用户名: 密码: 验证码:
汶川地震强震区土体损伤效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汶川地震使都汶公路两侧的边坡破坏严重,产生了大量的滑坡,给人们的生命安全和财产造成了重大损失,因此,滑坡防治保障道路安全通行具有重要的工程价值,不仅为滑坡治理提供工程设计依据,也是避免边坡变滑坡对经过的河流造成堰塞确保周围流域安全具有重要的意义。确定地震对岩土体扰动的范围和损伤程度,是预测震后次生山地灾害演化趋势,以及制定道路修复加固工程对策的重要依据。
     本论文主要对汶川强震区的山体在地震作用下土体损伤和边坡累积位移做个初步研究,并对地震波动力放大系数做个探讨。
     汶川地震强震区土体损伤主要表现在土体材料受地震后强度降低和土体变形产生震害如滑坡,本文将从土体材料和土体变形两个方面来研究汶川地震强震区土体损伤效应,为道路路基、边(滑)坡防治提供工程对策。
     在土体材料方面,研究方法有面波测试、振动台试验及数值模拟。面波测试主要测试土体的剪切波速来评估土体损伤深度,面波勘察是通过获取剪切波速变化,推断土体扰动范围的快捷手段,本文第二章对位于强震区的国道213都汶段内的3个边坡工点和3个路堤工点,共布设了6个测段进行高精度面波浅层地震勘查,得出:(1)Ⅸ和Ⅹ地震烈度区土体扰动深度无明显差别;(2)在汶川地震强震区,人工填筑的路堤工程造成强扰动区深度大于等于5m,自然土体造成的强扰动区深度在0-5m;(3)路堤工程表面的填挖交界处损伤明显。上述结论可为汶川地震灾后道路修复工程设计时确定边坡加固深度和路堤翻挖深度提供参考。
     通过振动台试验模拟了土体中加速度放大系数随高度和地震强度的变化情况,发现表层土体加速度放大系数较大的现象。基于一维分层振动理论的软件来对构造厚20m场地在2条地震记录作用下的地震效应来数值模拟,数值分析给出具体的变化曲线图,得出地震动力放大系数PGA和土体深度的关系,其结论与振动台模型试验相符。
     边坡位移是土体损伤的重要表现,研究方法主要是对滑坡进行野外调查、实测地震资料分析等。由于土体的复杂性和不确定性,中等地震或大震引起滑坡,从受力变形角度很难给出具体的计算公式,但是通过回归分析得出同震位移公式。了解边坡的结构和组成成分的力学物理参数,给出滑坡的临界加速度,计算出重要参数之间的相关系数,参数获得获得后,通过回归法推广Jibson位移公式,得出滑坡的位移跟震级数、震中距、临界加速度、PGA等之间的关系式。
Wenchuan earthquake which damaged severely the both sides of the slope beside the Duwen roads and resulted in a large number of landslides, caused heavy losses to people's lives and property. Therefore, landslide control to ensure road safety has an important value of the works, not only to provide engineering design basis to landslide control, but also to avoid the dammed lake which was caused by the landslide avalanche to the surrounding watershed. To determine the scope of soil disturbance and the degree of soil damage by earthquakes has important basis to predict the evolution of mountain post-earthquake hazard trends as well as road repair and reinforcement works.
     This paper preliminary researched the soil damage and the cumulative displacement of slope under seismic action in Wenchuan strong earthquake area as well as the dynamic magnification factor of seismic wave.
     The soil damage of Wenchuan strong earthquake area mainly manifested in soil materials of which the strength reduced in earthquake and the soil deformation such as landslides.This article from both aspects the soil material and soil deformation to study the soil deformation effects in Wenchuan strong earthquake area in order to provide engineering control measures for road subgrade and slope (landslide).
     In the aspect of soil materials, research methods are surface wave test, shaking table test and numerical simulation. We obtained the velocity changes of shear wave of soil to assess the depth of soil damage mainly through surface wave test because surface wave survey is a quick means to obtain shear wave velocity changes to infer the scope of soil disturbance.In the second chapter of this paper, we will introduce the high-precision surface-wave shallow seismic exploration of six sites respectively located in two slope construction points and three embankment construction points aside the Duwen segment of National Highway 213 in strong earthquake zones, the following test results are obtained:(1)The disturbance depth of the soil inⅨandⅩseismic intensity area is no significant difference; (2) In the Wenchuan strong earthquake zones, the soil disturbance depth of manual filling of the embankment projects has occured more than or equal to 5m, while the natural soil of slope is less than or equal to 5m; (3) Between filling and diging section in the surface of the embankment construction, the junction injury is obvious. The above conclusions have important references on road rehabilitation to determine the depth of both embankment repair digging and slope reinforcement during the Wenchuan reconstruction.
     The chapter three found the phenomenon which acceleration amplification factor was higher in shallow soil through shaking table test which simulated the earthquake to research the relation of acceleration amplification factor of soil with height and seismic intensity.
     Numerical simulation based on the theory of one-dimensional layered vibration, we used sake2000 software to structure a 20m thick site to research the seismic effect under two seismic action, numerical analysis gives a specific curves of the dynamic magnification factor in relation with PGA and soil height,the conclusions was consistent with the shaking table model test.
     Soil slope displacement was important manifestation of soil damage, the main research methods were the landslide field investigation and the measured seismic data analysis. As the complexity and uncertainty of the soil landslide caused by moderate earthquakes or strong earthquakes, it was difficult to give a specific formula from the point of force-deformation, but it was easy to obtain co-seismic displacement formula from the regression analysis. Before giving critical acceleration of slope and the correlation coefficient among the important parameters, it was important to understand the structure of slopes and the physical parameters of mechanical components. If the related parameters were calculated, we could develop the Jibson displacement regression formula, which has relation with the earthquake magnitude, epicenter distance, critical acceleration, PGA and so on.
引文
[1]姚令侃、陈强,5.12汶川地震对线路工程抗震技术提出的新课题,四川大学学报(工程科学版),2009,41(3):43-50.
    [2]中国工程建设标准协会.CECS 160—2004,建筑工程抗震性态设计通则(试用)[S].北京:中国计划出版社,2004.
    [3]《汶川地震灾害地图集》编纂委员会。汶川地震灾害地图集[M].成都:成都地图出版社,2008.
    [4]交通部公路规划设计院.JTJ004-89公路工程抗震设计规范[S].北京:人民交通出版社,1999.
    [5]铁道第一勘察设计院.GB 50111-2006铁路工程抗震设计规范[S].北京:中国计划出版社,2006.
    [6]GB50021-2001,岩土工程勘探规范[S]
    [7]陈宏林,丰继林.工程地震勘察方法[M],北京:地震出版社,1998.
    [8]单娜琳,程志平,刘云赖.工程地震勘探[M],北京:冶金工业出版社,2006.
    [9]《公路工程抗震设计规范(JTJ004—2005)》,2005
    [10]JTG F1 0-2006,公路路基施工技术规范[S]
    [11]赵明阶,黄卫东,韦刚.公路土石混填路基压实度波动检测技术及应用[M],北京:人民交通出版社,2006.110-113.
    [12]皮净灵.地震作用下场地土的反应分析[D].暨南大学,2008
    [13]薄景山,徐国栋,景立平.土边坡地震反应及其动力稳定性分析[J].地震工程与工程振动,2001,21(2):116-120.
    [14]中交第二公路勘察设计研究院.JTGD30-2004公路路基设计规范[S].北京:人民交通出版社,2004.
    [15]周永江,王开云,符文熹,等.高地震烈度区堆积体边坡动力响应时程特征分析[J].山地学报,2007,25(1):93-98.
    [16]胡进军,地下地震动参数研究,哈尔滨:中国地震局工程力学研究所,2003.
    [17]邓亚虹.层状自由场地固有频率的求解方法、特性及应用研究[D].浙江大学,2007
    [18]陈继华、陈国兴、史国龙,深厚软弱场地地震反应特性研究,防灾减灾工程学报,2004
    [19]马淑芹、熊里军等,2007,用上海强震土层垂直观测系统研究软土层对地震动的放大作用,中国地震,2007
    [20]陈国兴,王志华,宰金珉.土与结构动力相互作用体系振动台模型试验研究[J].世界地震工程,2002,18(4):47-54
    [21]陈国兴,庄海洋,杜修力,等.土-地铁隧道动力相互作用的大型振动台试验-试验结果分析[J].地震工程与工程振动,2007,27(1):164-170.
    [22]刘小弟,苏经宇.具有天然地震特征的人工地震波研究[J].工程抗震,1992,(03)
    [23]Per B. Schnabel,John Lysmer,H. Bolton Seed,Shake2000 Manual,University of Califonia,Berkeley
    [24]胡汛训.地震动输入及动力人工边界的数值模拟方法研究[D].河海大学,2007
    [25]吴伟、姚令侃、陈强,坡形和加筋措施对地震响应影响的振动台模型实验研究,重庆交通大学学报(自然科学版),2008,27(5):689-694.
    [26]祁生文.单面边坡的两种动力反应形式及其临界高度[J].地球物理学报,2006,49(2):518-523.
    [27]蒋良潍、姚令侃等,边坡地震动传导与坡体地震响应性态振动台模型实验研究,岩土力学与工程学报,2008
    [28]丁浩.土层结构对场地传递函数的影响研究[D].中国地震局工程力学研究所,2008
    [29]王志良,韩清宇.粘弹塑性土层地震反应的波动分析法[J].地震工程与工程振动,1981,(01)
    [30]Newmark,sliding block analysis. Proceedings, New Zealand Workshop on Geotechnical Earthquake Engineering Workshop,20-23 November.University of Canterbury, Christchurch, New Zealand, pp.205-216.
    [31]马晓华、徐长节、蔡袁强,粘弹性土层中竖向振动放大系数的研究,岩土力学与工程学报,2005
    [32]王士荣,陈时祖,以位移法分析边坡在地震力作用下的平面破坏[D],台湾:国立成功大学,1991.
    [33]Rathje, E.M., Bray, J.D.,2000. Nonlinear coupled seismic sliding analysis of earth structures. Journal of Geotechnical and Geoenvironmental Engineering 126, 1002-1014.
    [34]Gokhan Saygili, Ellen M. Rathje, M, Empirical Predictive Models for Earthquake-Induced Sliding Displacements of Slopes, Journal of Geotechnical And Geoenvironmental Engineering,2008
    [35]Bray, J.D., Rathje, E.M.,1998. Earthquake-induced displacements of solid-waste landfills. Journal of Geotechnical and Geoenvironmental Engineering 124,242-253.
    [36]Makdisi, F.I., Seed, H.B.,1978. Simplified procedure for estimating dam and embankment earthquake-induced failures. American Society of Civil Engineers, Journal of the Geotechnical Division 104,849-861.
    [37]Randall W. Jibson, Edwin L. Harp, John A. Michael, A method for producing digital probabilistic seismic landslide hazard maps,Engineering Geology, Volume 58, Issues 3-4, December 2000, Pages 271-289
    [38]Newmark, N.M.,1965. Effects of earthquakes on dams and embankments, Geotechnique 15,139-159.
    [39]Bouckovalas G D, Papadimitrioul A G. Numerical evaluation of slope topography effects on seismic ground motion[J]. Soil Dynamics and Earthquake Engineering, 2005,25(7-10):547-558.
    [40]Yegian, M.K., Marciano, E.A., Ghahraman, V.G.,1991. Earthquakeinduced permanent deformations:probabilistic approach. Journal of Geotechnical Engineering 117, 35-50.
    [41]Ambraseys, N.N., Menu, J.M.,1988. Earthquake-induced ground displacements. Earthquake Engineering and Structural Dynamics 16,985-1006.
    [42]Jamie Mullen, Michael D. Jibson, Dennis Sweitzer,A comparison of the relative safety, efficacy, and tolerability of quetiapine and risperidone in outpatients with schizophrenia and other psychotic disorders:the quetiapine experience with safety and tolerability (QUEST) study,Clinical Therapeutics, Volume 23, Issue 11, November 2001, Pages 1839-1854
    [43]Mario Parise, Randall W. Jibson, A seismic landslide susceptibility rating of geologic units based on analysis of characteristics of landslides triggered by the 17 January, 1994 Northridge, California earthquake,Engineering Geology, Volume 58, Issues 3-4, December 2000, Pages 251-270
    [44]Rajiv Tandon, W. Wolfgang Fleischhacker, Comparative efficacy of antipsychotics in the treatment of schizophrenia:A critical assessment,Schizophrenia Research, Volume 79, Issues 2-3,15 November 2005, Pages 145-155
    [45]Randall W. Jibson, Edwin L. Harp, William Schulz, David K. Keefer, Large rock avalanches triggered by the M 7.9 Denali Fault, Alaska, earthquake of 3 November 2002,Engineering Geology, Volume 83, Issues 1-3,28 February 2006, Pages 144-160
    [46]Randall W. Jibson,Regression models for estimating coseismic landslide displacement,Engineering Geology, Volume 91, Issues 2-4,22 May 2007, Pages 209-218
    [47]Sergio A. Sepulveda, William Murphy, Randall W. Jibson, David N. Petley, Seismically induced rock slope failures resulting from topographic amplification of strong ground motions:The case of Pacoima Canyon, California,Engineering Geology, Volume 80, Issues 3-4,30 August 2005, Pages 336-348
    [48]Janusz Wasowski, David K. Keefer, Randall W. Jibson, Special Issue from the Symposium on Landslide Hazards in Seismically Active Regions,Engineering Geology, Volume 58, Issues 3-4, December 2000, Pages v-vi
    [49]Randall W. Jibson, Use of landslides for paleoseismic analysis,Engineering Geology, Volume 43, Issue 4, September 1996, Pages 291-323
    [50]Gokhan Saygili, Ellen M. Rathje, M, Empirical Predictive Models for Earthquake-Induced Sliding Displacements of Slopes, Journal of Geotechnical And Geoenvironmental Engineering,2008
    [51]Aurelian C. Trandafir, Toshitaka Kamai, Roy C. Sidle, Earthquake-induced displacements of gravity retaining walls and anchor-reinforced slopes,Soil Dynamics and Earthquake Engineering, Volume 29, Issue 3, March 2009, Pages 428-437
    [52]Wilson, R.C., Harp, E.L., California Division of Mines and Geology,1997. Guidelines for evaluating and mitigating seismic hazards in California. California Division of Mines and Geology Special Publication vol.117.74 pp.
    [53]Keefer, D.K.,1984. Landslides caused by earthquakes. Geological Society of America Bulletin 95,406-421.
    [54]Jibson, R.W., Harp, E.L.,Schulz, W.,Keefer, D.K.,2006. Large rock avalanches triggered by the M-7.9 Denali Fault, Alaska, earthquake of 3 November 2002. Engineering Geology 83,144-160.
    [55]Murphy, W.,Mankelow, J.M.,2004. Obtaining probabilistic estimates of displacement on a landslide during future earthquakes. Journal of Earthquake Engineering 8, 133-157.
    [56]Pradel, D., Smith, P.M., Stewart, J.P., Raad, G,2005. Case history of landslide movement during the Northridge earthquake. Journal of Geotechnical and Geoenvironmental Engineering 131,1360-1369.
    [57]Rathje, E.M., Bray, J.D.,1999. An examination of simplified earthquakeinduced displacement procedures for earth structures. Canadian Geotechnical Journal 36, 72-87.
    [58]Wieczorek, G.F., Wilson, R.C., Harp, E.L.,1985. Map showing slope stability during earthquakes in San Mateo County California:US Geological Survey Miscellaneous Investigations Map I-1257-E, scale 1:62,500.
    [59]Wilson, R.C., Keefer, D.K.,1983. Dynamic analysis of a slope failure from the 6 August 1979 Coyote Lake, California, earthquake. Bulletin of the Seismological Society of America 73,863-877.
    [60]Houston, S.L., Houston, W.N., Padilla, J.M.,1987. Microcomputeraided evaluation of earthquake-induced permanent slope displacements. Microcomputers in Civil Engineering 2,207-222.
    [61]Hynes-Griffin, M.E., Franklin, A.G.,1984. Rationalizing the seismic coefficient method. US Army Corps of Engineers Waterways Experiment Station. Miscellaneous Paper vol. GL-84-13.37 pp.
    [62]Arias, A.,1970. A measure of earthquake intensity. In:Hansen, R.J. (Ed.), Seismic Design for Nuclear Power Plants. Massachusetts Institute of Technology Press, Cambridge, MA, pp.438—483.
    [63]雷建成、高孟潭、俞言祥.四川及邻区地震动衰减关系[J].地震学报,2007,29(5):500-511.
    [64]蒲俊等,吉家锋,伊良忠.MATLAB6.0数学手册[M].上海:浦东电子出版社,2002.35-40.
    [65]云丹工作室,MATLAB数学建模基础教程[M],北京:人民邮电出版社,2001,130-133.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700