris [J]. Physiol. Mol. Plant Pathol., 1990,37:179-191.
    49. Govrin E M, Levine A. The hypersensitive response facilitates plant infection by the nectrotrophic pathogen Botrytis cinerea [J].Curr. Biol, 2000,10: 751-757.
    50. Gracia-Garza J A, Neumann S V, Boland G J. Influence of crop rotation and tillage on production of apothecia by Sclerotinia sclerotiorum [J]. Can J Plant Pathol, 2002, 24: 137-143.
    51. Green N E, Hadwiger L A, Graham S O. Pbenylalane ammonia-lyase, tymsine arnmonia- lyase, andlignin in wheat inoculated with Brysiphe graminis f.sp.tritici [J]. Phytopathol, 1975, 65: 1071-1074.
    52. Guimaraes R L, Stotz H U. Oxalate production by Sclerotinia sclerotiorum deregulates guard cells during infection [J]. Plant Physiol, 2004, 136: 3703-3711.
    53. Gulya T, Rashid K Y, Maservic S M. Sunflower diseases. In Sunflower Technology and Production [J]. In Schneiter AA. (Ed), Soil Science Society of America, Madison, 1997, 263-379.
    54. Gupta V, Willits M G, Glazebrook J. Arabidopsis thaliana EDS4 contributes to salicylic acid (SA)-dependent expression of defense responses: evidence for inhibition of jasmonic acid signaling by SA [J]. Molecular Plant-Microbe Interactions, 2000,13: 503-511.
    55. Hammond-Kosack K E, Jones J D G Resistance gene-dependent plant defense responses [J]. Plant Cell, 1996, 8: 1773-1791.
    56. Hu X J, Jiang M, Liu S Y. Antagonistic activity of a bacterial strain against Sclerotinia and gene cloning [J]. J Agrobiotech, 2001, 10: 53-54.
    57. Hu X, Bidney D L, Yalpani N, Duvick J P, Crasta O, Folkerts O, Lu G H. Overexpression of a gene encoding hydrogen peroxide - generating oxalate oxidase evokes defense responses in sunflower [J]. Plant Physiol, 2003, 133:170-181.
    58. Jose F M, Euan K J, Maria C R, Gautam S, Robert V K, Manuel B. Functional characterization and expression of a cytosolic iron-superoxide dismutase from cowpea root nodules [J]. Plant physiology, 2003,133:773-782.
    59. Kasza Z, Vagvolgyi C, Fevre M, Cotton P. Molecular characterization and in planta detection of Sclerotinia sclerotiorum endopolygalacturonase genes [J]. Curr. Microbiol, 2004, 48: 208-213.
    60. Keen N T. Gene-for-gene complementarity in plant-pathogen interactions [J]. Ann Rev Genet, 1990, 24:447-463.
    61. Klessig D F, Durner J, Noad R, Navarre DA, WendehenneD, Kumar D, Zhou J M, Shah J, Zhang S, Kachroo R, Trifa Y, Pontier D. Nitric oxide and salicylic acid signaling in plant defense[J].Proc Natl Acad Sei USA, 2000, 97: 8849-8855.
    62. Klessig D F, Malamy J. The salicylic acid signal in plants [J]. Plant Mol Biol, 1994,26: 1439-1458.
    63. Knogge W. Fungal infection of plants [J]. Plant cell, 1996, 8: 1711-1722.
    64. Labrouhe D T. Horeality of resistance to Sclerotinia sclerotiorum in sunflowers. HI. Study of reactions to artificial infections of roots and cotyledons [J]. Agronomie, 1990,10(4): 323-330.
    65. Lamb C, Dixon R A. The oxidative burst in plant disease resistance [J]. Annu Rev plant Mol Biol, 1997,48:251-275.
    66. Legrand M, Friting B, Hirth L. Enzymes of the phenylpropanoid pathway and the necrotic reaction of hypersenentive tobacco to tobacco mosaic virus [J]. Phytochemistry, 1976, 15: 1353-1359.
    67. Lorenzo O, Solano R. Molecular players regulating the jasmonate signalling network [J]. Current Opinion in Plant Biology, 2005, 8: 532-540.
    68. Lu G, Bidney D, Bao Z, Hu X, Wang J, Vortherms T, Scelonge C, Wang L, Bruce W, Duvick J. Constitutive promoters and Sclerotinia disease resistance in sunflower. The Proceedings of 15 International Sunflower Conference [J]. Toulouse France, 2000, 72-77.
    69. Lyon G D, Goodman B A, Williamson B. Botrytis cinerea perturbs redox processes as an attack strategy in plants [A]. Elad Y, Williamson B, Tudzynski P, Delen N. Botrytis: Biology, Pathology and Control [C]. Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004, 119-141.
    70. Madsen A M, Neergaard E. Interaction between the mycoparasite Pythium oligandrum and sclerotia of the plant pathogen Sclerotinia sclerotiorum [J]. Eur J Plant Pathol, 1999, 105: 761-768.
    71. Magro P, Marciano P, Di Lenna P. Oxalic aid production and its role in pathogenesis of Sclerotinia sclerotiorum [J]. FEMS Microbiol, 1984,24: 9-12.
    72. Maldonado A M, Doerner P, Dixon R A, Lamb C J, Cameron R K. A putative lipid transfers protein involved in systemic resistance signalling in Arabidopsis [J] . Nature, 2002, 419(6905): 399-403.
    73. Martel M B, Herve du Penhoat C, Letoublon R, Fevre M. Purification and characterization of a glucoamylases secreted by the plant pathogen Sclerotinia sclerotiorum [J]. Can. J. Microbiol, 2002, 48:212-218.
    74. Mccartney H A, Doughty K J, Norton G, Booth E J, Kightley S P. A study of the effect of disease on seed quality parameters of oilseed rape [J]. International conference of oilseed, 1999, 10: 32-41.
    75. McCord J M, Fridovich I. Superoxide dismutase: an enzymatic function for erythrocuprein (hemocuprien) [J]. J Biol Chem, 1969, 244: 6049-6055.
    76. McDowell J M, Dangl J L. Signal transduction in the plant immune response [J]. Trends Biochem. Sci, 2000, 25: 79-82.
    77. Miklas P N, Grafton K F, Secor G A, McClean P E. Use of pathogen filtrate to differentiate physiological resistance of dry bean to white mold disease [J]. Crop Science, 1992, 32(2): 310-312.
    78. Mohamed E O, Karaal B. Plant signalling components EDS1 and SGT1 enhance disease caused by the necrotrophic pathogen Botrytis cinerea [J]. New Phytologist, 2007, 175: 131-139.
    79. Molina A, Segura A, Garcia-Olmedo F. Lipid transfer proteins (nsLTPs) from barley and maize leaves are potent inhibitors of bacterial and fungal plant pathogens [J]. FEBS Lett, 1993, 316(2): 119-122.
    80. Mur L A, Kenton P, Atzorn R, Miersch O, Wasternack C. The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death [J]. Plant Physiology, 2006,140:249-262.
    81. Nakata M, Shiono T, Watanabe Y, Satoh T. Salt stress induced dissociation from cells of a germin-like protein with Mn-SOD activity and an increase in its mRNA in a moss, Barbula unguiculata [J]. Plant and Cell Physiology, 2002, 43: 1568-1574.
    82. Nakata M, Watanabe Y, Sakurai Y, Hashimoto Y, Matsuzaki M, Takahashi Y, Satoh T. Germin-like protein gene family of a moss, Physcomitrella patens, phylogenetically falls into two characteristic new clades [J]. Plant Molecular Biology, 2004, 56: 381-395.
    83. Niki T, Mitsuhara I, Seo S, Ohtsubo N, Ohashi Y. Antagonistic effect of salicylic acid and jasmonic acid on the expression of pathogenesis-related (PR) protein genes in wounded mature tobacco leaves [J]. Plant and Cell Physiology, 1998, 39: 500-507.
    84. Osbourn A E. Performed antimicrobial compounds and plant defense against fungal attack [J]. Plant cell, 1996, 8:1821-1831.
    85. Park S Y, Lord E M, W ailing L L, Nothnagel E A, Eckard K J, M ollet J C, Jauh G Y. A lipid transfer-like protein is necessary for lily pollen tube adhesion to an in vitro stylar matrix [J]. Plant Cell, 2000,12(1): 151-164.
    86. Pathak A K, Godika S, Jain J P. Effect of antagonistic fungi and seed dressing fungicides on the incidence of stem rot of mustard [J]. J Mycol Plant Pathol, 2001, 31: 327-329.
    87. Patnaik D, Khurana P. Germins and germin like proteins: an overview [J]. Indian J Exp Biol, 2001, 39 (3) : 191-200.
    88. Pieckenstain F L, Bazzalo M E, Roberts AMI, Ugalde R A. Epicoccum purpurascens for biocontrol of sclerotinia head rot of sunflower [J]. Mycol Res, 2001,105: 77-84.
    89. Pieterse C M, van Wees S C, van Pelt J A, Knoester M, Laan R, Gerrits H, Weisheek P J, van Loon L C. A novel signaling pathway controlling induced systemic resistance in Arabidopsis [J]. Plant Cell, 1998, 10: 1571-1580.
    90. Poussereau N, Creton S, Billon-Grand G, Rascle C, Fevre M. Regulation of acpl, encoding a non-aspartyl acid protease expressed during pathogenesis of Sclerotinia sclerotiorum[J]. Microbiology, 2001a, 147: 717-726.
    91. Poussereau N, Gente S, Rascle C, Billon-Grand G, Fevre M. aspS encoding an unusual aspartyl protease from Sclerotinia sclerotiorum is expressed during phytopathogenesis [J]. FEMS Microbiol. Lett., 2001b, 194: 27-32.
    92. Purdy L H. Sclerotinia sclerotiorum: history, disease and symptomatology, host range, geographic distribution and impact [J]. Phytopathology, 1979, 69: 875-890.
    93. Riou C, Freyssinet G, Fevre M. Production of cell wall-degrading enzymes by the phytopathogenic fungus Sclerotinia sclerotiorum [J]. Appl. Environ. Microbiol, 1991, 57: 1478-1484.
    94. Rodriguez-Lopez M, Baroja-Fernandez E, Zandueta-Criado A, Moreno-Bruna B, Munoz F J, Akazawa T, Pozueta-Romero J. Two isoforms of a nucleotide-sugar pyrophosphatase/ phosphodiesterase from barley leaves (Hordeum vulgare L.) are distinct oligomers of HvGLP1, a germin-like protein [J]. FEBS Letters, 2001, 490: 44-48.
    95. Rollins J A, Dickman M B. PH signaling in Sclerotinia sclerotiorum: identification of a pacC/RIM1 homolog. Appl [J]. Environ. Microbiol, 2001, 67: 75-81.
    96. Rollins J A. The Sclerotinia sclerotiorum pac1 gene is required for sclerotial development and virulence [J]. Mol. Plant-Microbe Interact, 2003, 16: 785-795.
    97. Ryals J A, Neuenschwander V H, Willzts M G, Molina A, Steiner H Y, Hunt D M D. Systemic acquired resistance [J]. Plant Cell, 1996, 8: 1809-1819.
    98. Schweizer P, Chrstoffel A, Dubler R. Transient expression of members of the germin-like gene family in epidernml cells of wheat confers disease resistance [J]. The Plant Journal, 1999, 20(5): 541-552.
    99. Segarra C I, Casalongue C A, Pinedo M L, Ronchi V P, Conde R D. A germin-like protein of wheat leaf apoplast inhibits serine proteases [J]. Journal of Experimental Botany, 2003, 54: 1335-1341.
    100.Shah J. The salicylic acid loop in plant defense [J]. Curr. Opin. Plant Biol, 2003, 6: 365-371.
    101.Spoel S H, Koornneef A, Claessens S M, Korzelius J P, Van Pelt J A, Mueller M J, Buchala A J, Metraux J P, Brown R, Kazan K, Van Loon L C, Dong X, Pieterse C M. NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol [J]. Plant Cell, 2003, 15: 760-770.
    102.Sterk P, Booij H, Schellekens G A, Van Kammen A, De Vries S C. Cell-specific expression of the carrot EP2 lipid transfer protein gene [J]. Plant Cell, 1991, 3(9): 907-921.
    103.Tarabily K A, Soliman M H, Nassar A H, Hassani H A, Sivasithamparam K, McKenna F. Biological control of Sclerotinia minor using a chitinolytic bacterium and actinomycetes [J]. Plant Pathol, 2000, 49: 573-583.
    104.Thoma S,Hecht U,Kippe rs A,Botella J,De Vries S,Somerville C.Tissue·specific expression of a gene encoding a cell wal1-1 ocalized lipid transfer protein from Arabidopsis[J].Plant Physiol,1994,105(1):35-45.
    105.Thomma B P H J,Eggermont K,Penninckx I A M A,Mauch-Mani B,Vogelsang R.Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens[J].Proc.Natl.Acad.Sci.USA,1998,95:15107-15111.
    106.Weld R J,Eady C C,Ridgway H J.Agrobacteriummediated transformation of Sclerotinia sclerotiorum[J].J.Microbiol.Meth,doi:10.1016/j.mimet,2005,07,010.
    107.Whipps J M,Gerlagh M.Biology of Coniothyrium minitans and its potential for use in disease biocontrol[J].Myco.Res,1992,96(1):897-907.
    108.Wiermer M,Feys B J,Parker J E.Plant immunity:the EDS1 regulatory node.Current Opinion in Plant Biology,2005,8:383-389.
    109.Willetts H J,Wong JAL.The biology of Sclerotinia sclerotiorum,S.trifliorum,and S.minor with emphasis on specific nomenclature[J].The Bot Rev,1980,46:101-165.
    110.Wojtaszck P.Oxidative burst:an early plant response to pathogen infection[J].Biochem,1997,322:681-692.
    111.Wolter M,Hollricher K,Salamini F,SchuLze-lefert P.The mlo resistance alleles to powdery mildew infection in barly trigger a developmentally controlled defence mimic phenotype[J].Mol Gen Genet,1993,239:122-128.
    112.Yu I C,Parker J,Bent A F.Gene-for-gene disease resistance without the hypersensitive response in Arabidopsis dnd1 mutant[J].Proc Natl Acad Sci USA,1998,95:7819-7824.
    113.Zimmermann G,B(?)umlein H,Mock H P,Himmelbach A,Schweizer P.The multigene family encoding germin-like proteins of barley:regulation and function in basal host resistance[J].Plant Physiology,2006,142:181-192.
    114.陈玉卿,张洁夫,伍贻美.芸苔属油菜种资资源抗(耐)菌核病、病毒病的鉴定[J].中国油料作物学报,1993,2:4-7.
    115.董金翱.农业植物病理学(北方本)[M].北京:中国农业出版社,2001,183-185.
    116.董金翱.农业植物病理学(北方本)[M].北京:中国农业出版社,2001,183-185.
    117.杜秀敏,殷文璇.超氧化物岐化酶(SOD)研究进展[J].中国生物工程杂志,2003,23(1):48-50.
    118.丰胜求,张艳,徐久玮,甘莉.甘蓝型油菜防御酶活性变化与抗病性的关系[J].华中农业大学学报,2005,24(3):231-235.
    119.高同春,王振荣,明宏云.油菜菌核病病原生物学特性研究[J].安徽农业科学,1995,23(4):329-330
    120.高旭辉.论茶树抗病性的生化基础[J].茶叶通讯,1998,(1):27-29.
    121.侯明生,黄俊斌.农业植物病理学[M].北京:科学技术出版社,2006.
    122.胡宝成,朱洪涛.油菜菌核病抗(耐)避病遗传育种研究进展[J].安徽农业大学学报,1995,22(增刊):55-58.
    123.贾燕涛.植物抗病信号转导途径[J].植物学通报,2003,20(5):602-608.
    124.姜道宏,李国庆,易先宏.菌核寄生菌盾壳霉的研究Ⅱ:不同菌株培养特性及寄生致腐能力的比较[J].华中农业大学学报,1996,15(3):229-232.
    125.匡传富,罗宽.烟草品种对青枯病抗病性及抗性机制的研究[J].湖南农业大学学报,2002,28(5):395-398.
    126.赖传雅.农业植物病理学(华南本)[M].北京:科学出版社,2003:364-367.
    127.蓝海燕,张正华.农杆菌介导法将β-1,3-葡聚糖苷酶基因导入油菜的研究初报[J].中国油料作物学报,2000,22(1):6-10.
    128.李方球,官春云.油菜菌核病抗性鉴定、抗性机理及抗性遗传育种研究进展[J].作物研究,2001,(3):85-92.
    129.李国庆,王道本,张顺和.菌核寄生菌盾壳霉的研究Ⅰ:生物学特性及湖北省的自然分布[J].华中农业大学学报,1995,14(2):125-129.
    130.李国庆,王道本.核盘菌菌核田间存活研究[J].华中农业大学学报,1993,12(3):399-400.
    131.李丽丽.世界油菜病害研究概述[J].中国油料,1994,16(1):79-82.
    132.刘澄清,杜德志,邹宗顺.甘蓝型油菜的抗病性及其遗传效应研究[J].中国农业科学,1991,24(31):43-49.
    133.刘后利.《油菜的遗传和育种》[M].上海:上海科技出版社,1985.
    134.刘胜毅,周必文.油菜抗菌核病草酸鉴定方法[J].中国油料,1994(增):75-77.
    135.刘胜毅,周必文,潘家荣.油菜对毒素草酸的吸收代谢与抗性机理[J].植物病理学报,1998,28(1):33-37.
    136.欧阳光察,薛应龙.植物苯丙烷类代谢的生理意义及其调控[J].植物生理学通迅,1988(3):9-26.
    137.彭定祥,胡立勇.作物栽培学各论[M].北京:中国农业出版社,2003.
    138.齐绍武,官春云,刘春林.甘蓝型油菜品系一些酶的活性与抗菌核病的关系[J].作物学报,2004.30(3):270-273.
    139.钱传范,单国民.甲基托布津残留的高效液相色谱法[J].环境化学,1991,10(5):76-80.
    140.苏广达.作物学[M].广东:高等教育出版社,2000:347-353.
    141.田春美,钟秋平.超氧化物岐化酶的现状研究进展[J].中国热带医学,2005,5(8):1730-1732.
    142.王汉中,刘贵华,郑元本,王新发,杨庆.抗菌核病双低油菜新品种中双9号选育及其重要防御酶活性变化规律的研究[J].中国农业科学,2004,37:23-28.
    143.韦善君,陈学章,李国庆.盾壳霉在油菜花瓣上萌发的影响因子分析[J].华中农业大学学报,1999,18(6):554-557.
    144.吴纯仁,刘后利.油菜菌核病抗(耐)病筛选方法的研究[J].植物保护学报,1991,18(4):323-327.
    145.薛应龙,欧阳光察.植物抗病的物质代谢基础.植物生理与分子生物学[M].北京:科学出版社,1992.
    146.余琦,周必文.油菜抗菌核病常规鉴定方法[J].中国油料,1994(增)4:80-83.
    147.曾永三,王振中.苯丙氨酸解氨酶在植物抗病反应中的作用[J].仲恺农业技术学院学报,1999,12(3):56-65.
    148.钟军,李桪,官春云.芸薹属植物抗菌核病的研究进展[J].中国油料作物学报,2002,24(3):78-81.
    149.周必文,余琦.油菜抗菌核病、病毒病材料的鉴定于筛选[J].中国油料,1994(增),4:57-61.
    150.周必文.油菜抗菌核病评价方法[J].中国油料,1994(增)4:88-94.
    151.周乐聪.油菜品种资源对菌核病的抗性鉴定[J].中国油料,1994(增刊):69-72.
    152.周乐聪.植物病原菌核盘菌生防菌的筛选、诱变及分子改造[D].中国农业大学,2000.
    153.朱凤美.昆虫与植病[M].北京:中国农业出版社,1932.
    1.Martin V,Dutton M V,Evans C S.Oxalate production by fungi:its role in pathogenicity and ecology and ecology in the soil environment[J].Can.J.Microbiol.,1996,42:881-895.
    2.Punja Z K,Huang J S,Jenkins S F.Relationship ofmycelial growth and production of oxalic acid and cell wall degrade-enzymes to virulence in Sclerotium rolfsii[J].Can.J.Plant Pathol.,1985,7:109-117.
    3.Zhao J,Peltier A J,Meng J,Osborn T C,Grau C R.Evaluation of Sclerotinia stem rot resistance in oilseed Brassica napus using a petiol inoculation technique under greenhouse conditions[J].Plant Dis,2004,88:1033-1039.
    4.陈雁,饶勇强,孟金陵.转双价广谱抗病基因创造甘蓝型油菜抗菌核病新品种的研究[J].分子植物育种,2003,1(4):457-463.
    5.陈玉卿,张洁夫,伍贻美.芸薹属油菜种质资源抗(耐)菌核病、病毒病的鉴定[J].中国油料,1993,2:4-7.
    6.费维新,胡宝成,李强生,陈凤祥,王文相,侯树敏,吴新杰.油菜抗(耐)菌核病的人工接种鉴定技术研究[J].安徽农业科学,2002,30(3):331-332,341.
    7.费维新,李强生,陈凤祥,张跃,吴新杰,侯树敏,江莹芬,胡宝成.14个甘蓝型油菜品种对菌核病的抗性初报[J].中国农学通报,2007,23(1):254-257.
    8.黄永菊,陈军,李云昌.甘蓝型油菜菌核病抗(耐)性的遗传研究Ⅰ.抗性遗传属性与配合力分析[J].中国油料作物学报,2000,22(4):1-5.
    9.兰海燕.几种向日葵菌核病抗性鉴定方法的比较[J].植物保护,2000,26(6):26-28.
    10.李强生,胡宝成,McCartney H A.油菜菌核病抗性鉴定方法-花期牙签接种方法的探讨[J].安徽农业科学,2001,29(1):72-73.
    11.李云昌,李英德,梅德圣.中油821接种菌核病菌丝体后的生化反应[J].中国油料作物学报,2001.23(3):63-65.
    12.刘澄清,杜德志,邹宗顺.甘蓝型油菜的抗病性及其遗传效应研究[J].中国农业科学,1991,24(31):43-49.
    13.刘良宏,石淑稳,吴江生,陈玉霞,周永明.油菜诱变和离体草酸筛选抗菌核病材料[J].中国油料作物学报,2003,25(1):5-8,13.
    14.刘良宏.油菜抗(耐)菌核病材料离体筛选方法的初步研究[D].华中农业大学,硕士论文,2000.
    15.刘胜毅,周必文.油菜抗菌核病草酸鉴定方法[J].中国油料,1994,(增):75-76.
    16.刘胜毅.油菜抗菌核病遗传机制和单倍体离体诱变研究冲国农业科学院油料作物研究所,博士学位论文,1999.
    17.刘勇,刘红雨,曾正宜.油菜菌核病系致病性研究[J].中国油料作物学报,2001,23(3):54-56.
    18.王汉中,刘贵华,郑元本,王新发,杨庆.抗菌核病双低油菜新品种中双9号选育及其重要防御酶活性变化规律的研究[J].中国农业科学,2004,37:23-28.
    19.吴纯仁,刘后利.草酸毒素在油菜抗病育种中的应用[J].中国农业科学,1991,24(4):41-46.
    20.吴纯仁.油菜菌核病抗(耐)病性筛选方法的研究[J].植物保护学报,1997,(4):323-327.
    21.吴力游,高必达,廖小兰,黄红.油菜抗菌核病突变体筛选及抗性鉴定[J].农业现代化研究,1997,18(5):314-316.
    22.郑之宽.安徽油菜[M].北京:中国农业出版社,2000:378-381.
    23.周乐聪.油菜品种资源对菌核病的抗性鉴定[J].中国油料,1994(增刊):69-72.
    1.Bob A,Katrien C,Soraya C F.Resistance to Botrytis cinerea in sitiens,an abscisic acid-deficient tomato mutant,involves timely production of hydrogen peroxide and cell wall modifications in the epidermis[J].Plant Physiology,2007,144:1863-1877.
    2.Dickman M B,Park Y K.Abrogation of disease development in plants expressing animal anti-apoptotic genes[J].Proc Natl Acad Sci USA,2001,98:6957-6962.
    3.Elad Y.The use of antioxidants(free radical scavengers) to control grey mould(Botrytis cinerea) and white mould(Sclerotinia sclerotiorum) in various crops[J].Plant Pathol,1992,41:417-426.
    4.Govrin E M,Levine A.The hypersensitive response facilitates plant infection by the nectrotrophic pathogen Botrytis cinerea[J].Curr Biol,2000,10:751-757.
    5.Kazan K,Murray F R,Goulter K C.induction of cell death in transgenic plants expressing a fungal glucose oxidase[J].Molecular Plant-Microbe Interactions,1998,11:555-562.
    6.Knogge W.Fungal infection of plants[J].Plant cell,1996,8:1711-1722.
    7.Lamb C,Dixon R A.The oxidative burst in plant disease resistance[J].Annu Rev plant Mol Biol,1997,48:251-275.
    8.Lucena M A,Romero-Aranda R,Mercado J A.Structural and physiological changes in the roots of tomato plants over-expressing a basic peroxidase[J].Physiol Plant,2003,118:422-429.
    9.Lyon G D,Goodman B A,Williamson B.Botrytis cinerea perturbs redox processes as an attack strategy in plants[A].Elad Y,Williamson B,Tudzynski P.Botrytis:Biology,Pathology and Control [C].Kluwer Academic Publishers:Dordrecht,The Netherlands,2004,119-141.
    10.Mansfield J W,Hutson R A.Microscopical studies on fungal development and host responses in broad bean and tulip leaves inoculated with five species of Botrytis[J].Physiol Plant Pathol,1980,17:131-143.
    11.Mellersh D G,Foulds I V,Higgins V J.H_2O_2 plays different roles in determining penetration failure in three diverse plant-fungal interactions[J].Plant J,2002,29:257-268.
    12.Noctor G.Metabolic signaling in defence and stress:the central roles of soluble redox couples[J].Plant Cell Environ,2006,29:409-425.
    13.Orozco-Ca'rdenas M L,Ryan C.Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway[J].Proc Natl Acad Sci USA,1999,96:6553-6557.
    14.Osboum A E.Performed antimicrobial compounds and plant defense against fungal attack[J].Plant cell,1996,8:1821-1831.
    15.Thordal-Christensen H,Zhang Z,Wei Y,Collinge D B.Subcellular localization of H_2O_2 in plants,H_2O_2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction[J].Plant J,1997,11:1187-1194.
    16.Van B P,Woltering E J,Staats M,Van K J.Histochemical and genetic analysis of host and non-host interactions of Arabidopsis with three Botrytis species:an important role for cell death control[J].Mol Plant Pathol,2007,8:41-54.
    17.Van K J.Licensed to kill:the lifestyle of a necrotrophic plant pathogen[J].Trends Plant Sci,2006,11:247-253.
    18.Wojtaszck P.Oxidative burst:an early plant response to pathogen infection[J].Biochem,1997,322:681-692.
    19.Yu I C,Parker J,Bent A F.Gene-for-gene disease resistance without the hypersensitive response in Arabidopsis dnd1 mutant[J].Proc Natl Acad Sci USA,1998,95:7819-7824.
    20.江力,曹树青,张荣铣.过氧化氢对烟草光合功能衰退的影响[J].浙江大学学报,2006,33(5):578-583.
    21.王源超,张正光,李俊,安成才,陈章良,郑小波.H_2O_2参与棉疫病菌90kD蛋白激发子诱导的 烟草过敏反应和系统获得抗性[J].植物生理与分子生物学学报,2003,29(3):185-191.
    1.Bernier F,Berna A.Germins and germin-like proteins:plant do-all proteins.But what do they do exactly[J]? Plant Physiology and Biochemistry,2001,39:545-554.
    2.Boland G J,Hall R.Evaluating soybean cultivars for resistance to Sclerotinia sclerotiorum under field conditions[J].Plant Dis,1987,71:934-936.
    3.Bolwell G P,Mavandad M,Millar D J.Inhibition of mRNA levels and activities by trans-cinpannc acid in elicitor-induced bean cells[J].phytochemistry,1988,27(7):2109-2117.
    4.Brodersen P,Petersen M,Bjom N H,Zhu S,Newman M A,Shokat K M,Rietz S,Parker J,Mundy J.Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4 [J]. Plant Journal, 2006,47: 532-546.
    5. Carter C, Thornburg R W. Germin-like proteins: structure, phyologeny, and function [J]. Journal of Plant Biology, 1999, 42: 97-108.
    6. Conti A, Fortunato D, Ortolani C, Giuffrida M G, Pravettoni V, Napolitano L, Farioli L, Perono G L, Trambaioli C, Pastorello E A. Determination of the primary structure of two lipid transfer proteins from apricot (Prunus akmeniaca) [J]. J Chromatog B Biomed Sci Appl, 2001,756(1-2): 123-129.
    7. Delaney T P, Uknes S, Vernooij B, Friedrich L, Weymann K, Negrotto D, Gaffney T, Gut-Rella M, Kessmann H, Ward E, Ryals J. A central role of salicylic acid in plant disease resistance [J].Science, 1994,266: 1247-1250.
    8. Dixon R A, Fuller K W. Effects of synthetic auxin levels on phaseollin production and phenylalanine ammonia-lyase (PAL) activity in tissue cultures of Phaseolus vulgaris L [J]. Physiol.Plant Pathol, 1976, 9: 299-305.
    9. Dumas B, Freyssinet G, Pallett K E. Tissue-specific expression of germin-like oxalate oxidaze during development and fungal infection of barley seedlings [J].Plant Physiology, 1995, 107(4): 1 091-1 096.
    10. Dumas B, Sailland A, Cheviet J P, Freyssinet G, Pallett K. Identification of barley oxalate oxidase as a germin-like protein [J]. Comptes Rendus de l'Academie des Sciences Serie III-Sciences de la Vie, 1993, 316: 793-798.
    11. Fu-Ming Dai, Tong X, Gerhard A W, Zu-Hua H. Physiological and Molecular Features of the Pathosystem Arabidopsis thaliana L.-Sclerotinia sclerotiorum Libert [J]. Journal of Integrative Plant Biology, 2006, 48 (1): 44-52.
    12. Glazebrook J. Genes controlling expression of defense responses in Arabidopsis - 2001 status [J]. Current Opinion in Plant Biology, 2001,4: 301-308.
    13. Glazener J A. Accumation of phenolic compounds in ceils and formation of lignin-like polymers in cell walls of young tomato fruits after inoculation with Botryis cinerea [J]. Physiol. Plant Pathol, 1982,20: 11.
    14. Govrin E M, Levine A. The hypersensitive response facilitates plant infection by the nectrotrophic pathogen Botrytis cinerea [J].Curr. Biol., 2000, 10: 751-757.
    15. Knogge W. Fungal infection of plants [J]. Plant cell, 1996, 8: 1711-1722.
    16. Li R, Rimmer R, Buchwaldt L, Sharpe A G. Interaction of Sclerotinia sclerotiorum with a resistant Brassica napus cultivar: expressed sequence tag analysis identifies genes associated with fungal pathogenesis [J]. Fungal Genet. Biol, 2004,41: 735-753.
    17. Maldonado A M, Doerner P, Dixon R A, Lamb C J, Cameron R K. A putative lipid transfers protein involved in systemic resistance signalling in Arabidopsis [J]. Nature, 2002, 419(6905): 399-403.
    18. Mccartney H A, Doughty K J, Norton G, Booth E J, Kightley S P. A study of the effect of disease on seed quality parameters of oilseed rape [J]. International conference of oilseed, 1999, 10: 32-41.
    19. Mohamed E O, Kamal B. Plant signalling components EDS1 and SGT1 enhance disease caused by the necrotrophic pathogen Botrytis cinerea [J]. New Phytologist, 2007, 175: 131-139.
    20. Molina A, Segura A, Garcia·Olmedo F. Lipid transfer proteins (nsLTPs) from barley and maize leaves are potent inhibitors of bacterial and fungal plant pathogens [J]. FEBS Lett, 1993, 316(2): 119-122.
    21. Nakata M, Shiono T, Watanabe Y, Satoh T. Salt stress induced dissociation from cells of a germin-like protein with Mn-SOD activity and an increase in its mRNA in a moss, Barbula unguiculata [J]. Plant and Cell Physiology, 2002, 43: 1568-1574.
    22. Nakata M, Watanabe Y, Sakurai Y, Hashimoto Y, Matsuzaki M, Takahashi Y, Satoh T. Germin-like protein gene family of a moss, Physcomitrella patens, phylogenetically falls into two characteristic new clades [J]. Plant Molecular Biology, 2004, 56: 381-395.
    23. Osbourn A E. Performed antimicrobial compounds and plant defense against fungal attack [J]. Plant cell, 1996,8:1821-1831.
    24. Park S Y, Lord E M , W ailing L L, Nothnagel E A, Eckard K J, M ollet J C, Jauh G Y. A lipid transfer-like protein is necessary for lily pollen tube adhesion to an in vitro stylar matrix [J]. Plant Cell, 2000,12(1): 151-164.
    25. Patnaik D, Khurana P. Germins and germin like proteins: an overview [J]. Indian J Exp Biol, 2001, 39 (3) : 191-200.
    26. Penninckx I A M A, Eggermont K, Terras F R G, Thomma B P H J, De Samblanx G W, Buchala A, Metraux J P, Manners J M, Broekae W F. Pathogen-induced systemic activation of a plant defensive gene in Arabidopsis follows a salicylic acid-independent pathway [J]. Plant Cell, 1 996, 8: 2309-2323.
    27. Purdy L H. Sclerotinia sclerotiorum: history, disease and symptomatology, host range, geographic distribution and impact [J]. Phytopathology, 1979, 69: 875-890.
    28. Rodriguez-Lopez M, Baroja-Fernandez E, Zandueta-Criado A, Moreno-Bruna B, Munoz FJ, Akazawa T, Pozueta-Romero J. Two isoforms of a nucleotide-sugar pyrophosphatase/ phosphodiesterase from barley leaves (Hordeum vulgare L.) are distinct oligomers of HvGLP1, a germin-like protein [J]. FEBS Letters, 2001, 490: 44-48.
    29. Schweizer P, Chrstoffel A, Dubler R. Transient expression of members of the germin-like gene family in epidernml cells of wheat confers disease resistance [J]. The Plant Journal, 1999, 20(5): 541-552.
    30. Segarra C I, Casalongue C A, Pinedo M L, Ronchi V P, Conde R D. A germin-like protein of wheat leaf apoplast inhibits serine proteases[J].Journal of Experimental Botany,2003,54:1335-1341.
    31.Sterk P,Booij H,Schellekens G A,Van Kammen A,De Vries S C.Cell-specific expression of the carrot EP2 lipid transfer protein gene[J].Plant Cell,1991,3(9):907-921.
    32.Thoma S,Hecht U,Kippe rs A,Botella J,De Vries S,Somerville C.Tissue.specific expression of a gene encoding a cell wall-localized lipid transfer protein from Arabidopsis[J].Plant Physiol,1994,105(1):35-45.
    33.Vijayan P,Shockey J,Levesque C A,Cook R J,Browse J.A role for jasmonate in pathogen defense of Arabidopsis[J].Proc Natl Acad Sci USA,1998,95:7209-7214.
    34.Wiermer M,Feys B J,Parker J E.Plant immunity:the EDS1 regulatory node[J].Current Opinion in Plant Biology,2005,8:383-389.
    35.Zimmermann G,B(a|¨)umlein H,Mock H P,Himmelbach A,Schweizer P.The multigene family encoding germin-like proteins of barley:regulation and function in basal host resistance[J].Plant Physiology,2006,142:181-192.
    36.丰胜求,张艳,徐久玮,甘莉.甘蓝型油菜防御酶活性变化与抗病性的关系[J].华中农业大学学报,2005,24(3):231-235.
    37.胡宝成,朱洪涛.油菜菌核病抗(耐)避病遗传育种研究进展[J].安徽农业大学学报,1995,22(增刊):55-58.
    38.江昌俊,余有本.苯丙氨酸解氨酶的研究进展(综述)[J].安徽农业大学学报,2001,28(4):425-430.
    39.李诚斌,施庆珊,疏秀林,欧阳友生,陈仪本.植物抗菌蛋白nsLTPs[J].植物生理学通讯,2006,42(3):539-544.
    40.李方球,官春云.油菜菌核病抗性鉴定、抗性机理及抗性遗传育种研究进展[J].作物研究,2001,(3):85-92.
    41.李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2001.
    42.李丽丽.世界油菜病害研究概述[J].中国油料,1994,16(1):79-82.
    43.刘后利.《油菜的遗传和育种》[M].上海:上海科技出版社,1985.
    44.马旭俊,朱大海.植物超氧化酶(SOD)的研究进展[J].遗传,2003,25(2):225-231.
    45.欧阳光察,薛应龙.植物苯丙烷类代谢的生理意义及其调控[J].植物生理学通迅,1988(3):9-26.
    46.曾永三,王振中.苯丙氨酸解氨酶在植物抗病反应中的作用[J].仲恺农业技术学院学报,1999,12(3):56-65.
    47.张成桂.菌核病菌诱导甘蓝型油菜抗病基因表达差异的分析[D].华中农业大学,硕士论文,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700