用户名: 密码: 验证码:
广东大宝山金属硫化物矿床开发的环境地球化学效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿产开采产生的固体废弃物、酸性废水、重金属离子是矿山开发的三大环境公害。广东大宝山地处气候温暖湿润的华南地区,是全国著名的Fe-Cu多金属含硫化物矿床,矿产开发对环境的影响有典型的区域性和代表性。受该矿山开发的影响,下游的上坝村成为远近闻名的“癌症”村和贫困村,部分村民中出现“痛痛病”疑似症状。
     本研究对大宝山矿区及其下游临区进行了系统的野外考察和采样,并在实验室较全面分析了尾矿库尾砂、采选废水、尾矿库积水、河流水、河流沉积物、土壤、可食用叶菜类蔬菜等样品;评估重金属在不同环境介质中的污染程度及潜在风险,揭示重金属在不同环境体系中的存在形态及释放、迁移、转化规律,深入剖析该矿山开发的环境地球化学效应以及重金属的生态地球化学迁移过程等。
     本研究取得以下主要结论和认识:
     (1)尾砂库堆放的尾砂是下游酸性废水形成和重金属释放的主要源头。尾砂中含有大量的黄铁矿、磁黄铁矿、闪锌矿等金属硫化物矿物,其重金属Pb、Zn、Cd、Cu、Ni、Cr、Mn含量分别高达637.40、5330.37、17.76、421.12、61.15、67.54、1580.24 mg/kg。它们的形态分布以残渣态和铁锰氧化态为主,其次是可交换态、碳酸盐态和有机态,后三种形态具有较强的活化迁移潜力,Pb、Zn、Cd和Cu这三种形态分别占总量的40%、20%、40%和32%。
     (2)受尾砂库外排酸性废水的影响,大宝山流域水体具有低的pH值、高的SO42-和重金属含量特点,且SO42-和重金属含量与pH值呈负相关。顺向下游地区,水体pH值逐步升高,SO42-和重金属含量降低,明显指示它们与矿山及矿山开发的直接关系。在风化淋滤实验中,尾砂矿物破碎细化,并释放出高浓度的重金属。淋滤初期重金属从硫化物中释放尤其快而多,随时间增加淋滤液的pH值逐渐升高,重金属浓度逐渐降低,呈显著负相关。
     (3)沿横石水上游顺流而下,重金属Pb、Zn、Cd、Cu在河水中的含量逐步减低,但均超标(农田灌溉水质标准)。在铁龙河段,Pb、Zn、Cd、Cu超标最高分别达21倍、27倍、62倍、18倍;在槽对坑河段,超标最高分别达10倍、17倍、33倍、13倍;在横石水河段,超标最高分别达7倍、11倍、16倍、4倍。在上坝村,其Pb、Zn、Cd、Cu、Ni的超标分别达到7.0倍、5.5倍、16.2倍、4.0倍、2.8倍。
     (4)水体的污染评价结果显示,在铁龙河段,重金属单因子污染指数均很高,并以Cd为最,综合污染指数PI表现为重度污染。在槽对坑河段,仍以Cd的污染最重,但整体污染程度低于铁龙河段,综合污染指数PI显示现为中-轻度污染。在横石水河段,单因子污染指数以Pb、Zn、Cd为最高,综合污染指数仍表现为中-轻度污染。相比较,未受矿山污染的太平河、冷水泾、丘屋坝河段,其单因子指数和综合污染指数均显示为未污染。
     (5)重金属离子排入下游河流后,部分会发生沉降,并在沉积物中累积。地累积系数显示,沉积物中Pb、Zn、Cd、Cu都存在不同程度的污染,最严重的Cd甚至达到强-很强污染,Pb、Zn也分别形成了强污染和中-强污染,且上游污染明显重于下游地区。上坝村灌溉主渠Pb、Zn、Cd、Cu也形成中-强污染,仍以Cd为最严重。
     (6)农业生态系统受影响最严重是污灌土壤。表层土壤重金属含量普遍高于国家土壤二级标准,但近年来灌溉水源的替代改变了纵向变化格局。地累积系数显示,Cd污染最为严重,污染等级甚至达到强-很强污染,Pb、Zn也分别形成了强污染和中-强污染。上坝村Pb、Zn、Cd、Cu也形成不同程度的污染,仍以Cd为最严重,达到强污染。
     (7)在整个流域,土壤重金属单因子污染指数均异常高,仍以Cd最为严重,综合污染指数PI显示为中度污染,内梅罗综合指数PN为重度污染。若以未受矿山废水影响的陈公湾表土为评价基准时,Cd单因子污染贡献有所降低,而Pb、Zn、Cu、Ni、Cr则有很大程度的增加,PI和PN仍异常高,分别显示为中度和重度污染,污染情况与河流水体及河流沉积物类似。这表明,污染表征显然和大宝山开采矿种及伴生元素种类有关,但Cd还与当地的高背景密切相关。
     (8)重金属可交换态是植物吸收利用主要形态,该区表层土壤具有较高的可交换态含量,并随总量的增加而增加,与土壤pH值表现为负相关。在土壤剖面上,重金属可交换态含量向下迅速降低,并逐渐趋于稳定,应和耕作有关。除Pb在铁龙库口、水楼下村和上坝村表层土中,可交换态含量所占比例异常大之外,整个剖面上全部元素均以残渣态和铁锰氧化态为主,可交换态、有机态和碳酸盐态次之。但可交换态、有机态和碳酸盐态生物有效性较高。元素活性以Pb、Cd最高。
     (9)重金属在蔬菜中含量与根系土总量未表现出显著相关性,根系土Pb含量未超出国家土壤二级标准,但叶菜类蔬菜中Pb却全部超出食品卫生限量标准,超标倍数在1.5~4倍之间;根系土Cd总量超出国家土壤二级标准,但蔬菜并未全部超标。Zn、Cu、Ni则在根系土和蔬菜中均仅有少数样品轻微超标。该地区土壤Pb具有较高的活性,更利于生物的吸收利用。
     (10)潜在生态风险评价显示,整个流域存在着高的潜在生态风险,其平均潜在生态风险指数RI为704.9,显示为强风险。上坝村3块水田潜在生态风险指数RI均接近600,近强风险,而其余表层土RI均高于600,为强风险。陈公湾因Cd的拉高,潜在生态风险指数RI达到365.3,显示为中等风险。根系土潜在生态风险指数RI在华屋村、凉桥村、水楼下村显示强风险,上坝村显示为中等风险,风险危害向下游呈降低趋势。
     (11)从尾砂向生命系统释放迁移过程的4个重要的反应界面控制了重金属的生态环境地球化学迁移。尾砂/水反应界面,控制重金属从源头尾砂中的释放;水/沉积物反应界面,控制重金属在水体中与河流沉积物的沉淀与释放的平衡;土壤/间隙水溶液界面,控制土壤生物有效性;土壤/植物界面,控制生物对重金属的吸收与利用。通过调节反应界面的环境条件,可以阻止反应的发生,为环境治理修复的提供参考依据。
     (12)各介质间的相互作用较好地刻画大宝山矿区因为矿产开采,重金属元素从内生环境中曝露,然后在表生环境中释放、迁移、转化、归宿的迁移模式。矿区重金属元素的迁移,导致了矿区周围及下游地区环境中重金属显著积累,生态压力不断加剧,并以食物链的方式进入植物和动物体内,最后通过多种途径进入人体,危害生命健康和生态安全。
     本研究的创新之处主要体现在:
     (1)选取危害严重、代表性强的大宝山矿为研究对象,剖析其开发引起的环境地球化学效应,对其它热湿地区金属硫化物矿山研究和污染治理提供示范意义。
     (2)对大宝山矿生态系统进行深入剖析,揭示大宝山周边及下游地区的污染表征与矿山开采矿种及伴生元素种类有关,且Cd还与当地的高背景密切相关。
     (3)剖析重要介质间的相互作用,揭示尾砂/水界面、河底沉积物/水界面、土壤/间隙水溶液界面及土壤/植物界面等4个重要界面交互作用控制重金属从矿山尾砂向生命系统转移的生态环境地球化学迁移图像:尾砂/水反应界面,决定重金属从源头尾砂中的释放;水/沉积物反应界面,决定重金属在水体中与河流沉积物的沉淀与释放的平衡;土壤/间隙水溶液界面,决定土壤生物有效性;土壤/植物界面,决定生物对重金属的吸收与利用。通过调节反应界面的环境条件,可以阻止反应的发生,为环境治理修复的提供参考依据。
The acid mine drainage(AMD), solid wastes and heavy metals produced incourse of mining activities are included among major environmental hazards. TheDabaoshan Mine is a Fe-Cu polymetallic sulfide deposits famous for its giant scale. Itis located in warm and humid area of South China. It is specifically typical inenvironmental effects of sulfide mine and mining activities. It is responsible for thepresent situation of the Shangbacun village which is situated in the lower reaches ofthe mine and famous for its nickname“cancer village”and“poverty village”.Symptom of“Itai-Itai disease”also appears in the village.The present study carries systemic field investigations and sampling around themining area and lower reaches of the mine and the revolved Hengshishui river, andanalyzes the chemical contents of mine tailings, the waste water of mining and milling,water system, river sediments, soil and edible leaf vegetables. The species of heavymetals and its mechanisms of releasing, transportation and transform are alsodiscussed,with assessment of the degree of pollution and potential risk in differentenvironmental media, as well as the geochemical environmental effects of miningactivities. A ecological and geochemical transportation model of heavy metals isproposed at the end.
     It is concluded that:
     (1) The tailings are the main source of the AMD forming and heavy metalreleasing. They include a great number of sulfide minerals, and are rich in heavymetals. The concentration of heavy metals Pb, Zn, Cd, Cu, Ni, Cr, Mn is up to 637.40,5330.37, 17.76, 421.12, 61.15, 67.54, 1580.24 mg/kg respectively. The Fe-Mn oxides and the residuals are main species, and the other species (exchangeable, carbonates,organics) is respectively 40%, 20%, 40 % and 32% of the total.
     (2) The water system is characterized by low pH value and high heavy metalsand SO42- concentrations, and negative correlation between the heavy metals and theSO42- concentrations. The heavy metals and SO42- gradually decrease in concentrationwhile the pH value increases from the upper to the lower reaches, which indicates thedirect relationship of pollutions and mining activities. The tailing minerals are crushedand releasing high concentrations heavy metals in the experiment of weathering andeluviating. The high heavy metals concentrations and releasing speed in early timewas decreasing along with increasing experiment times, it is negative correlationbetween the increasing pH value and decreasing concentrations of heavy metals ineluviating solution.
     (3)The concentrations of Pb、Zn、Cd、Cu in river water is decreasing graduallyfrom upper to lower reaches, but they all exceed the irrigation water quality standard21, 27, 62, 18 times in Tielong reaches, and that is 10, 17, 33, 13 times in Caoduikengreaches, and 7, 11, 16, 4 times in Hengshishui reaches and 7.0, 5.5, 16.2, 4.0 times inShangbacunVillage.
     (4) The results of water assessment show that the single pollution indexes arevery high, and that of Cd is highest, the compositive pollution index (PI) is heavypollution in Tielong reaches. The pollution of Caoduikeng reaches and Hengshishuireaches are similar to the Tielong reaches, but degree of pollution is lower, the PIpresent middle-light pollution. The single pollution indexes and compositive pollutionindex (PI) inTaipinghe, Lengshuijing and Qiuwuba are all non-pollution.
     (5) The part of heavy metals of water precipitated and accumulated in sediments.the geoaccumulation index present different level pollution of Pb、Zn、Cd、Cu, and theupper reaches is higher than the lower reaches. The pollution level of Cd isstrong-very strong and that of Pb and Zn is strong and middle-strong respectively. Thesimilar pollution level is in irrigation trench in Shangbacun village.
     (6) The soils were polluted heavily in agricultural ecosystem. The concentrationof heavy metals exceeded the national soil secondary standard, but the variety inprofile was changed by new water source for irrigation in recent years. Thegeoaccumulation index present the pollution level of Cd is up to strong-very strong,that of Pb and Zn is strong and middle-strong.
     (7) In whole drainage area, single pollution indexes of topsoil are highabnormally, and that of Cd is highest, the compositive pollution index (PI) presentsmiddle pollution, and the Nemerow Index (PN) is heavy pollution. The singlepollution indexes of Cd decreased and that of Pb、Zn、Cu、Ni、Cr increased, the PIandPN present middle and heavy level pollution respectively when the assessment is baseof the heavy metals concentrations of Chengongwan. The characteristics of pollutionare similar to the water and sediments of river which indicated the direct relationshipof pollutions and mine elements obviously. But the pollution of Cd is relation withhigh background value especially.
     (8) The heavy metals exchangeables are the main species absorbed by plants.The exchangeables concentrations of all topsoils are high and increasing with the totalconcentrations. The exchangeables decrease downwards profiles and present negativecorrelation with the change of pH value in profiles. The residuals and Fe-Mn oxidesspecies are large amount of totals except Pb in Tielong dam and Shuilouxiacun andShangbacun village, but the biovalidity of exchangeables and carbonates and organicsare high.The mobilityof Pb and Cd are strong.
     (9) Obvious correlation of concentration did not present between rhizospheresoils and vegetables. Pb concentration of rhizosphere soils did not exceed the nationalsoil secondary standard but the Pb of vegetables exceeded the food hygiene limitstandard. Cd of rhizosphere soils all exceeded the national soil secondary standard;Cd of vegetables exceeded the food hygiene limit standard. Only a few of Zn, Cu, Niof rhizosphere soils and vegetables exceeded standard. Pb mobility of soils is strongand absorbed byplant easilyin local.
     (10) Potential risk index (RI) assessment shows that potential ecological risk isstrong in whole drainage area. The average RI of three Shangbacun topsoil approachto 600 which present strong risk, the others are strong risk which RI exceeded 600.The RI is middle risk in Chengongwan because high Cd pollution. The RI ofrhizosphere soils are strong risk in Huawucun, Liangqiaocun and Shuilouxiacunvillage, and that of Shangbacun village is middle risk, the risk level decreasesgraduallyfrom upper to lower reaches.
     (11) The four reaction interfaces of releasing and transportation from tailings toecological system control ecological environmental geochemical transportation ofheavy metals. The interface of tailings/water decide the releasing of heavy metals from main source of tailing; the interface of water/sediments decide the equilibrium ofprecipitation and releasing between water and sediments; the interface of soils/porewater decide the biovalidity of the soils; and the interface of soils/plant decide theabsorption and utilization of livings. The interface reaction can be prevented throughchanging the environmental conditions of interfaces, which help to afford referenceframe for environmental restore.
     (12) The interaction of different mediums pictured the transportation model ofexposition from deposits and releasing, transportation, transform and end-result insurface environment. The transportation of heavy metals from mining area formedheavy metals accumulation around mining area and lower reaches, produced moreecological press. The heavy metals transport to plants and animals through food chainand to human at last, harm life health and ecological safe.
     Inclued among the main initial points of the studyare that:
     (1) Select the Dabaoshan Mine which has caused severe hazard, and isspecifically typical as studied subject, to reveal the geochemical environmental effectsof mining activities, and thus provide a model to study metal sulfide mine andenvironmental restore in warm and humid areas.
     (2) Analyze the ecosystem of Dabaoshan Mine, revealing the direct relationshipof pollutions and mine elements, the pollution of Cd is relation with high backgroundvalue especially.
     (3) Reveal the interaction of different mediums, and pictured that the fourreaction interfaces control ecological environmental geochemical transportation ofheavy metals releasing and transportation from tailings to ecological system. Theinterface of tailings/water decide the releasing of heavy metals from main source oftailing; the interface of water/sediments decide the equilibrium of precipitation andreleasing between water and sediments; the interface of soils/pore water decide thebiovalidity of the soils; and the interface of soils/plant decide the absorption andutilization of livings. The interface reaction can be prevented through changing theenvironmental conditions of interfaces, which help to afford reference frame forenvironmental restore.
引文
[1]武强,刘伏昌,李铎.矿山环境研究理论与实践[M].北京:地质出版社, 2005.
    [2]庞春勇,周永章.矿业开发中环境影响的生态环境地质评价[J].矿产与地质, 2003,17(5): 641-644.
    [3]周永章,宋书巧,杨志军,等.河流沿岸土壤对上游矿山及矿山开发的环境地球化学响应—以广西刁江流域为例[J].地质通报, 2005, 24(10-11): 945-951.
    [4]宋书巧.矿山开发的环境响应与资源环境一体化研究—以广西刁江流域为例[D].中山大学博士学位论文, 2004.
    [5]倪师军,张成江,腾彦国,等.矿业环境影响的地球化学研究[J].矿物岩石, 2001,21(3): 190-193.
    [6]许乃政,陶于祥,高南华.金属矿山环境污染与整治对策[J].火山地质与矿产, 2001(1):63-70.
    [7]廖国礼,吴超.尾矿区重金属污染浓度预测模型及其应用[J].中南大学学报, 2004,35(6): 1009-1013.
    [8]杨克敌.微量元素与健康[M].北京:科学出版社, 2003.
    [9]廖国礼.典型有色金属矿山重金属迁移规律与污染评价研究[D].中南大学博士学位论文, 2005.
    [10]丛志远,赵峰华.酸性矿山废水的现状及展望[J].中国矿业, 2003, 12(3): 15-18.
    [11]吴攀,刘丛强,杨元根,等.矿山环境中(重)金属的释放迁移地球化学及其环境效应[J].矿物学报, 2001, 21(2): 213-218.
    [12] Ata A, Soner K. Acid Mine Drainage (AMD): Causes, treatment and case studies[J]. J ofCleaner Production, 2006:1139-1145.
    [13] Michelle P B, Adriene C L. A comparative mineralogical and geochemical study of sulfidemine tailings at two sites in New Mexico, USA[J]. Environmental geology, , 1998, 33:130-142.
    [14] Azcue J M, Mudroch A, Rosa F. Trace elements in water, sediments, porewater, and biotapolluted by tailings from an abandoned gold mine in British Columbia, Canada[J]. J ofGeochemical exploration, 1995, 52(1-2): 25-34.
    [15]王亚平,鲍征宇,王苏明.矿山固体废物的的环境效应研究进展及大冶铜绿山尾矿的环境效应[J].矿物岩石地球化学通报, 1998(2): 97-101.
    [16]许乃政,袁旭音,陶于祥.硫多金属矿床开采对水环境的影响—以福建大田地区矿产开发为例[J].地质通报, 2003, 22(9): 718-724.
    [17] Yoshida F, Hata A, Tonegawa H. Itai-Itai disease and the countermeasures against cadmiumpollution by the Kamioka mine[J]. Environmental Economics and Policy Studies, 1999, 2:215-229.
    [18] Zhang H, Ma S D, Hu X. Arsenic pollution ingroundwater from Hetao Area, China[J].Environmental Geology, 2002, 41: 638 - 643.
    [19] Nickson R T, McArthur J M, Burgess W G, et al. Arsenic poisoning of Bangladeshgroundwater[J]. Nature, 1998, 395: 338.
    [20]王振刚,何海燕,严于伦.石门雄黄矿地区居民砷暴露研究[J].卫生研究, 1999, 28(1):6-8.
    [21] Guo G L, Zhou Q X. Evaluation of heavy metal contamination in Phaeozem of northeastChina[J]. Environmental Geochemistry and Health, 2006, 28: 331-340.
    [22] Duzgoren-Aydin N S, Wong C S C, Aydin A, et al. Heavy metal contamination anddistribution in the urban environment of Guangzhou, SE China[J]. EnvironmentalGeochemistry and Health, 2006, 28:375-391.
    [23] Diawara M M, Litt J S, Unis D, et al. Arsenic, Cadmium, Lead, and Mercury in surfacesoils, Pueblo, Colorado: implications for population health risk[J]. EnvironmentalGeochemistry and Health, 2006, 28(297-315).
    [24]龙云凤.广东金属矿山开发的资源环境效应及可持续发展对策[D].中山大学硕士学位论文, 2006.
    [25]林初夏,卢文洲,吴永贵,等.大宝山矿水外排的环境影响:Ⅱ.农业生态系统[J].生态环境, 2005, 14(2): 169-172.
    [26]常学秀,施晓东.土壤重金属污染和食品安全[J].云南环境科学, 2001, (20): 21-24,77.
    [27]石贵勇,周永章,杨志军,等.广东河台金矿尾矿库金属硫化物环境地球化学效应[J].矿产与地质, 2004, 18(6): 579-582.
    [28]周永章, Chow E H.河台金矿构造变形,热液围岩蚀变及元素迁移[J].广东地质, 1995,10(3): 17-25.
    [29]刘敬勇,常向阳,涂湘林.元素-铅同位素示踪在云浮硫铁矿区土壤铊污染研究中的应用[J].物探与化探, 2006, 30(4) :348-353.
    [30]矿山地质手册编委会.矿山地质手册(上)[M].北京:冶金工业出版社, 1995.
    [31]王亚平,鲍征宇.尾矿库周围土壤中重金属存在形态特征研究[J].岩矿测试, 2000,19(1): 7-13.
    [32]汤中立,李小虎.矿山地质环境问题及防治对策[J].地球科学与环境学报, 2005, 27(2):1-4.
    [33]李天接.土壤环境学[M].北京:高等教育出版社, 1995.
    [34] Leital, Nobili M, Muhlbachova G, et al. Bioavailability and effects of heavy metals on soilmicrobial biomass survival during laboratory incubation[J]. Biology and fertility of soils,1995, 19: 103-118.
    [35]谢文彪,陈穗玲,陈永亨.云浮黄铁矿利用过程中微量毒害元素的环境化学活动性[J]地球化学, 2001, 30(5): 466-469.
    [36]广东地矿局.广东区域地质志.北京:地质出版社, 1998.
    [37]广东省地质志编纂委员会.广东省志-地质矿产志.广州:广东省人民出版社, 1994.
    [38]黄玉昆,邹和平,张珂.岭南地质与矿产.广州:广东人民出版社, 2003.
    [39]周永章.高度重视矿山污染问题,确保矿区和水系下游人民生存生活环境质量.广东省政协委员提案,广东省政协九届一次会议,广州,2003.
    [40]葛朝华,韩发.广东大宝山矿床喷气-沉积成因地质地球化学特征[M].北京:科学技术出版社, 1987.
    [41]中新网.广东一村庄受重金属污染,近年逾二百村民死于癌症.http://www.chinanews.com.cn, 2000-12-06.
    [42]人民网.广东韶关上坝:“癌症村毒土”修复记. http://env.people.com.cn, 2005-11-14.
    [43]人民日报.广东公布10大污染毒害消费者事件警示消费者, 2001-03-13.
    [44]林初夏,龙新宪,童晓立,等.广东大宝山矿区生态环境退化现状及治理途径探讨[J].生态科学, 2003, 22(3): 205-208.
    [45]刘奕生,高怡,王康玮,等.广东消化道恶性肿瘤高发村的病因学研究.中国热带医学,2005, 5(5): 1139-1141.
    [46]刘赣生,邓全秀,吴坤银.广东大宝山矿儿童少年HBV感染及标志物分布监测分析.广东卫生防疫, 1995, 21(4):73.
    [47]法制日报.附近矿山污染严重广东一鱼米之乡竟成癌症村. 2001-05-11.
    [48]陶于祥,赵宇,许乃政.浅析金属矿山开采对岩土生态环境的影响[J].火山地质与矿产, 1999(3): 225-231.
    [49]杨忠芳,朱立,陈岳龙.现代环境地球化学[M].北京:地质出版社, 1999.
    [50]张辉.风化作用与金属污染讨论[J].矿物岩石地球化学通报, 2003, 22(2): 149-151.
    [51]邹知华.加强矿山环境保护促进矿业持续发展[J].中国矿业, 1994, 3(2): 9-13.
    [52]杨永杰.环境保护与清洁生产[M].北京:化学工业出版社, 2002.
    [53]陈天虎.矿山尾矿矿物学研究进展[J].安徽地质, 2001, 11(1): 64-67.
    [54]阳正熙.矿区酸性废水的成因及其治理[J].世界采矿快报, 1999, 15(10): 42-45.
    [55]卢龙,王汝成,薛纪越,等.硫化物矿物的表面反应及其在矿山环境研究中的应用[J].岩石矿物学杂志, 2001, 20(4): 387-394.
    [56]卢龙,王汝成,薛纪越,等.黄铁矿氧化速率的实验研究[J].中国科学(D辑),地球科学, 2005, 35 (5): 434-440.
    [57] Nordstrom D K. Aqueous pyrite oxidation and the consequent formation of secondaryminerals[A]. Madison.Acid SulfateWeathering[M]. SoilScience Society, 1982, 37-56.
    [58] Mckibben M A, Barnes H L. Oxidation of pyrite in low temperature acidic solutions: ratelaws and surface texture[J ]. Geochimica et CosmochimicaActa, 1986, 50: 1509-1520.
    [59] Davis G B, AimR. Amodelof oxidation in pyrite mine wastes.I.Equations and approximatesolution[J]. Applied mathematical modelling, 1986, 10: 314-322.
    [60] Davis G B , Ritchie Aim. Amodel of oxidation in pyrite mine wastes.Ⅱ.The importance ofparticle size distribution[J]. Applied mathematical modelling, 1987, 11: 417-422.
    [61] Astrom M. Mobility of Al, Co, Cr, Cu, Fe, Mn, Ni and V in sulfide-bearing fine-grainedsediments exposed atmospheric O2: an experimental study[J]. Environmental Geology,1998, 36(3-4): 219-226.
    [62] Jennings S R, Dollhopf D J, Inskeep W P. Acid production from sulfide minerals usinghydrogen peroxide weathering[J].Applied Geochemistry, 2000, 15: 235-243.
    [63] Petrunic B M, Al TA, Weaver L. Atransmission electron microscopyanalysis of secondaryminerals formed in tungsten-mine tailings with an emphasis on arsenopyrite oxidation[J].Applied Geochemistry, 2006, 21: 1259-1273.
    [64] Lin Z. Mineralogical and chemical characterization of wastes from sulfuric acid industry inFalum, Sweden[J]. Environmental Geology, 1997, 30(3-4): 152-162.
    [65]陈天虎,冯军会,徐晓春,等.尾矿中硫化物风化氧化模拟实验研究[J].岩石矿物学杂志, 2002, 21(3): 298-302.
    [66] Wiersma C L ,Rimistidt J D. Rates of reaction of pyrite and marcasite with ferric iron atpH=2[J]. Geochimica et CosmochimicaActa, 1984, 48: 85-92.
    [67] Holmes P R ,Crundwell F K. The kinetics of the oxidation of pyrite by ferric ions anddissolved oxygen: an electrochemical study[J]. Geochimica et Cosmochimica Acta, 2000,64(2): 263-274.
    [68]朱继保,陈繁荣,卢龙,等.广东凡口Pb-Zn尾矿中重金属的表生地球化学行为及其对矿山环境修复的启示[J].环境科学学报, 2005, 25(3):414-422.
    [69] Nichplson R V, Gillham R W, Reardon E J. Pyrite oxidation in carbonate2buffered solution:2.Rate control byoxide coatings[J]. Geochimica et CosmochimicaActa, 1990, 54: 395-402.
    [70] Karthe S, Szargan R, Suoninen E. Oxidation of pyrite surfaces: a photoelectronspetroscopic study[J].Applied Surface Science, 1993, 72:157-170.
    [71] Blowes D W, Reardon E J, Jambor J L. The formation and potential importance ofcemented layers in inactive sulfide mine tailings[J]. Geochimica et Cosmochimica Acta,1991, 55: 965-978.
    [72]汪晴珠,许宏林.黄金选厂尾矿治理问题的探讨[J].国外金属矿选矿, 1996, 3: 31-33.
    [73]张淑会,薛向欣,刘然,等.尾矿综合利用现状及其展望[J].矿冶工程, 2005, 25(3):44-47.
    [74]王志方,吕波,李玉亮.有色矿山固态废弃物的应用与治理[J].有色矿山, 2000, (4):12-15.
    [75]朱维根.矿产资源开发与可持续发展[J].中国矿业, 2004, 13(9): 44-46.
    [76] Das S K, Kumar S, Ramachandraro P. Exploitation of iron ore for the development ofceramic tiles[J ].Waste Management, 2000, 20: 725- 729.
    [77]陈雯.尾矿综合利用综述[J].国外金属矿选矿, 1996, (10): 8-10.
    [78]邢军,宋守志,徐小荷.金矿尾砂微晶玻璃的制备[J ].中国有色金属学报, 2001, 11(2):319-322.
    [79]匡宇航.发光陶瓷的研制[M].北京:中国地质大学,2002.
    [80]袁世伦.金属矿山固体废弃物综合利用与处置的途径和任务[J].矿业快报, 2004, (9):1-4,11.
    [81] Smith R W, Misra M, Dubel J. Mineral Bioprocessing and the Future[J]. MineralEngineering, 1991(4): 1127-1141.
    [82]王康林.低品位黄铜矿细菌浸出机理研究[D].成都:成都理工大学, 2002.
    [83]李宏煦,邱冠周,胡岳华,等.大宝山废矿堆铜矿细菌浸出铜的研究[J].矿产综合利用,2000(5): 31-34.
    [84] Holmstrom H, Ljungberg J, Ohlander B. Role of carbonates in mitigation metal releasefrom mining waste: Evidence from humidity cells tests[J]. Environmental Geology, 1999,37: 267-280.
    [85] Schuring J, Kolling M, Schulz H D. The potential formation of acid mine drainage inpyrite-bearing hardcoal tailings under water-saturated conditions: an experimentalapproach[J]. Environmental Geology, 1997, 31(1-2): 59-65.
    [86]孙晓成,冯吉平,彭俊,等.长春南湖沉积物重金属污染特征研究[J].东北水利水电,2005, 23(11 ): 66-68.
    [87] RipleyEA. Environmental effects of mining[M]. Florida, St. Lucie Press, 1996.
    [88]曾永年,罗泰义,顾凯凯,等.紫木凼金矿开采过程中的环境效应: 1.污染状况对比[J].地质地球化学, 1999, 27(2):1-8.
    [89]曾永年,罗泰义,顾凯凯,等.紫木凼金矿开采过程中的环境效应: 2.污染趋势分析.[J]地质地球化学, 1999, 27(2):9-15.
    [90]尚爱安,党志,漆亮,等.两类典型重金属土壤污染研究[J].环境科学学报, 2001,21(4): 501-503.
    [91]张国平,刘丛强,杨元根,等.贵州省几个典型金属矿区周围河水的重金属分布特征[J].地球与环境, 2004, 32(1): 82-85.
    [92]周永章,宋书巧,张澄博,等.河流对矿山及矿山开发的水环境地球化学响应—以广西刁江水系为例[J].地质通报, 2005, 25(10-11): 940-944.
    [93]宋书巧,吴欢,黄钊,等.刁江沿岸土壤重金属污染特征研究[J].生态环境, 2005,14(1): 34-37.
    [94] Gray N F. Acid mine drainage composition and the implications for its impact on loticsystems[J].Water Research, 1998, 32(7): 2122-2134.
    [95] Naickera K, Cukrowskaa E, McCarthyb T S. Acid mine drainage arising from gold miningactivity in Johannesburg, South Africa and environs[J]. Environmental Pollution, 2003, 122:29-40.
    [96] Gomes E, Favas P. Mineralogical controls on mine drainage of the abandoned Ervedosa tinmine in north-eastern Portugal[J].Applied Geochemistry, 2006, 21: 1322-1334.
    [97] Hochella M F, White A F. Mineral-water interface geochemistry: An overview[J]. Reviewsin Mineralogy, 1990, 23:1-16.
    [98] Castro-Larrgoitia J, Kramar U, Puchelt H. 200 years of mining activities at La Paz/San LuisPotos/Moxico-Consequences for environment and geochemical exploration[J]. J ofgeochemical exploration, 1997, 58(81-91).
    [99] Bi X Y, Feng X B, Yang YG, et al. Environmental contamination of heavy metals fromzincsmelting areas in Hezhang County, western Guizhou, China[J]. Environment International,2006, 32: 883-890.
    [100] Rasmussen P E. Current methods of estimating atmospheric mercury fluxes in remoteareas[J]. Environmental Science andTechnology, 1994, 28: 2233-2241.
    [101] Lindberg S E, Hanson P J, Meyers T P, et al. Air/surface exchange of mercury vapor overforests-The need for a reassessment of continental biogenic emissions[J]. AtmosphericEnvironment, 1998, 32: 895-908.
    [102]冯新斌, Sommar J, Gardfeldt K,等.夏季自然水体与大气界面间气态总汞的交换通量[J].中国科学(D辑), 2002, 32(7): 609-616.
    [103]冯新斌,陈业材,朱为国.土壤挥发性汞释放通量的研究[J].环境科学进展, 1996,17(2): 20-25.
    [104] Feng X, Tang S, Shang LH, et al. Total gaseous mercury in the atmosphere of Guiyang, PRChina[J].The Science of theTotal Environment, 2002, 304: 61-72.
    [105] Feng X, Hong Y. Modes of occurrence of mercury in coals from Guizhou, People'sRepublic of China. Fuel, 1999, 78(10):1181-1188.
    [106] Tan H, He J L, Lindqvist O, et al. Mercury emission from its production in GuizhouProvince, China[J]. Guizhou Science, 1997, 15(2): 112-117.
    [107]王少锋,冯新斌,仇广乐, et al.贵州滥木厂汞矿区土壤与大气间气态汞交换通量及影响因素研究[J].地球化学, 2004, 33(4): 405-503.
    [108] Schroeder W H, Munthe J. Atmospheric mercury-An overview[J]. AtmosphericEnvironment,, 1998, 32(5): 809-822.
    [109] Gustin M, Lindberg S E, Austin K, et al. Assessing the contribution of natural sources toregional atmospheric mercury budgets[J]. The Science of the Total Environment, 2000, 259:61-71.
    [110] Nriagu J N, Pacyna J M. Quantitative assessment of worldwide contamination of air, waterand soils bytrace metals[J]. Nature, 1988, 333: 134-139.
    [111] Salomons W. Environmental impact of metals derived from mining activities: Processes,predictions, prevention[J ]. J of geochemical exploration, 1995, 52: 5-23.
    [112] Riba I, DelValls T A, Reynoldson TB, et al. Sediment quality in Rio Guadiamar(SW, Spain)after a tailing dam collapse: Contamination, toxicity and bioavailability[J]. EnvironmentInternational, 2006, 32: (891-900).
    [113] Clare G. Mineralogy and weathering processes in historical smelting slags and their effecton the mobilisation of lead[J]. Geochemical Exploration, 1997, 58(2-3): 249257.
    [114] Seal R R, Foley N K. Progress on geoenvironmental models for selected mineral deposittypes[R]. US Geological SurveyOpen-File Report 02-195, 1995.
    [115]宋书巧,周永章,周兴,等.土壤砷污染特点与植物修复探讨[J].热带地理, 2004,24(1): 6-9.
    [116] Best G A, Aikman D I. The treatment of ferruginous groundwater from an abandondedcolliery[J].Water Pollute Control, 1983, 82: 557-566.
    [117] Banks D, Younger P L, Arnesen R, et al. Mine-water chemistry: the good, the bad and theugly[J]. Environment Geology, 1997, 32(3): 157-174.
    [118]冯伟松,杨军,叶志鸿,等.凡口铅锌矿湿地处理系统的土壤原生动物[J].动物学杂志,2004, 39(1): 2-11.
    [119]付善明,周永章,高全洲,等.金属硫化物矿山环境地球化学研究述评[J].地球与环境,2006, 34(3): 23-29.
    [120] Johnson D B, Hallberg K B. Acid mine drainage remediation options: a review[J]. TheScience of theTotal Environment, 2005, 338: 3-14.
    [121]饶运章,侯运炳,潘建平,等.尾矿库废水pH值对重金属污染的影响及治理技术研究[J].中国矿业, 2003, 12(12): 36-37.
    [122] Conca J L, Wright J. An Apatite II permeable reactive barrier to remediate groundwatercontaining Zn, Pb and Cd[J].Applied Geochemistry, 2006, 21: 1288-1300.
    [123] Mays PA, Edwards G S. Comparison of heavy metal accumulation in a natural wetland andconstructed wetlands receiving acid mine drainage[J]. Ecological Engineering, 2001, 16:487-500.
    [124]招文锐,杨兵,朱新民,等.人工湿地处理凡口铅锌矿金属废水的稳定性分析[J].生态科学, 2001, 20(4): 16-20.
    [125] Berger A C, Bethke C M, Krumhansl J L. A process model of natural attenuation indrainage froma historic mining district[J].Applied Geochemistry, 2000, 15: 655-666.
    [126] Johnson R H, Blowes D W, Robertson W D, et al. The hydrogeochemistry of the NickelRim mine tailings impoundment, Sudbury, Ontario[J]. J of Contaminant Hydrology, 2000,41(1-2): 49-80.
    [127]栾兆坤,汤鸿霄.硫酸铁氧化物的表征及其对重金属吸附作用的研究[J].环境科学学报, 1994, 14(2): 129-136.
    [128]栾兆坤,刘文新,汤鸿宵.受酸性矿水污染河流中悬浮颗粒对铜的吸附特征[J].环境科学学报, 1998, 18(4): 385-391.
    [129] McGregor R G, Blowes D W, Jambor J L, et al. The solid-phase controls on the mobility ofheavy metals at the Copper Cliff tailings area, Sudbury, Ontario, Canada[J]. J ofContaminant Hydrology, 1998, 33(3-4): 247-271.
    [130] Smith A, Hudson-Edwards K, Dubbin W, et al. Defects and impurities in jarosite: Acomputer simulation study[J].Applied Geochemistry, 2006, 21: 1251-1258.
    [131] Gunsinger M R, Ptacek C J, Blowes D W, et al. Mechanisms controlling acid neutralizationand metal mobility within a Ni-rich tailings impoundment[J]. Applied Geochemistry, 2006,21: 1301-1321.
    [132] Benjamin M M, Leckie J O. Multiple-site adsorption of Cd, Cu, Zn and Pb on amorphousiron oxyhydroxide[J]. J of Colloid and Interface Science, 1981, 79: 209-221.
    [133] McGregor R G, Blowes D W, Jambor J L. Mobilization and attenuation of heavy metalswithin a nickel mine tailing impoundment near Sudbury, Ontario, Canada[J].Environmental geology, 1998, 36(3-4): 305-319.
    [134] Kinniburgh D G, Jackson M L, Syers J K. Adsorption of alkaline earth, transition, andheavy metal cations by hydros oxide gels of iron and aluminum[J]. Soil Science Society ofAmerican J, 1976, 40: 796-799.
    [135] Shum M, Lavkulich L. Speciation and solubility relationships of Al, Cu and Fe in solutionsassociated with sulfuric acid leached mine waste rock[J]. Environmental geology, 1999,38(1): 59-68.
    [136] Cornell R M. Simultaneous incorporation of Mn, Ni and Co in the goethite (α-FeOOH)structure[J]. ClayMinerals, 1991, 26: 427-430.
    [137] Blowes D W, Jambor J L. The pore-water geochemistry and the mineralogy of the vadosezone of sulfide tailings, Waite Amulet, Quebec, Canada[J]. Applied Geochemistry, 1990, 5:327-346.
    [138] Lin Z X, Roger B, Herbert Jr. Heavy metal retention in secondary precipitates from a minerock dump and underlying soil, Dalarna, Sweden[J]. Environmental geology, 1997, 33(1):1-12.
    [139] Pratt A R, Muir I J, Nesbitt H W. X-ray photoelectron and Auger electron spectroscopicstudies of pyrrhotite and mechanism of air oxidation[J]. Geochimica et Cosmochimica Acta,1994, 58: 827-841.
    [140] Lee P K, Ballif P, Touray J C. Geochemical behaviour and relative mobility of metals (Mn,Cd, Zn, Pb) in recent sediments of a retention pond along the A-71 motorway in SologneFrance[J]. Environmental Geology, 1997, 32(2): 142-152.
    [141] Walder I F, Chavez Jr W X. Mineralogical and geochemical behaviour of mill tailingmaterial produced from lead-zine skarn mineralization, Hanover, Grant County, NewMexico, USA[J]. Environmental Geology, 1997, 26(1): 1-18.
    [142] Merington G, Aloway B J. The transfer and fate of Cd, Cu, Pb and Zn from two historicmetalliferous mine sites in the U. K.[J].Applied Geochemistry, 1994, 9: 677-687.
    [143] Dold B, Fontbote L. A mineralogical and geochemical study of element mobility in sulfidemine tailings of Fe oxide Cu-Au deposits from the Punta del Cobre belt, northern Chile[J].Chemical Geology, 2002, 189: 135-163.
    [144]周启星,孔繁翔,朱琳.生态毒理学[M].北京:科学出版社, 2006.
    [145] USEPA. DrinkingWater Standards and HealthAdvisories.Washington DC. USA., 2000.
    [146] WHO. Water, sanitation and health, Guidelines for drinking water quality, Vol 2: Healthcriteria and other supporting information. Geneva 19999. Also accessible at:http://www.who.int
    [147] Swartjes F A. Risk-based assessment of soil and groundwater quality in the Netherlands:Standards and remediation urgency[J]. RiskAnalysis, 1999, 19(6): 1235-1249.
    [148] Chang A C, Page A L, Asano T. Developing human health-related chemical guidelines forreclaimed wastewater and sewage sludge application in agriculture. Submitted to WorldHealth Organization, Geneva, 1993.
    [149]潘根兴, Chang A C, Page A L.土壤-作物污染物迁移分配与食物安全的评价模型及其应用.应用生态学报, 2002, 13(7): 854-858.
    [150] Janssen R P T, Posthuma L, Baerselman R. Equilibrium partitioning of heavy metals inDutch field soils I.Relationship between metal partition coefficients and soilcharacteristics[J]. EnvironmentalToxicologyand Chemistry, 1997, 16(12): 2479-2488.
    [151] USEPA. Part-503 Standards for the Use or Disposal of Sewage Sludge. Federal Register 58,1993: 9387-9404.
    [152] Wilsonil B, Lang B. The dispersion of heavy metals in the vicinity of Britannia Mine,British Columbia, Canada[J]. Ecotoxicology and Environmental Safety, 2005 (60):269-276.
    [153]林炳营.环境地球化学简明原理[M].北京:冶金工业出版社, 1990.
    [154]韩爱民,蔡继红,屠锦河.水稻重金属含量与土壤质量的关系[J].环境监测管理与技术, 2002, 14(5): 27-28.
    [155]杨振,胡明安.大宝山采矿活动对环境的重金属污染调查[J].环境监测管理与技术,2006, 18(6): 21-24.
    [156]李建政.环境毒理学[M].北京:化学工业出版社, 2006.
    [157]黄铭洪.环境污染与生态恢复[M].北京:科学出版社, 2003.
    [158]束文圣,张志权,蓝崇钰.广东乐昌铅锌尾矿的酸化潜力[J].环境科学, 2001, 22(3):113-117.
    [159]赵宇鴳.粤北大宝山含硫化物矿山开发的镉环境地球化学及生态效应—兼论镉在表生系统的环境地球化学表现[D].中山大学硕士学位论文, 2006.
    [160]吴永贵,林初夏,童晓立,等.大宝山矿水外排的环境影响:Ⅰ.下游水生生态系统[J].生态环境, 2005, 14(2): 165-168.
    [161] Lin C, Wu L, Wu Y. Agricultural soils irrigated with acidic mine water: acidity, heavymetals, and crop contamination[J].Australian J of Soil Research, 2005, 43(7): 819-826.
    [162] Lin C, Lin J. Heavy Metals in a Sulfidic Minespoil: Fractions and Column Leaching.Pedospere, 2003, 13(1): 75-80.
    [163]陈清敏,张晓军,胡明安.大宝山铜铁矿区水体重金属污染评价[J].环境科学与技术,2006, 29(6): 64-65,71.
    [164]蔡美芳,党志,文震,等.矿区周围土壤中重金属危害性评估研究[J].生态环境, 2004,13(1): 6-8.
    [165]周建民,党志,司徒粤,等.大宝山矿区周围土壤重金属污染分布特征研究[J].农业环境科学学报, 2004, 23(6): 1172-1176.
    [166]周建民,党志,蔡美芳,等.大宝山矿区污染水体中重金属的形态分布及迁移转化[J].环境科学研究, 2005, 18(3):5-10.
    [167]李永涛,刘科学,张池,等.广东大宝山地区重金属污染水田土壤的Cu Pb Zn Cd全量与DTPA浸提态含量的相互关系研究[J].农业环境科学学报, 2004, 23(6): 1110-1114.
    [168]李永涛,张池,刘科学,等.粤北大宝山高含硫多金属矿污染的水稻土壤污染元素的多元分析[J].华南农业大学学报, 2005, 26(2): 22-25,34.
    [169]李永涛, Becquer T, Quantin C,等.酸性矿山废水污染的水稻田土壤中重金属的微生物学效应[J].生态学报, 2004, 24(11): 2430-2436.
    [170]杨小强,张轶男,张澄博,等.矿山重金属污染土壤的磁化率特征及其意义—以广东大宝山多金属矿床为例.中山大学学报(自然科学版), 2006, 45(4): 98-102.
    [171]林初夏,黄少伟,童晓立,等.大宝山矿水外排的环境影响:Ⅲ.综合治理对策[J].生态环境, 2005, 14(2): 173-177.
    [172]蔡锦辉,吴明光,汪雄武,等.广东大宝山多金属矿山环境污染问题及启示.华南地质与矿产, 2005(4): 50-54.
    [173]陈炳辉,韦慧晓,周永章.粤北大宝山多金属矿山的生态环境污染原因及治理途径[J].中国矿业, 2006, 15(6): 40-42.
    [174]刘姤群,杨世义.粤北大宝山矿床成矿地质特征及成因讨论[M].南岭地质矿产文集第二辑.北京:地质出版社, 1986.
    [175]汤吉方,刘家齐,傅太安.粤北大宝山及其外围地区多金属矿床成矿条件、构造控岩控矿规律及隐伏矿床预测地质特征及成因讨论[M].南岭地质矿产文集第三辑.北京:地质出版社, 1992.
    [176]蔡锦辉,刘家齐.粤北大宝山多金属矿区岩浆岩的的成岩时代[J].广东地质, 1994,8(2): 45-52.
    [177]涂光炽.中国层控矿床地球化学[M].北京:科学出版社, 1988.
    [178]邱世强.关于大宝山层状多金属矿床成因的初步探讨[J].地质论评, 1981, 27(4):330-340.
    [179]顾连兴,徐克勤.论大陆地壳断裂凹陷带中的华南型块状硫化物矿床[J].矿床地质,1986, 5(2): 1-13.
    [180]葛朝华,韩发.大宝山铁多金属矿床的海相火山热液沉积成因特征[J].矿床地质, 1986,5(1): 1-12.
    [181]杨振强.大宝山块状硫化物矿床成因:泥盆纪海底热事件[J].华南地质与矿产,1997(1): 7-17.
    [182]邓军,陈学明,方云,等.粤北盆地流体系统及其矿化特征[J].地学前缘, 2000, 7(3):97-102.
    [183]王建新.广东大宝山南部铅-锌多金属矿床地质特征及找矿方向[J].矿产与地质, 2006,20(2): 142-146.
    [184]姚德贤,曾令初.论大宝山矿床成因[J].中山大学学报(自然科学版), 1994, 33(3):91-100.
    [185]陈强.大宝山铜选厂技改实践.南方金属, 2004, (1):31-33.
    [186]南京土壤研究所.土壤理化分析[M].上海:上海科学技术出版社, 1978.
    [187]秦荣大,郑永章,译.土壤分析标准方法(日本:土壤标准分析委员会著)[M].北京:北京大学出版社, 1998.
    [188]刘光崧.土壤理化分析与剖面描述[M].北京:中国标准出版社, 1996.
    [189]中国地质调查局.生态地球化学评价样品分析技术要求(DD2005-3)[S].地质调查技术标准, 2005.
    [190] Tessier A, Campbell PG C, Bisson M. Sequential extraction procedure for the speciation ofparticulate trace metals[J].Analytical Chemistry, 1979, 51(7): 844-851.
    [191]黄宝荣.矿山重金属污染土壤化学修复技术研究[D].湖南大学硕士学位论文, 2004.
    [192]卢瑛,龚子同.南京城市土壤中重金属的化学形态分布[J].环境化学, 2003, 22(2):131-136.
    [193] Benitezl N, Duboisl P. Evalution of the selectivity of sequential extraction proceduresapplied to the speciation of cadmium in soil[J]. International J Environment AnalyticalChemistry, 1999, 74: 289-303.
    [194] Morin K A, Hutt N M. Meaured ratios of sulfide oxidation and neutrlization in kinetic tests:statiscal lessons fromthe database[J]. Mining and Environment, 1995, 2(6): 525-536.
    [195]陈天虎,冯军会,徐晓春.国外尾矿酸性排水和重金属淋滤作用研究进展[J].环境污染治理技术与设备, 2001, 2(2): 41-46.
    [196] Alpers C N, Blowes D W. Environmental geochemistry of sulfide oxidation[M]. Columbus,American Chemical Sciety, 1994.
    [197]刘霞,刘树庆,王胜爱.河北主要土壤中Cd和Pb的形态分布及其影响因素[J].土壤学报, 2003, 40(3): 393-400.
    [198]单孝全,王仲文.形态分析与生物可给性[J].分析实验室, 2001, 20(6): 103-108.
    [199]单孝全,张淑贞.形态分析、分级分析和土壤中重金属元素的生物可给性研究[J].戴树桂主编:环境化学进展,北京:化学工业出版社, 2005:181-206.
    [200]袁可能.植物营养元素的土壤化学[M].北京:科学出版社, 1983.
    [201] Stockwell J, Smith L, Jambor J L, et al. The relationship between fluid flow and mineralweathering in heterogeneous unsaturated porous media: A physical and geochemicalcharacterization of a waste-rock pile[J].Applied Geochemistry, 2006, 21(8): 1347-1361.
    [202]吴攀,刘丛强,张国平,等.黔西北炼锌地区河流重金属污染特征[J].农业环境保护,2002, 21(5): 443-446.
    [203] Chou H T, Ahn J S, Jung M C. Seasonal variations and chemical forms of heavy metals insiols and dusts fromthe satellite cities of Seoul, Korea[J]. Environmental Geochemistry andHealth, 1998, 20(2): 77-86.
    [204] Jung M C. Heavy metal contamination of soils and waters in and around the ImcheonAu-Ag mine, Korea[J].Applied Geochemistry, 2001, 16(11-12): 1369-1375.
    [205] Forstner U. Contaminted aquatic sedments and waste site as a tool for studying minebombs[J]. Contamination Studies in Environment Science, 1993, 55: 259-292.
    [206] Muller G. Index of geoaccumulation in sediments of the Rhine River[J]. Geojournal,1969(2): 108-118.
    [207] Forstner U, Ahlf W, Calmano W. Sediment Criteria devement[A]. In: Heling D, Rothe P,Forstner U. Sediments and environmental geochemistry[C]. Berlin: Springer, 1990.
    [208] Wu J, Laird D A, Thompson M L. Sorption and desorption of copper on soil claycomponents[J]. J of Environmental Quality, 1999, 28: 334-338.
    [209]沈学优,陈曙光,王烨,等.不同粘土处理水中重金属的性能研究[J].环境污染与防治,1998, 20(3): 15-18.
    [210]尚爱安,刘玉荣,梁重山,等.土壤中重金属的生物有效性研究进展[J].土壤, 2000(6):294-300, 314.
    [211] Nieboer E, Thomassen T. The second international symposium on speciation of elements intoxicologyand in environmental and biological sciences[J].Analyst, 1995, 120: 30.
    [212] Kot A, Namiesnik J. The role of speciation in analytical chemistry trends[J]. AnalyticalChemistry, 2000, 19: 69-79.
    [213] Templeton D M F, Ariese R, Cornelis L G, et al. Guidelines for terms related to chemicalspeciation and fractionation of trace elements. Definitions, structural aspects, andmethodological approaches. Pure andApplied Chemistry, 2000, 72: 1453-1461.
    [214]陈怀满.环境土壤学[M].北京:科学出版社, 2005.
    [215] Sauve S, Norvell W A, McBride M. et al. Speciation and complexation of cadmium inextracted soil solutions[J]. Environmental Science andTechnology, 2000, 34: 291-296.
    [216]杨苏才.锌、镉、镍、铅在绿洲土壤中形态分布的实验研究[D].兰州大学硕士学位论文, 2006.
    [217]王亚平,黄毅,王苏明,等.土壤和沉积物中元素的化学形态及其顺序提取法[J].地质通报, 2005, 24(8): 728-734.
    [218] Boekhold A E, Temminghoff E J M, Vanderzee S E A T M. Influence of electrolytecomposition and pH on cadmium adsorption by an acid sandy soil[J]. J of Soil Science,1993, 44: 85-96.
    [219]廖敏,黄昌勇. pH对镉在土水系统中的迁移和形态的影响[J].环境科学学报, 1999,19(1): 81-86.
    [220] Sauve S, Mcbride M B, Hendershot WH. Soil solution speciation of lead: effects of organicmatter and pH[J]. Soil Science SocietyofAmerican J, 1998, 62: 618-621.
    [221]国家环境保护局.环境背景值和环境容量研究[M].北京:科学出版社, 1992.
    [222]黄国锋,吴启堂.绿色食品产地土壤环境质量现状评价标准的修正[J].农业环境保护,2000, 19(2): 123-125.
    [223]关伯仁.评内梅罗的污染指数[J].环境科学, 1979, 4(4): 67-71.
    [224] McBride M, Martinez C E, S. S. Copper(Ⅱ) activity in aged suspensions of goethite andorganic matter[J]. Soil Science SocietyofAmerica J, 1998, 62(6): 1542-1548.
    [225] HE Q B ,SINGH B R. Effect of organic matter on the distribution,extractability and uptakeof cadmium in soils[J]. J of Soil Science, 1993, 44: 641-650.
    [226] Brown S L, Chaney R L, Angle J S,等. . Organic carbon and the phytoavailability ofcadmium to lettuce in long term biosolids amended soils[J]. J of Environmental Quality,1998, 27(5): 1071-1078.
    [227] Sloan J J, Dowdy R H, Dolan M S,等. . Long-term effects of biosolids applications onheavy metal bioavailability in agricultural soils[J]. J of Environmental Quality, 1997, 26:966-974.
    [228] Adriano D C.Trace elements in terrestrial envirovments[M]. Berlin: Springer, 2001.
    [229]吴攀,刘丛强,杨元根.炼锌固体废渣中重金属(Pb、Zn)的存在状态及环境影响.地球化学, 2003, 32(2): 139-145.
    [230] Dang Z, Liu C Q, Martin J H. Mobility of heavy metal associated with the naturalweathering of coa mine spoils[J]. Environmental Pollution, 2002, 118(3): 419-426.
    [231]周东美,王玉军,郝秀珍.铜矿区重金属污染分异规律初步研究[J].农业环境保护,2002, 21(3): 225-227.
    [232] AllowayB J. Heavy metals in soils[M]. London: BlackieAcademic and Professional, 1995.
    [233] Hakanson L. An ecological risk index for aquatic pollution control, a sedimentologicalapproach[J].Water Research, 1980, 14: 975-1001.
    [234]傅柳松.农业环境学[M].北京:中国林业出版社, 2003.
    [235]马少健,胡治流,陈建华,等.硫化矿尾矿重金属离子溶出实验研究[J].广西大学学报(自然科学版), 2002, 27(4):273-276.
    [236]马少健,王桂芳,陈建新,等.硫化矿尾矿堆的温度变化和动态淋溶规律研究[J].金属矿山, 2004, (10): 59-62.
    [237]胡宏伟,束文圣,蓝崇钰,等.乐昌铅锌尾矿的酸化及重金属溶出的淋溶实验研究[J].环境科学与技术, 1999, (3):1-4.
    [238]张汉波,段昌群,胡斌,等.不同年代废弃的铅锌矿渣堆中重金属的动态变化[J].农业环境科学学报, 2003, 22(1):67-69.
    [239]蓝崇钰,束文圣,张志权.酸性淋溶对铅锌尾矿金属行为的影响及植物毒性[J].中国环境科学, 1999, 16(6): 461-465.
    [240]饶运章,侯运炳.尾矿库废水酸化与重金属污染规律研究[J].辽宁工程技术大学学报,2004, 23(3): 430-432.
    [241]李改枝,郭博书,李景峰.黄河水中沉积物与锌、镉液-固界面的作用[J].环境污染与防治, 2001, 23(4): 143-145.
    [242]吴攀,刘丛强,张国平,等.黔西北炼锌地区河流重金属污染特征[J].农业环境保护,2002, 21(5): 443-446.
    [243]陈怀满.土壤-植物系统中的重金属污染[M].北京:科学出版社, 1996.
    [244]许嘉琳,杨居荣.陆地生态系统中的重金属[M].北京:中国环境科学出版社, 1995.
    [245]陈华勇,欧阳建平,马振东.大冶有色冶炼厂附近农田镉污染的现状与治理对策[J].土壤, 2003(1): 76-79,82.
    [246] Galan E, Gomez-Ariza J L, Gonzalez I. Heavy metal partitioning in river sedimentsseverely polluted by acid mine drainage in the Iberian Prite Belt[J]. Applied Geochemistry,2003, 18(3): 409-421.
    [247] Smit C E, VanGestel C A M. Effects of soil type, prepercolation, and ageing onbioaccumulation and toxicity of zinc for the springtail Folsomia Candida[J]. EnvironmentalToxicologyand Chemistry, 1998, 17:1132-1141.
    [248] Song Y, Wilson M J, Moon H S. Chemical and mineralogical forms of lead, zinc andcadium in particle size fractions of some wastes, sediments and soils in Korea[J]. AppliedGeochemistry, 1999, 14: 621-633.
    [249]王友保,王兴明,潘超,等.芜湖市工业区土壤重金属形态分布特征[J].安徽师范大学学报, 2005, 28(3): 337-380.
    [250]熊毅,李庆边.中国土壤[M].北京:科学出版社, 1987.
    [251]刘清,王子健,汤鸿霄.重金属形态与生物毒性及生物有效性关系的研究进展[J].环境科学, 1996, 17(1): 89-92.
    [252]钱进,王子健,单孝全,等.土壤中微量金属元素的植物可给性研究进展[J].环境科学,1995, 16(6): 73-75.
    [253]王学锋,杨艳琴.土壤一植物系统重金属形态分析和生物有效性研究进展[J].化工环保, 2004, 24(1): 24-27.
    [254]孙敬亮,武文钧,赵瑞雪,等.重金属土壤污染及植物修复技术[J].长春理工大学学报,2003, 26(4): 46-48.
    [255]吴新民,潘根兴.影响城市土壤重金属污染因子的关联度分析[J].土壤学报, 2003,40(6): 921-929.
    [256]隆茜,张经.陆架区沉积物中重金属研究的基本方法及其应用[M].海洋湖沼通报,2002, 3(3): 25-35.
    [257]杨元根, Paterson E, Canpbell C.城市土壤中重金属元素的积累及微生物效应[J].环境科学, 2001, 22(3): 44-48.
    [258]黄益宗.镉与磷、锌、铁、钙等元素的交互作用及其生态学效应[J].生态学杂志, 2004,23(2): 92-97.
    [259]李博文,郝晋珉.土壤镉、铅、锌污染的植物效应研究进展[J].河北农业大学学报, 2002,25(S1): 74-76.
    [260]祖艳群,李元,陈海燕,等.蔬菜中铅镉铜锌含量的影响因素研究[J].农业环境科学学报, 2003, 22(3): 289-292.
    [261] Davies B E. Inter-relationship between soil properties and the uptake of cadmium, copper,lead and zinc from contaminated soil by radish(Raphanus sativus L)[J]. water air and soilpollution, 1992, 63: 331-342.
    [262]杨仁斌,曾清如,周细红,等.植物根系分泌物对铅锌尾矿污染土壤中重金属的活化效应[J].农业环境保护, 2000, 19(3): 152-155.
    [263]杨强,林琦,王兆炜,等.重金属污染土壤H2O2预处理的植物修复技术研究[J].浙江大学学报(农业与生命科学版), 2005, 31(3): 315-320.
    [264]聂湘平,蓝崇钰,束文圣,等.锌对大叶相思-根瘤菌共生固氮体系影响研究[J].植物生态学报, 2002, 26(3): 264-268.
    [265]申鸿,陈保东,冯固,等.锌污染土壤接种丛枝菌根真菌对玉米苗期生长的影响[J].农业环境保护, 2002, 21(5): 399-402.
    [266]董艺婷,崔岩山,王庆仁.单一与复合污染条件下两种敏感性植物对Cd、Zn、Pb的吸收效应[J].生态学报, 2003, 23(5): 1018-1024.
    [267]涂从,郑春荣,陈怀满.土壤-植物系统中重金属与养分元素交互作用[J].中国环境科学, 1999, 17(4): 526-529.
    [268]周启星,高拯民.作物籽实中Cd与Zn的交互作用及其机理的研究[J].农业环境保护,1994, 13(4): 148-151.
    [269] Choudhary M, Bailey L D, Grant C A. Effect of Zn on the concentration of Cd and Zn inplant tissue of two durumwheat lines[J]. Canadian J of Plant Science, 1995, 75: 445-448.
    [270] Oliver D P, Hannam R, Tiller K G. The effects of zinc fertilization on cadmiumconcentration in wheat grain[J]. J of Environmental Quality, 1994, 23: 705-711.
    [271]郭秀璞,孔祥生,张妙霞.锌对小麦镉毒害的缓解效应[J].河南农业大学学报, 1999,33(2): 211-214.
    [272] Bell L C. Establishment of native ecosystems after mining: Australian experience acrossdiverse biogeographic zones[J]. Ecological Engineering, 2001, 17: 179-186.
    [273]宋书巧,梁利芳,周永章,等.广西刁江沿岸农田受矿山重金属污染现状与治理对策[J].矿物岩石地球化学通报, 2003, 22(2): 152-155.
    [274]莫测辉,蔡全英,王江海,等.城市污泥在矿区废弃地复垦上的应用探讨[J].生态学杂志, 2001, 20(2): 44-47.
    [275]宋书巧,周兴,吴欢,等.城市垃圾肥在锡矿尾砂库植被重建中的应用[J].农村生态环境, 2004, 20(2): 59-61,76.
    [276] Lin C, Clark M W, McConchie D, et al. Effects of Bauxsol in the immobilisation of solubleacid and environmentally significant metals in acid sulfate soils[J]. Australian J of SoilResearch, 2002, 40: 556-563.
    [277]束文圣,张志权,黄立南,等.双穗雀稗重金属耐性种群在铅锌尾矿生长的野外实验研究[J].中山大学学报(自然科学版), 2000, 39(4).
    [278] Ohnson D B, Hallberg K B. Acid mine drainage remediation options: a review [J]. ScienceofTotal Environment, 2005, 338: 3-14.
    [279]张嫦,吴莉莉,周小菊,等.过氧化钙的制备及其在废水处理中的应用[J].化工环保,2004, 24(1): 62-65.
    [280] Matlock M M, Howerton B S, Atwood D A. Chemical precipitation of heavy metals fromacid mine drainage[J].Water Research, 2002, 36: 4757-4764.
    [281]单孝全.土壤的植物修复与超富集植物研究[J].分析科学学报, 2004, 20(4): 430-433.
    [282]仇荣亮,汤叶涛,方晓航,等.重金属污染土壤的植物修复及其机理研究[J].中山大学学报(自然科学版), 2004, 43(6): 144-49.
    [283]陈爱胜,林初夏,龙新宪,等.不同土壤处理对东南景天吸取土壤中锌和镉效率的影响[J].生态环境, 2004, 13(4): 556-559.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700