用户名: 密码: 验证码:
小型泥浆取样振动筛结构及动力学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在油田的勘探和开发阶段,首要工作就是要勘测地质构造,划分钻井地质剖面。在勘测的过程中,通过对岩样的分析,了解钻井所穿过的各地质时代地层的层序、埋藏深度、地层厚度和岩石性质,进而了解油气生、储、盖层的构造位置、岩性特征及蕴含油气等情况,为油田储量计算、油区井网调整及钻井过程中钻井液配置、钻头使用、油层压裂、酸化等工程提供基础资料。在钻井过程中,随着泥浆一起被带至地面的那些地下岩石碎块叫作岩屑,工程实际中,常取颗粒较大的岩屑作为岩样进行分析。本文采用小型泥浆取样振动筛对泥浆进行筛分,在筛分的同时向筛面喷水,将细料和泥质冲洗掉从而达到清除岩屑获得符合要求岩样的目的,而振动筛的设计是否合理成为能否获得符合要求岩样的关键。振动筛的设计需要满足以下几个方面:首先要满足振动要求以实现对物料筛分的需求;其次,振动筛应有一定的刚度和强度以达到较长的工作寿命、较高的可靠性等基本要求;再次,振动筛在完成一个油井岩样的提取后,要移到下一个油井进行新的岩样提取,因此所设计的振动筛要求结构简单、体积小、重量轻,便于拆装和运输。
     本论文就是基于这种需求,进行振动筛的结构设计和动力学分析,研究内容主要包括以下几个方面:
     (1)振动筛动力学参数优化。分析物料粒子在筛面上的运移规律,得出各动力学参数之间的关系,建立数学模型,编写优化程序,对各动力学参数进行优化,得出在满足处理量的条件下,振动筛有最高效率的一组动力学参数。
     (2)振动筛结构设计和动力学分析。根据所优化的动力学参数,合理选择激振源并设计减振系统,初步设计振动筛的整体结构,根据振动筛的整体结构,建立振动筛的力学模型,进行动力学分析,计算振动筛的固有频率和系统响应,初步判断振动筛的结构合理性。
     (3)筛箱的有限元模型的建立。首先建立筛箱的三维模型,然后将三维模型导入有限元分析软件中进行网格划分。在网格划分前,对筛箱进行简化,去掉一些不必要的约束孔和工艺孔。本文所分析的振动筛属于小型振动筛,筛板质量不能忽略,而过多的筛孔会使网格变得特别的复杂,因此在简化的过程中,将筛板简化为一等质量的平板结构。最后对整个筛箱进行抽取中面,用壳单元对中面进行网格划分,并附壳单元厚度以板厚。
     (4)筛箱的有限元分析。对筛箱进行模态分析,得出筛箱的前15阶固有频率及其对应的阵型图,判断振动筛的工作频率是否落在固有频率附近;对筛箱进行谐响应分析,得出筛箱的位移云图和应力云图,分析云图并对筛箱不合理的部分进行局部改进。
     本文所研究的内容对振动筛动力学参数的优化、结构设计和筛箱结构改进具有一定的指导意义,为小型泥浆取样振动筛的设计提供理论基础和事实依据。
During the exploration and exploitation phase of oil field, the first tasks of field geological work is to figure out the geological formation and draw the geological well log. By determining the strata sequence, burial depth, stratigraphic thickness and the rocks' characteristics of the drilled strata formed in different geological era, we can gain knowledge of the formation and reserves of oil and gas, the constitution and position of cap rock, the lithologic character and the gas-oil conditions and so on in order to provide fundamental information for the calculation of oil reserves, the adjustment of well grid in the oil zone as well as for the drilling fluid configuration, the use of the drill bit, pressure test on oil layer, acidification and other projects carried out during the drilling process. In the course of drilling, we usually call those rock fragments which are borne on the earth by the mud debris. Rock fragments of large uniformly sized solids will be used to analyze rock sample in the engineering practice.In the paper we use small vibratory screen for mud screening. Meanwhile, water will be sprayed onto the screen surface to wash out the mud and the fine materials so as to clear the debris and obtain the desired rock sample. Therefore, a reasonable design for the vibrating screen is the key to get the desired rock sample. In terms of designing a vibrating screen, the screen should first screen out the given material according the vibration requirement; Second, the screen should be of certain rigidity and hardness in order to meet the basic requirements such as long working life, high reliability; last but not the least, the designed vibrating screen should be of simple structure, small volume, light weight and easy displacement, because it needs to be transported to new oil wells for sampling.
     On the basis of these demands, the content of this study includes the following aspects when the structure and the dynamics of the vibrating screen are analyzed.
     (1)Optimize dynamic parameter of vibrating screen.The relationship between the motion parameters can be obtained based on the analysis of the displacement of particles on the screen, and a mathematical model between the motion parameters will be established. Then an optimizing programme will be composed to optimize all motion parameters in order to obtain a group of motion parameters that make the vibrating screen the most efficient and meet the required handling capacity.
     (2)Structure design and dynamic analysisi of vibrating screen.A proper electric machine will be chosen for the vibrating screen and the damping system will be designed based on the optimized motion parameters. Then an initial overall structure of the vibrating screen is achieved, which provides a basis for the establishment of its mechanical model. In light of the mechanical model, a dynamic analysis will be carried out to calculate the natural frequency and the system response of the vibrating screen and to determine preliminarily whether its structure is reasonable. The structure of the vibrating screen will be improved otherwise.
     (3)Construction of screen box finite element model. A finite element model of screen box will be established to run finite element analysis according to its initially determined structure. First, create a three dimensional model of the screen box; second, import the three-dimensional model in to ANSYS to mesh. During the meshing process, the screen box will be simplified first so as to ignore some unnecessary constraint holes and process holes. However, the mass of the screen plates cannot be ignored due to the fact that the vibrating screen analyzed in this paper is small-scaled. Since excessive screening meshes make the mesh complicated, the screen plates are simplified as the first-quality flat plates. Then the middle plane will be selected from the overall screen box, and is meshed by shell element, the value of which is set to the thickness of the plate.
     (4)Finite element analysis of screen box. The main operation in the finite element analysis is to conduct modal analysis and harmonic response analysis of the screen box. In modal analysis, the first 15 natural frequency and the corresponding array graph will be established to determine whether the working frequency falls within the proximity of the natural frequency of vibrating screen. In harmonic response analysis, a displacement nephogram and stress nephogram will be obtained to improve undesired parts.
     The conclusions arrived in this paper provide guidance for the structure design, the optimization of the dynamic parameters as well as the finite element analysis and the structure of the screen box, and theoretical and factual basis for small-scaled vibrating screen for sampling in drilling mud.
引文
[1]焦红光,布占文,赵继芬等.筛分技术的研究现状及发展趋势[J].煤矿机械,2006(10):8-10.
    [2]郭年琴,匡永江.振动筛国内外研究现状及发展[J].世界有色金属,2009(5):26-27.
    [3]赵宝忠,王宗明.钻井液振动筛发展趋势讨论[J].石油矿场机械,2001(3):7-9.
    [4]宋书中,周祖德,胡业发.振动筛分机械发展概述及新型振动筛研究初探[J].矿山机械,2006(4):73-77.
    [5]杜鑫,陈波.振动筛分机械发展现状与趋势[J].科技信息,2010(10):108-109.
    [6]朱卫兵.钻井液振动筛的应用和发展水平[J].钻采机械,1999(2):45-73.
    [7]谭兆衡.国内筛分机械的现状和展望[J].矿山机械,2004(1):34-37.
    [8]王峰.筛分机械的发展与展望[J].矿山机械,2004(1):37-39.
    [9]龙景明.YZQ93-1型岩屑自动取样机简介[J].录井技术通讯,1994(2):34-37.
    [10]付莉,宋晓梅.筛分机械的现状及发展[J].沈阳大学学报,2000(2):31-34.
    [11]石怀荣.YC—1型自动岩屑采集机的开发与应用石油机械[J],2001(4):34-35.
    [12]许刘万.FS-45型反循环泥浆振动筛的研制与应用[J].北京地质,1998(2):56-57.
    [13]宫美英.大型振动筛系统与结构的动力学研究[D].秦皇岛:燕山大学,2008.
    [14]贺鑫.大型直线振动筛动态仿真的研究[D].青岛:青岛科技大学,2008.
    [15]褚洪生,杜曾吉,阎金华MATLAB7.2优化设计实例指导教程[M].机械工业出版社,2006.
    [16]陈杰Matlab宝典[M].电子工业出版社,2008.
    [17]闻邦椿,刘树英,何勃.振动机械的理论与动态设计方法[M].北京:机械工业出版社,2001.
    [18]严峰.筛分机械[M].北京:煤炭工业出版社,1995.
    [19]闻邦椿.振动机械理论与应用[M].北京:机械工业出版社,1983.
    [20]朱维兵,晏静江.钻井振动筛固相颗粒运动规律[J].机械工程学报,2005(10):57-60.
    [21]姚恒申,杜坚,张明洪.固相颗粒在钻井液振动筛筛面上的抛掷运动规律研究[J].应用数学和力学,2002(6):123-126
    [22]张永林,王章海.振动电机激振的振动筛运动分析及主参数设计[J].粮食与饲料工业,1998(10):18-19.
    [23]游思坤,侯勇俊,张明洪.平动椭圆振动筛设计的参数化研究[J].矿山机械,2004(1):76-79.
    [24]何筑生.振动机械采用振动电机激振设计方法的简化[J].铸造机械,1983(6):32-34.
    [25]董怀荣,王平,张慧峰.ZS6B型直线振动筛隔振性能的理论分析[J].石油机械,2004(7):20-25.
    [26]杨隆昌.振动筛隔振弹簧的设计[J].金属矿山,1993(7):52-53.
    [27]阳光武,肖守讷,张卫华.螺旋圆弹簧的横向刚度分析[J].中国铁道科学,2010(4):59-62.
    [28]张中元.提高振动筛处理能力的途径[J].黄金.2002(7):36-38.
    [29]王毅,邢动秋.平动椭圆振动筛动力学模型建模方法研究[J].科学技术与工程,2009(6):1519-1522.
    [30]Zrber J.Cassette. Vibrating Screens for the Chemical Industry[J]. Aufberret tech.1985(7): 410-414.
    [31]Courtney Dehn. "Novel Screening Unit Provides Alternative to Conventional Shale Shaker[J]. Oil&Gas Journal,1999(15):4810-4819.
    [32]龚伟安.椭圆振动筛设计理论中的几个问题[J].矿山机械,1999(12):36-38.
    [33]张德臣,孙艳平,李增栋等.六种椭圆振动筛基础的动力分析[J].鞍山钢铁学院学报,2002(2):85-87.
    [34]刘晓艳,于晓光.大型直线振动筛的动力学分析[J].鞍山科技大学学报,2003(2):119-122.
    [35]孙德臣,孙艳平,李增栋.椭圆振动筛基础设计及动力分析[J].矿山机械,2002(7):42-47.
    [36]张永锋,尹忠俊,徐明等.振动筛的动应力分析[J].冶金设备,2005(2):40-43.
    [37]周长城,胡仁喜,熊文波ANSYS11.0基础与典型范例[M].北京:电子工业出版社,2007:539-588.
    [38]赵爽HFZS1640型振动筛筛箱强度的有限元分析及优化设计[D].包头:内蒙古科技大学,2008.
    [39]胡延松.自同步椭圆振动筛动力学研究[D].南充市:西南石油学院,2004.
    [40]王波.振动筛模态分析及降噪[D].鞍山市:辽宁科技大学,2007.
    [41]商乃信,那杰夫.2TYA1842椭圆振动筛[J].矿山机械,1999(10):20-24.
    [42]steyn, Jaeques. Fatigue Failure of Deck Support Beams on a Vibrating Screen [J]. The International Journal of pressure Vessels,1995(9):315-327.
    [43]ANSYS 12.0有限元分析与范例解析[M].北京:机械工业出版社,2007:79-123.
    [44]Grozubinsky, Victor; Sultanovitch, Efim; Lin, Israel J. Efficiency of Solid Particle Screening as a Function of Screen Slot Size, Particle Size, and Duration of Screening:The Oretical Approach [J]. International Journal of Mineral Proeessing,1998(4):261-272.
    [45]赵环帅,任丽春,许金磊等.振动筛常见的故障和解决方法[J].煤矿机械,2008(7):193-194.
    [46]Banasze wski,T. Vibration Amplitude Analysis for Screening Machines with Two Mass Unbalance Weigh Drive [J]. Aufbereit tech,1986(6):321-328.
    [47]Tsuda, Hirojuki, Perez-Blanco, Horacio. An Experimental Study of a Vibrating Screen as Means of Absorption Enhancement [J]. International Journal of Heat and Mass Transfer, 2001(11):4087-4094.
    [48]Weijin, Ma. Modal Parameter Extraction of a Vibrating Screen Based on Poly-reference LSCE Method [J]. Proceedings of the International SymPosium on Test and Measurement, 2003(7):843-848.
    [49]许京伟.悬臂筛网振动筛筛分理论及产品优化设计[D].济南:山东大学,2006.
    [50]马学东,王律躬,崔文好等ZZKXZ148型直线振动筛侧板的有限元动力学分析[J].鞍山钢铁学院学报,1999(1):3235.
    [51]Horacio Perez-Blanco. An Experimental Study of a Vibrating Screen as Means of Absorption Enhancement[J]. International Journal of Heat and Mass Transfer,2001(44):4087-4094.
    [52]Banasze wski,T. Vibration Forms in Screening Machines with Single Mass Unbalance Weigh Drive [J]. Aufbereit tech,1985(7),415-421.
    [53]Stejskal J. Elliptical Vibratory Screening Machines with Dynamic Drive [J]. Aufbereit tech,1982(7):367-372.
    [54]胡欣峰.自同步椭圆振动筛动力学研究[D].成都:西南石油学院,2004.
    [55]Li Wen-ying,Mi Zhao-yang,Wu Wang-guo. Application of Experimental Modal Analysis Technique to Structural Design of Linear Vibrating Screen [J]. Journal of Coal Science&Engineering,2004(1):30-34.
    [56]方志华,赵爽.基于ANSYS的振动筛筛箱强度的有限元分析及改进设计[J].煤矿机械,2007(12):143-144.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700