用户名: 密码: 验证码:
低阶煤低温干燥工艺及其对煤性质的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对神华集团内蒙古矿区低阶动力煤水分含量高、挥发分高、发热量低、应用范围窄、不适合远距离运输等特点,研究出高效、快速、自燃爆炸风险低,无尾气污染的低温干燥工艺,将煤的低位发热量提高到20.9MJ/kg以上,增加低阶煤的应用范围和经济附加值。研究干燥对煤中官能团构成、结构、表面结构与形貌、比表面积、表面元素价态、氧化动力学参数等性质的影响,以及这些影响与煤炭的自燃倾向性之间的关系,进而确定水分脱除效果好,自燃倾向性影响低的高含水低阶煤干燥提质的最佳工艺条件。
     研究结果表明:当使用热空气为干燥介质对高含水低阶煤进行快速对流干燥时,在热风流量2000L/min的条件下,170℃热空气可在10min内将煤中水分从30%降低至15%以下,煤的低位发热量提升至23.51MJ/kg,而且干燥尾气内没有气体有机污染物,对环境无影响,干燥也不增加煤的煤尘爆炸性;随着热空气温度的提高和干燥时间的延长,煤的脱水效果变好,但当煤中水分过低时,煤样会回吸空气中的水蒸气。FTIR、SEM、TGA、XPS、BET对干燥前后煤样的表征则表明:当热空气超过170℃,干燥时间超过10min时,热空气会氧化低阶煤,导致煤中的桥键和侧链等官能团氧化;表面微观结构渐趋粉化,热应力裂纹和氧化裂隙增加;煤中孔的数量的减少,孔半径增大;煤氧复合活化能迅速降低,使煤更易与氧结合;煤表面碳元素的氧化程度逐渐加剧;这些变化都会导致煤的自燃倾向性增强。
     以氮气为干燥介质的实验研究表明:在同等条件下,氮气干燥的效果明显优于空气。对干燥后煤的XPS分析也表明,氮气干燥的煤其表面被氧化的程度大为降低,干燥过程中的煤尘爆炸危险性也低,因此,采用氮气干燥具有安全、节能、环保等优点。但氮气不能低成本无限取用,开发高比例氮气循环的低温干燥工艺,才是解决低阶煤低温干燥提质的根本途径。
Low temperature convective dryness technology of high moisture contently low rank coal was investigated using hot air and nitrogen as the medium. The coal in the experiments was obtained from Shenhua Group Jinfeng Coal Colloery in Inner Mongolia. Characters of the coal are high water content, high volatile, low net calorific value and easily spontaneous combustion. The purpose of this study is to find out optimum conditions of low temperature fast dryness techonology to enhance it’s quality. At the same time, samples of the coal before and after drying were determined by FTIR, SEM, TGA, XPS, and BET to compare the effect of low temperature dryness on the functional group constitute, surface morphology, specific surface area, surface carbon valence states and oxidation kinetic parameters.
     Result of the experiments indicates that the fast convective dryness process was carried out under hot air and it is flowed 2000L/min 170℃hot air is reduced the moisture from 30% to less than 15% within the 10min, the net calorific value of the coal was raised to 23.51MJ/kg, and there is no organic pollutants on dyrness exhaust gas and the process didn’t increase risk of coal dust explosion. As the hot air temperature enhanced and the drying time extended, more moisture was removed. The detection result of FTIR, SEM, TGA, XPS and BET indicated that if the hot air exceeded 170℃and drying time was more than 10min, the coal would be oxidized and a series of changes in the coal would happen, such as the bridge bond and lateral chain structure oxidation, surface micro structure was powdered and the oxidation degree of the coal surface carbon was deepened. All these changes will lead to increasing tendency of spontaneous combustion.
     Experiment studies of nitrogen as the medium have shown that: the nitrogen dryness effect is better than hot air and the oxidation extents of coal surface has been reduced. However, the nitrogen couldn’t be low-cost unlimited use and development of the high proportion nitrogen cycle low temperature drying technology is the fundamental solution.
引文
[1]崔民选. 2007年中国能源发展报告[M].北京:社会科学文献出版社, 2007.
    [2]陈武,唐辛,张希诚.我国煤炭资源及其开发利用研究[J].煤炭经济研究, 2003, (7): 6-11.
    [3]高晋生,张德祥.煤液化技术[M].北京:化学工业出版社, 2005.
    [4]姚强,陈超,洁净煤技术[M].北京:化学工业出版社, 2005.
    [5]郭树才.煤化学工程[M].北京:冶金工业出版社, 1991. 55-59.
    [6] Veal C. Coal dewatering: a review of current technology and new developments[J]. The Australian Coal Review, 1997, (3): 26-33.
    [7]舒歌平,史士东,李克健.煤炭液化技术[M].北京:煤炭工业出版社, 2003.
    [8]朱银惠.煤化学[M].北京:化学工业出版社, 2005.
    [9]罗陨飞.煤的大分子结构研究——煤中惰质组结构及煤中氧的赋存形态[D].北京:煤炭科学研究总院, 2002.
    [10]秦志宏,巩涛,李兴顺,等.煤萃取过程的TEM分析与煤嵌布结构模型[J].中国矿业大学学报, 2008, 37(4): 443-449.
    [11] Shui H, Zhou H. Kinetic study on the aggregation of coal soluble constituent in solution[J]. Fuel Processing Technology, 2005, 86(6): 661-671.
    [12]于敦喜,徐明厚,姚洪,等.利用CCSEM对煤中矿物特性及其燃烧转化行为的研究[J].工程物理学报, 2007, 28(5): 875-878.
    [13] Orheim A, Bieg G, Brekke T, et al. Petrography and geochemical affinities of Spitsbergen paleocene coals, Norway[J]. International Journal of Coal Geology, 2007, 70(1-3): 116-136.
    [14] Steller M, Arendt P, Kuhl H. Development of coal petrography applied in technical processes at the Bergbau-Forschung/DMT during the last 50 years[J]. International Journal of Coal Geology, 2006, 67(3): 158-170.
    [15] Dutcher L, Crelling J C. History of coal petrology in the United States: I. Early history of the application of coal petrography in the steel industry[J]. International Journal of Coal Geology, 2000, 42(2-3): 93-101.
    [16] Hirsch P B. X-ray scattering from coals[J]. Proceedings of the Royal Society of London, Series A, Mathematical and Physical, 1954, 226(1165): 143-169.
    [17] Nishioka M, The associated molecular nature of bituminous coal[J]. Fuel, 1992, 71(8):941-948.
    [18] Ypshida T, Takanohashi T, Sakanishi K, et al. The effect of extraction condition on‘HyperCoal’production(1)-under room-temperature filtration[J]. Fuel, 2002, 81(11-12): 1463-1469.
    [19] Given P H, Marzec A, Barton W A et al. The concept of a mobile or molecular phase within the marcromolecular network of coals: A debate[J]. Fuel, 1986, 65(2): 155-163.
    [20] Haenel M W. Recent progress in coal structure research[J]. Fuel, 1992, 71(11):1211-1223.
    [21]王娜,孙成功,李保庆.煤中低分子化合物研究进展[J].煤炭转化, 1997, 20(3): 19-23.
    [22]杨立红,何平,张敬华,等.煤中天然有机物的高效液相色谱-质谱/质谱分析[J].冶金分析, 2007, 27(1):7-11.
    [23] Schultena H R, Marzecb A. Radical hydrogenation of coal studied by field ionization mass spectrometry[J]. Fuel Processing Technology, 1987, 15:307-318.
    [24] Jones J M, Pourkashanian M, Rena C D et al. Modelling the relationship of coal structure to the char porosity[J]. Fuel, 1999, 78(14): 1737-1744.
    [25] Marzec A. Towards an understanding of the coal structure: a review[J]. Fuel Processing Technology, 2002, 77-78(20): 25-32.
    [26] Shinn J H. From coal to single-stage and two-stage products: A reactive model of coal structure[J]. Fuel, 1984, 63(9): 1187-1196.
    [27]谢克昌.煤的结构与反应性[M].北京:科学技术出版社, 2002.
    [28]虞继顺.煤化学[M].北京:冶金工业出版社, 2000.
    [29]潘大勇,蒋宝和,曹雷鸣,等.清河发电公司试燃用蒙东褐煤的措施与实践[J].电力设备, 2007, 8(3): 78-80.
    [30]唐书恒,马彩霞.中国煤炭资源洁净潜势评价指标探讨[J].河北建筑科技学院学报, 2005, 22(3): 104-106.
    [31]马驹.全国主要煤炭基地煤炭运输铁路水路分工研究[J].铁道工程学报, 2008, (6): 20-23.
    [32]黄爱民.煤炭干燥技术的新进展[J].选煤技术, 2006, (S1): 43-46.
    [33]俞珠峰.洁净煤技术发展及应用[M].北京:化学工业出版社, 2004.
    [34]张文军.高效细分散煤泥悬浮液连续离心过滤脱水研究[D].徐州:中国矿业大学, 2002.
    [35]解国辉.浅谈沉降过滤式离心机脱水[J].山西煤炭管理干部学院学报, 2006, (1): 94-95.
    [36]李山文.加压过滤脱水技术的研究[J].选煤技术, 2006, (s1): 40-42.
    [37]贾瑜.型煤的成型、脱硫及着火燃烧的实验研究[D].杭州:浙江大学, 2003.
    [38] Sakaguchi M, Laursen K, Nakagawa H, et al. Hydrothermal upgrading of Loy Yang Brown coal-Effect of upgrading conditions on the characteristics of the products[J].Fuel Processing Technology, 2008, 89(4): 391-396.
    [39]初茉,李华民.褐煤的加工与利用技术[J].煤炭工程, 2005, (29): 48-49.
    [40]云增杰,董洪峰,曹勇飞.高水分燃料褐煤脱水技术[J].露天采矿技术, 2008, (4): 69-71.
    [41] Bergins C. Kinetics and mechanism during mechanical/thermal dewatering of lignite[J]. Fuel, 2003, 82(4): 355-364.
    [42] Ciccarelli G, Dorofeev S. Flame acceleration and transition to detonation in ducts[J]. Progress in Energy and Combustion Science, 2008, 34(4): 499-550.
    [43]胡新亮.煤调湿技术及存在的问题[J].节能环保技术, 2006, (9): 31-32.
    [44]黄郑华,刘盛.粉尘爆炸危险性分析与预防[J].中国公共安全(综合版), 2004, (9): 153-156.
    [45]蒋耀庭.粉尘爆炸与爆炸危险度评价[J].海军航空工程学院学报, 2005, 20(6): 693-696.
    [46]兀帅东,高葆宪.煤尘爆炸原因分析与防范措施[J].西部探矿工程, 2007 (8): 227-228.
    [47]杨铁保,胡双启.煤尘爆炸防治措施[J].山西建筑, 2007, 33(18): 189-190.
    [48]赖忠孝,金龙哲.粘尘棒对煤尘爆炸的影响与分析[J].煤炭工程, 2005, (5): 51-53.
    [49]曲嘉琳,矫兴艳,张大明.煤尘爆炸事故危险源评价[J].矿业快报, 2007, (7):30-32.
    [50]温秀峰.煤的自燃倾向性与煤尘爆炸危险性关系的研究[J].山西煤炭, 2005, 25(3): 9-10.
    [51]张嬿妮.热重分析在研究煤氧复合过程中的应用[D].西安:西安科技大学, 2004.
    [52]王继仁,金智新,邓存宝.煤自燃量子化学理论[M].北京:科学技术出版社, 2007.
    [53]李增华.煤炭自燃的自由基反应机理[J].中国矿业大学学报, 1996, 25(3): 111-114.
    [54]邓军,徐精彩,陈晓坤.煤自燃机理及预测理论研究进展[J],辽宁工程技术大学学报, 2003, 22(4): 455-459.
    [55] Lopeza.D, Sanadab Y, Mondragona F. Effect of low-temperature oxidation of coal on hydrogen-transfer capability[J]. Fuel, 1998, 77(14): 1623-1628.
    [56] Wang H, Dlugogorski B Z, Kennedy E M. Theoretical analysis of reaction regimes in low-temperature oxidation of coal[J]. Fuel, 1999, 78(9): 1073-1081.
    [57] NUGROHO Y S, MCLNTOSH A C, GBBS B M. Low-temperature oxidation of single and blended coals[J]. Fuel, 2000, 79(15): 1951-1961.
    [58] Nelson M I, Marchant T R, Wake G C, et al. Self-heating in compost piles due to biological effects[J]. Chemical Engineering Science, 2007, 62(17): 4612-4619.
    [59] Yuan L M, Smith A C. Numerical study on effects of coal properties on spontaneous heating in long wall gob areas[J]. Fuel, 2008, 87(15-16): 3409-3419.
    [60] Wang H, Dlugogorski B Z, Kennedy E M. Analysis of the mechanism of the low-temperature oxidation of coal[J]. Combustion and Flame, 2003, 134(1-2): 107-117.
    [61] Wachowicz J. Analysis of underground fires in Polish hard coal mines[J]. Journal of ChinaUniversity of Mining and Technology, 2008, 18(3): 332-336.
    [62] Beamish B B, Arisoy A. Effect of mineral matter on coal self-heating rate[J]. Fuel, 2008, 87(1): 125-130.
    [63] Pone J D N, Hein K A A, Stracher G B, et al. The spontaneous combustion of coal and its by-products in the Witbank and Sasolburg coalfields of South Africa[J]. International Journal of Coal Geology, 2007, 72(2): 124-140.
    [64] Zarrouk S J, O’Sullivan M J. Self-heating of coal: The diminishing reaction rate[J]. Chemical Engineering Journal, 2006, 119(2-3): 83-92.
    [65]褚廷湘,杨胜强,孙燕,等.煤的低温氧化实验研究及红外光谱分析[J].中国安全科学学报, 2008, 18(1): 171-176.
    [66]陆伟,王德明,仲晓星,等.基于活化能的煤自燃倾向性研究[J].中国矿业大学学报, 2006, 35(2): 201-205.
    [67]石宪奎.煤自燃的原因及倾向性预测[J].煤炭加工与综合利用, 2002, (1):41-43.
    [68]薛冰,李再峰,陈兴权,等.低阶煤在干燥氧气下低温氧化过程的机理研究[J].煤炭转化, 2006, 29(2): 12-15.
    [69]李宗翰.采空区遗煤自燃过程及其规律的数值模拟研究[J].中国安全科学学报, 2005, 15(6)::15-19.
    [70]房俊卓,张霞,梁志海.仪器分析法研究宁夏煤结构[J].宁夏工程技术, 2007, 6(1): 40-42.
    [71]姚玉英,陈常贵,曾敏静,等.化工原理(下册)[M].天津:天津科学技术出版社, 2001: 258-319.
    [72]何启林.煤低温氧化性与自燃过程的实验及模拟的研究[D].徐州:中国矿业大学, 2004.
    [73]陆伟,王德明,戴广龙,等.煤物理吸附氧的研究[J].湖南科技大学学报(自然科学版), 2005, 20(4): 6-10.
    [74]王华,文虎,葛岭梅.大型煤自燃发火实验台自动控制系统的设计[J].西安科技大学学报, 2008, 28(1): 6-10.
    [75]刘剑,陈文胜,齐庆杰.基于活化能指标煤的自燃倾向性研究[J].煤炭学报, 2005, 30(1): 67-70.
    [76]肖,马砺,王振平,等.采用热重分析法研究煤自燃过程的特征温度[J].煤炭科学技术, 2007 35(5): 73-76.
    [77]张东晨,张明旭,陈清如.煤中黄铁矿表面细菌氧化的XRD及SEM/TEM研究[J].中国矿业大学学报, 2005, 34(6): 761-765.
    [78] Gong B, Pigram P J, Lamb R N. Surface studies of low-temperature oxidation of bituminouscoal vitrain bands using XPS and SIMS[J]. Fuel, 1998, 77(9-10): 1081-1087.
    [79]吴强,陈文胜.煤自燃的热重分析研究[J].中国安全生产科学技术, 2008, 4(1): 71-73.
    [80]何启林,王德明.煤的氧化和热解反应的动力学研究[J].北京科技大学学报, 2006, 28(1): 1-5.
    [81]张辛亥,罗振敏,张海珩.煤自燃性的红外光谱研究[J].西安科技大学学报, 2007, 27(2): 171-184.
    [82] Kozlowski M. XPS study of reductively and non-reductively modified coals[J]. Fuel, 2004, 83 (3): 259-265.
    [83]常海洲,王传格,曾凡桂,等.不同还原程度煤显微组分组表面结构XPS对比分析[J].燃料化学学报, 2006, 34(4): 389-394.
    [84] Geng W H, Kumabe Y, Nakajima T, et al. Analysis of hydrothermally-treated and weathered coals by X-ray photoelectron spectroscopy (XPS)[J]. Fuel, 2009, 88(4): 644-649.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700