用户名: 密码: 验证码:
中国典型含煤盆地镜质组结构特征及生烃、同位素动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来在中国西北地区一些中生界含煤盆地,如准噶尔东部盆地、吐哈盆地
    陆续发现了与煤及煤系泥岩有关的具有工业价值的油气田。但石炭二叠系煤系地
    层却没有迹象表明其有生油的可能。镜质组是煤岩的主要显微组分,同时氢指数
    与基质镜质体的含量或壳质体与基质镜质体的总量具有非常好的相关性。因而研
    究镜质组的结构特征及差异对于从分子水平认识煤成油的机制十分关键。本项研
    究、实验及结论如下:
     1.本次研究选取了中国主要含煤盆地不同年代煤岩样品,通过手选的方式
    富集了镜质组样品,进行瞬时热解.色谱/质谱实验。热解产物主要为酚类、脂肪
    烃及芳烃。结果表明热解产率及组分随成熟度、亚显微组分及沉积环境的不同而
    有很大差别。相对于均质镜质体,基质镜质体热解产物中含有更为丰富的长链脂
    肪烃类而酚类产物则相对较少。而长链脂肪烃类在中国新疆地区侏罗系含煤盆地
    基质镜质体中最为富集。而相同成熟度的不同类型镜质组热解产物中酚类分布特
    征却较为相似,表明其可能具有相同母质来源。
     此外,还对镜质组样品进行了不同条件下的瞬时热解实验。不同温度点瞬时
    热解实验结果表明随热解温度的不同,热解产物组分特征也有很大差异。随温度
    的升高,热解产物中脂肪烃所占比例不断降低。而分段热解实验中正构烷烃与正
    构烯烃的比例随温度的升高而不断降低,表明自350℃到650℃均有吸附烃的产
    生。甲基化热解实验表明镜质组结构中具有大量脂肪酸结构,而这些极性物质在
    常规热解色谱质谱实验中检测不到。
     2.选取部分镜质组样品进行碳谱核磁共振实验以了解镜质组总体结构特
    征。研究表明基质镜质体中结构中油潜力碳,如亚甲基碳,在脂碳峰中所占比例
    相对较高,而均质镜质体脂碳结构则以气潜力碳,如甲基碳,甲氧基碳为主。而
    芳碳率(f_a)与R_O成正比,而与H/C原子比成反比。此外,不同结构碳对应不
    同的化学位移,文中通过这些不同范围内峰面积的比值组成的参数,如f_a、S_ox、
    f_(CO2H)以及f_(COH)来进一步研究镜质组总体的特征。结果表明S_(OX)对成熟度最为敏感。
     3.以镜质组结构研究为基础,探讨了影响镜质组结构的控制因素。侏罗系
    富氢基质镜质体沉积于流水沼泽相,而均质镜质体则沉积于潮湿森林沼泽。通过
    与几种壳质体热解色谱质谱色特对比,可得出基质镜质体中类脂物最有可能来源
    于高等植物的类脂组分。
     4.金管封闭体系热模拟条件下镜质组生烃动力学研究表明:活化能随镜质
    组类型、结构的不同而有很大差异。均质镜质体裂解活化能最高而基质镜质体活
    化能分布相对较低。而由不同类型镜质组裂解生成的甲烷均具有非常相似的碳同
    位素分布,热模拟早期δ~(13)C_1随温度的升高而下降,晚期逐渐上升,更高温度热
The certain oil and gas pertained to coals and coaly mudstones have been found in the Jurassic coal-bearing basins in NW China. But little oil has been found in any Carboniferous-Permian coal-bearing basins. Vitrinite is the most dominant maceral in coals. And HI of coals shows good correlation with proportion of desmocollinite or summation of liptinite and desmocollinite. Therefore, it's meaningful to study structure of different vitrinites for understanding formation of coal-generated oils. The main conclusions of this study are followings:1. Jurassic and Carboniferous-Permian coal used for this study is obtained from Jungger, Turpan-Hami, Ordos and other basins of China. Flash pyrolysis-gas chromatography/ mass spectra (Py-GC/MS) have been applied to the quantitative determination of different groups of hydrocarbons and non-hydrocarbons presented in pyrolysates of hand purified vitrinites isolated from coals.Aliphatics, phenols, alkylbenzenes and other aromatic hydrocarbons are the mayor components in pyrolysates of vitrinites. Long chain aliphatics are more abundant in pyrolysates of hydrogen-rich desmocollinites while phenols are more abundant in pyrolysates of telocollinites. And aliphatics are the most abundant components in pyrolysates of Jurassic hydrogen-rich desmocollinite of Xinjiang Area. However, similar phenol distributions are presented in pyrolysates of vitrinites at the same maturation level. And this indicates pheols may be originated from diagenetically altered lignins.Flash pyrolysis at different temperatures point and step pyrolysis have been applied to study variation of production ratio and relative proportion of major components in pyrolysates. Relative abundance of n-alkanes reaches the highest in pyrosates generated at 350℃, and then shows decreasing trend with increasing temperature while relative abundance of alke-1-nes, phenols and alkylbenzenes show contrary variation.Flash pyrolysis in the presence of tetramethylammonium hydroxide (TMAH) has been employed for the characterization of polar components that cannot be detected using normal pyrolysis GC-MS. And large quantity of carboxylic acid methyl esters is determined.2. 13C NMR spectra, which provide direct measurements of the chemical structure of organic matter, have been obtained for vitrinites. The oil-prone carbons, such as methylene carbon, are relatively rich in spectra of desmocollinites, and the gas-prone carbons, such as methyl carbon and methoxyl carbons, are relatively rich in spectra of
    telocoUinites. Converted into numerical parameters, the spectra show differences relate to vitrinite type and rank. NMR parameters, fa, Sox, fCO2H and fCOH, are examined for characterization of macromolecular structure of vitrinites. Result shows Sox is sensitive to rank of coals.3. The depositional environment of vitrinites has been discussed based on the characterization of vitrinite structure. It shows Jurassic hydrogen-rich desmocollinites has been deposited in running water swamp and telocoUinites has been deposited in moist forest swamp. Several isolated lipid macerals have been subject to perform flash pyrolysis-GC/MS for comparison between desmocollinites and lipids, and the result shows that aliphatics in desmocollinite may be originated from lipid parts of high plants.4. Hydrocarbon generation kinetics study of vitrinites based on pyrolysis of gold tube closed system shows: Activation energies of methane generated from telocollinite are higher than that from desmocollinite due to macromolecular structure differences. But carbon isotope distributions of generated methane in pyrolysates of vitrinites are similar. Carbon isotope ratio of methane decreases in the early stage of gas generation and increases in later stages. At higher temperature, δ13C1 decrease slightly or almost keep stable with increasing temperature. Decreasing trend of δ 13C, in the early stage may be caused by heterogeneous structure or differences of activation energies between 12C-12C and 12C-13C are not strictly constant at different range of activation energy area.5. Aliphatics, especially long chain n-alkanes are more abundant in liquid fraction originated from Zhunji-1 desmocollinite than that from Tujun-1 telocollinite in gold tube pyrolysis. And distribution of n-alkanes in liquid fraction shows even to odd predominance that indicates anhydrous gold tube pyrolysis is not suitable for the simulation of oil generation.
引文
包建平 马安来 黄光辉等,三塘湖盆地原油地球化学特征及其成因类型,石油勘探与开发,1999,26(4):25-29
    陈德玉 刘德汉 叶朝辉,煤的固体高分辨13C NMR谱研究,中国地球化学研究所有机地球化学开放研究实验室研究年报(1987),北京:科学出版社,1988,55-64
    陈建平 赵长毅 王兆云 何忠华 秦勇,西北地区侏罗系烃源岩及油气地球化学特征,地质论评,1998,44(2),149-159
    陈建平 黄第藩 秦勇 等,西北侏罗纪煤系烃源岩成烃模式,地球化学,1999,28(4):327-339
    陈建平,中国西北地区侏罗纪煤成油地球化学,中国矿业大学(北京校区)博士学位论文,2003
    陈佩元 孙达三 丁丕训 罗俊文,中国煤岩图鉴,北京:煤炭工业出版社,1996
    陈鹏,Kalman,J.R.,Odily,D.M.,兖州煤的芳碳率—MAS/CP 13C核磁共振法,炼焦化学,285-289
    程克明 熊英 曾小明 Moldowan,J.M.and Todd,J.G.,吐哈盆地煤成烃研究,石油学报,2002,23,13-17
    程克明 主编.吐哈盆地油气生成,北京,石油工业出版社,1994
    戴金星 裴锡古,戚厚发 等,中国天然气地质学(卷1),北京:石油工业出版社,1992.
    戴金星 钟宁宁 刘德汉 等,中国煤成大中型气田地质基础和主控因素,北京:石油工业出版社,2000
    戴金星,我国煤成气类型和有利的煤成气远景区,中国石油学会石油地质专业委员会编:石油地质进展丛书3—天然气勘探,北京:石油工业出版社,1986.
    戴金星,我国煤系地层含气性的初步研究,石油学报,1980,1(4),27-37
    戴金星.油气地质学的若干问题.地球科学进展,2001,16(5):710~718
    段玉成.我国煤的稳定同位素组成特征.煤田地质与勘探.1995,23(1):29~35
    付少英 彭平安 张文正等,鄂尔多斯盆地上古生界煤的生烃动力学研究,中国科学(D辑),2002,32(10):812-818
    付少英,鄂尔多斯盆地上古生界煤的生烃动力学及其分子特征研究,中国科学院博士学位论文.2002,
    傅家谟 刘德汉 盛国英,煤成烃地球化学.北京,科学出版社,1992
    傅家谟 秦匡宗 主编,干酪根地球化学,广州:广东科技出版社,1995:299
    关士聪等,对我国石油天然气前景的分析,石油与天然气地质,1981,2(1)
    黄第藩 张大江 李晋超 等,吐鲁番盆地侏罗系煤系地层中烃类生成,第四届全国有机地球化学会议论文集,北京:中国地质大学出版社,1990,1-18
    黄第藩,成烃理论的发展—(Ⅱ)煤成油及其初次运移模式,地球化学进展,1996,11(7):432-438
    黄第藩等,煤成油的形成和成烃机理,北京,石油工业出版社,1995
    侯读杰 王铁冠 孔庆云等,松辽盆地朝长地区原油的地球化学特征,石油大学学报(自然科学版),1999,23(2):27-34
    贾望鲁,塔里木盆地轮南地区原油沥青质的分子结构及其应用研究,中国科学院博士学位论文,2004
    李荣西,九十年代煤系烃源岩研究新进展,地质科技情报,2000,19(4):55-59
    李贤庆.马安来.熊波.包建平.钟宁宁,新疆三塘湖盆地侏罗系烃源岩显微组分剖析及其生烃模式,西南石油学报,1997,4
    刘大锰 王运泉,鄂尔多斯盆地煤的超微特征,煤炭学报,1997,22(5):460-465
    刘大永 彭平安,煤系地层中不同类型镜质体可能的化学结构与生物母质,石油与天然气地质,2004,25(4):377-384
    刘德汉 张惠之 戴金星 等,煤岩显微组分的成烃实验研究与评价,科学通报,2000,45(4):346-352
    刘惠永 张爱云 翁成敏,贵州六盘水地区龙潭煤系煤岩富氢显微组分的生烃潜力与生烃贡献,石油实验地质,1999,21(1):66-70
    刘金钟 唐永春,用干酪根生烃动力学方法预测甲烷生成量之一例,科学通报,1998,43(11):1187-191
    刘祖发 肖贤明 刘德汉等,中国煤和烃源岩镜质组的激光诱导荧光显微特征及其应用,地球化学,2002,32(4):382-386
    秦匡宗 郭绍辉,NMR在固体化石能源中的应用,波谱学杂志,1995,12(5):451-458
    秦匡宗 李振广 Bodoev,N.,干酪根的13C NMR研究—偶极相移技术的应用,1992,37,721-723
    秦匡宗,论干酪根芳碳率的石油地球化学意义,石油勘探与开发,1985,12(6):15-21
    秦匡宗等,用13C NMR波谱技术研究烃源岩显微组分的化学结构与成烃潜力,石油大学学报,1995,19(4):87-94
    帅燕华 邹艳荣 彭平安,塔里木盆地库车坳陷煤成气甲烷碳同位素动力学研究及其成藏意义,地球化学,2003,32(5):469-475
    苏艾国 程克明 何忠华等,吐哈盆地台北凹陷煤成烃特征及形成,地球化学,1995,24(2):128-137
    孙永革等,我国主要含煤油气盆地煤系源岩PY-GC热解产物组成及意义,沉积学报,1995,13(2):120-127
    吐朝辉 李新安,煤的固体高分辨13C NMR谱,科学通报,1985,30:1545-1547
    王昌桂等,吐哈盆地侏罗系煤成烃地球化学,北京,科学出版社,1996
    王飞宇 傅家谟 刘德汉,煤和烃源岩镜质体中超微类脂体检出及意义,科学通报,1993,38(2):151-154
    王飞宇 何萍 傅家谟等,华北太原组镜质组中的超微类脂体及其煤性质异常原因,1995,13(3):107-116
    王铁冠等,低熟油气形成机理与分布,石油工业出版社(北京),1995
    肖贤明 刘德汉 盛国英 孙永革,吐哈盆地侏罗系煤镜质组荧光性质及成烃意义,新疆石油地质,1996,6(2):127-131
    肖贤明,有机岩石学及其在有机岩石学中的应用,广州:广东科学技术出版社,1992
    熊永强 耿安松 王云鹏,干酪根二次生烃动力学模拟实验研究,中国科学(D辑),2001,31(4): 315-320
    姚素平,金奎励,栓皮栎的热模拟特征及木栓质的成烃演化,煤田地质与勘探,1996
    姚素平等,1997,准噶尔盆地侏罗系西山窑组沉积有机相研究及烃源岩评价,中国矿业大学学报,26(1):60-64
    张鹏飞 金奎励 吴涛 等,吐哈盆地含煤沉积与煤成油,北京:煤炭工业出版社,1997
    张枝焕 关强 阳安成,三塘湖盆地煤层与原油地球化学特征对比,石油与天然气地质,1999,20(3):207-211
    张玉贵 王宝俊 田亚俊等,抚顺镜煤和树脂煤CS2可溶物的族组成和萃取,中国矿业大学学报,2003,32(3):267-270
    赵长毅 程克明,吐哈盆地煤显微组分成烃模式,科学通报,1997,42(19):2102-2105
    赵长毅等,吐哈盆地煤中基质镜质体生烃潜力与特征.科学通报,1994,39(21):1979-1981
    朱扬明,微区有机质激光热解GC/MS新技术及其应用,地质地球化学,1999,27(4):110-117
    邹艳荣 刘金钟 彭平安,压力对高硫干酪根轻烃产率的影响,地球化学,2000,29(5):431-444。
    Amble, A., Halim, M., Jacquesy, J. C. et al., Characterization of kerogen from Timahdit shale (Y-layer) based on multistage alkaline permanganate degration, Fuel, 1994, 73:17-24
    Andresen, B., Throndsen, T. et al., A comparison of pyrolysis products with models for natural gas generation, Chemical Geology, 1995, 23(10): 931-939.
    Barker, C., Pyrolysis technologys for source rock evaluation, Bull. AAPG, 1974, 58:2349-2361
    Barth, T., Borgund, A. E., Hopland, A. L. and Graue, A., Volatile organic acids produced during kerogen migration-amounts composition and role in migration of oil, Org. Geechem., 1987, 13: 461-465.
    Bartuska, V. J., Maciel, G. E., Schaefer et al., Prospects for carbon 13 nuclear magnetic resonance analysis of solid fossil fuel materials, Fuel, 1977, 56:354-357
    Baudet, N., Amble, A., Jacquesy, J. C. et al., Transalkylation applied for the structural characterization of kerogen, Fuel, 1994, 73(10): 1594-1599
    Bertrand P, Geochemical and petrographic characterization of humic coals considered as possible oil source rocks, Organic Geochemistry, 1984, 6:481-488
    Boreham, C. J., Golding, L. D. and Glikson, M., Factors controlling the origin of gas in Australian Bowen Basin Coals, Organic Geochemistry, 1998, 29(1-3): 347-362.
    Brooks, J. D., Smith, J. W., The diagenesis of plant lipids during the formation of coal, petroleum and natural gas. Ⅱ. Coalification and the formation of oil and gas in the Gippsland Basin. Geochimica et Cosmochimica Acta, 1969, 33, 1183-1194.
    Cecil, B., Stanton, R. and Robbins, E., Geologic factors controlling coalification and hydrocarbon maturation, AAPG, 1977, 61,775-786.
    Challinor, J. M., A pyrolysis-derivatisation- gas chromatography techique for the structural elucidation of some synthetic polymers, Journal of analyticaland applied pyrolysis, 1989, 16:323-333
    Chen, J. Qin, Y., Huff, B. G., Wang, D., Han, D., Huang, D., Geochemical evidence for mudstone as the possible major oil source rock in the Jurassic Turpan Basin, Northwest China, Organic Geochemistry, 2001, 32: 1103-1125.
    Choudhury, D., Sanyal, P. K. and Banerjee, A. K., Stepwise fragmentation of Coal by H2O2 trifuoroacetic acid oxidation, Fuel, 72(2): 177-181
    Claypool, G. E. and Reed, P. R., Thermal analysis technique for source rock evaluation, quantitative estimate of organic richness and effects of lithologic variation, Bull. Assoc. Petrol. Geol., 1976, 60: 608-626
    del Rio, J. C., Martin, F., Gonzalez-Vila, F. J. et al, Chemica structure investigation of asphaltenes ad kerogens by pyrolysis-methylation, org. Geochem., 1995, 23:1009-1222
    Dennis L. W., Maciel G. E., Hatcher P. G., Simoneit B. R. T., 13C Nuclear magnetic resonance studies of kerogen from Cretaceous black shales thermally altered by basaltic intrusions and laboratory simulations, Geochim. et Cosmochim. Acta, 1982, 46, pp. 901-907
    Derenne, S. and Largeau, C., Morpbological and chemical features of Gloeocapsomorpha prisca: rich deposites from the Canning Bsin, Australia. Comparision with other Ordovician G. Prisca-derived kerogens. In: Abstract of 15th international meeting on organic Geochemistry, Manchest university press, 1992, 405-408
    Durand, B., Paratte, M., Oil potential of coals: a geochemical approach. Petroelum Geochemistry and Exploration of Europe (edited by Brooks J), Geological Society Special Publication No. 12, Blackwell Scientific, oxford, 1983, 255-265.
    Dyrkacz, G. R. and Horwitz, E. P., Density gradient separation of Coal Macerals, Fuel, 1982, 61:3-12
    Espitalie, J., Laporte, J. L., Madec, M., marquis, F., Leplat, P., Paulet, J. and Boutefew, A., Methode rapids de Caracterisation des rockes meres, de leur potenial potrolier et de leur degree devolution, Rev. Inst. Fr. Pet., 1977, 32:23-42
    Fabianska, J. M., GC-MS investigation of distribution of fatty acids in selected Polish brown coals, Chemometrics and Intelligent Laboratory Systems, 72(2): 241-244
    Freund, H., Close, J. A. and Otten. G. A., Effect of pressure on the kinetics of kerogen pyrolysis, Energy & Fuels, 1993, 7:1088-1094
    Given P H., Marzec A, Barton W A, et al., the concept of a mobile or molecular phase within the macromolecular net work of coals: a debate, Fuel, 1986, 65:155-163
    Given, P. H., 1984, An Essay on the organic geochemistry of coal, Coal Science, vol. 3, Academic Press, Orlando, pp. 63-252.
    Gransch, J. A. and Eisma, E., Characterization of the insoluble organic matter of sediments by pyrolysis, In: Advances in Organic Geochemistry 1966 (Eds. G. D. Hobson and G. C. Speers), Pergamon Press, 1970, 407-426
    Greenwood, P. E, George, S. C., Hall, K., Applications of laser micropyrolysis-gas chromatography-mass spectrometry. Organic Geochemistry, 1998,29,1075-1089
    Greenwood, P. F., George, S. C, Pickel, W., Zhu, Y., Zhong, N., In situ analytical pyrolysis of coal macerals and solid bitumens by laser micropyrolysis GC-MS, Journal of Analytical and Applied Pyrolysis, 2001, 58-59,237-253.
    Guo, Y. and Bustin, R. M., Micro-FTIR spectroscopy of liptinite macerals in coal, International Journal of Coal Geology, 1998, 36,259-275
    Hagemann, H. W., Pickel, W., Characteristics of Upper Cretaceous coals from Enugu (Nigeria) related to bitumen generation and mobilization, Org. Geochem, 1991,17, 839-847
    Hartgers W. A. et al. Molecular Characterization of Flash Pyrlysates of Two Carboniferous Coals and Their Constituting Maceral Fractions, Energy & Fuels, 1994a, 8(8): 1055-1067.
    Hartgers W. A., et al., Geochemical significance of alkylbenzene distrubitions in flash pyrolysates of kerogens, coals, and asphaltenes, GCA ,1994b, 58(7): 1759-1775.
    Helgeson, H. C, Knox, A. M., Owens C. E. and Shock, E. L., Petroleum oil field waters and authieneic mineral assemblages: Are they in metastable equilibrium in hydrocarbon reservoirs? Geochimica et Cosmochimica Acta, 1993, 57,3295-3339.
    Hoffmann, C. F., Mackenzie, A. S., Lewis, C. A. et al., A biological marker study of coals shales and oils from Mahakam Delta, Kalimantan, Indonesia, Chemical Geology, 1984,42, 1-23.
    Hollerbach, A., Hagemann, H. W., Organic geochemical and petrological investigations into a series of coals with increasing rank, Proc. Internat. Conf. Coal Science, Gluckauf Verlag, Essen., 1981, pp. 80-85.
    Holzer, G., Bourne, T. F. and Bertsch, W., Analysis of in situ methylated microbial fatty acid constituents by Curie- point pyrolysis-gas Chromatography-mass spectrometry, J. Chromatogr., 1989,468,181-190
    Horsfield, B., Practical criteria for classifying kerogens: Some observations from pyrolysis-gas chromatography, Geochim. Cosmochim. Acta., 1989,53: 891-901
    Huang, D. (1999). "Advances in hydrocarbon generation theory II. Oils from coal and their primary migratin model." Journal of Petroleum Science and Engineering 22: 131-139.
    Huc, A. Y, Durand, B., Roucachet, J., Vandenbrouck, M, Pition, J. L., comparation of three series of organic matter of continental origin, In: Leythaeuser D and Rullkotter J (eds.): Advances in organic Geochemistry, 1985, Organic Geochemistry, 1986,10,65-73.
    Hunt, J M., Generation of gas and oil from coal and other terrestrial organic matter, Organic Geochemistry, 1991,17,673-680.
    Iino, M., Takanohashi, T., Obara, S. et al., Characterization of extracts and residues from CS2-N-methyl-2-pyrrolidinone mixed solvent extraction, Fuel, 1989, 68,1588-1593
    Iino, M., Takanohashi, T., Ohkawa, T., et al., On the solvent soluble constituents originally existing in Zao Zhuang coal, Fuel, 1991,70:1236-1237
    Iino, M., Takanohashi, T., Ohsuga, H. et al., Extraction of coals with CS2-N-methyl-2-pyrrolidinone mixed solvent at room temperature- effect of coal rank and synergism of the mixed solvent, Fuel, 1991, 67(12): 1639-1647
    Kralert, P. G., Alexander, R., Kagi, R. I., An investigation of polar constituents in kerogens and coal using pyrolysis- gas chromatography- mass spectrometry with in situ methylation, org. Geochem., 1995, 23: 627-639
    Larter S. R., Application of analytical prolysis techniques to kerogen characterization and fllii fuel exploration, In: Analytical pyrolysis - Methods and Applications (Edited by Voorhees K). 212-272, Butterworth, London, 1984
    Lewan, M. D. and Williams, J. A., Evaluation of petroleum generation from resinites by hydrous pyrolysis, AAPG, 1987, 71(2): 207-214
    Liu, S. L., Taylor, G. H., 1991, TEM observations on type Ⅲ kerogen, with special reference to coal as a source rock, Journal of Southeast Asian Eart Sciences, 5, 43-52
    Lundegaard, P. D. and Senflle, J. T., Hydrous pyrolysis: a tool for the study of organic acid systhesis, Appl. Geochem., 1987, 2: 605-612.
    Mango F D, Transition metal catalysis in the generation of petroleum and natural gas. Geochim Cosmochim Acta, 1992, 56:553-555
    Mango, F. D. (1996). "Transition metal catalysis in the generation of natural gas." Oragnic Geochemistry 24(10-11): 977-984.
    Mango, F. D. (2001). "Methane concentrations in natural gas: the genetic implications." Oragnic Geochemistry 32(10): 1283-1287.
    Mango, F. D., Hightower, J. (1997). "The catalytic decomposition of petroleum into natural gas." G. C. A. 61(24): 5347-5350.
    Maroto-Valer, M. M., Taulbee, D. N., Andresen, J. M., Hewer, J. C. and Shape, C. E., Quanttative ~(13)C NMR study of structural variations within the vitrinite and inertinite maceral groups for a semifusinite-rich bituminous coal, Fuels, 1998a, 77(8): 805-813.
    Matte-Valer, M. M., Andresen, J. M. and Shape, C. E., Verification of the linear relationship between carbon aromaticities and H/C ratios for bituminous coals, Fuel, 1998b, 77(7): 783-785.
    Meent, D. V. D., Brown, S. C., Philp, R. P., Pyrolysis-high resolution gas chromatography and pyrolysis gas chromatography-mass spectrometry of kerogens and kerogen precursors, GCA, 1980, 44: 999-1013.
    Michelsen, J. K., Khavari Khorasani, G., 1990. Monitoring chemical alterations of individual oil-prone macerals by means of microscopical fluorescence spectrometrycombined with multivariate data analysis. Orig. Geochem. 15, 179-192
    Miknis, F. P., NMR studies of fossil solid fuels, Magn. Reson. Rev., 1982, 7:87-121
    Minkova, V., Dobal, V. and Angelova, G., Chemical deploymerization of oil shale, Fuel, 1985, 66, 1579-1583
    Monthioux, M., Landais, P. and Duand, B., Comparison between extracts from natural and artificial maturation series of Mahakam delta coals, Org. Geochem., 1986,10: 299-311.
    Monthioux, M., Lindaia, P. and Monin, J. C, Comparison between natural and artificial maturation series of humic coals from the Mahakam delta, Indonesia, Organic Geochemistry, 1985, 8(4): 275-292.
    Mukhopadhyay, P. K. et al., Hydrocarbon potential of two types of resinite, In: Advances in Organic Geochemistry, Schenck P A (ed), Oxford: Pergamon Press, 1986,439-454
    Mukhopadhyay, P. K., Gormly, J. R. and Zumberge, J. E., 1989, Generation of hydrocarbons from the Tertiary coals of Texas-Coal as potential source rock for liquid hydrocarbons in a deltaic basin?, Org. Geochem., 14(3): 351-352.
    Nip M., Chemical structure of bituminous coal and its constituting maceral fractions as revealed by flash pyrolysis, Energy & Fuels, 1992, 6:125-136
    Nishioka, M, Larsen, J. W., Association of aromatic structures in coals, Energy & Fuels, 1990,4: 100-106.
    Nishioka, M., Gebhard, L. A., Silbernagel, B. G., Evidence for charge-transfer complexes in high-volatile bituminous coal, Fuel, 1991, 70:341-348.
    Nishioka, M., Rank dependence of associative equelibra of coal, Energy & Fuels, 1991, 5(3): 487-491
    Painter, P. C, Sobkowiak, M., Youlcheff, J., FT-i. R. study of hydrogen bonding in coal, Fuel, 1987, 66: 973-982
    Powell, T. G., Boreham, C. J., Smyth, M., Russell, N., Cook, A. C, Petroleum source rock assessment in non-marine sequences: pyrolysis and petrographic analysis of Australian coals and carbonaceous shales, Organic Geochemistry, 1991,375-394
    Powell, T. G., Developments in concepts of hydrogen generation from terrestrial organic matter: Petroleum resources of China and related subjects, Texas, Circus Pacific Council of Energy and Mineral Resources, Earth Science Series, 1988,10, 807-824.
    Qin, K., Chen, D., Li, Z., A new method to estimate the oil and gas potentials of coals and kerogens by solid state 13C NMR spectroscopy, org. Geochem., 1991,17(6): 865-872
    Saiz-Jimenez, C, Reactivity of the aliphatic humic moiety in analytical pyrolysis, organic Geochemistry, 1995,23:955-961
    Saxby, J. D., Bennett, A. J. R., Corcoran, J. F., Lambert, D. E. and Riley, K. W., Petroleum generation: Simulation over six years of hydrocarbon formation from torbanite and brown coal in a subsiding basin, Organic Geochemistry 9: 69-81.
    Schimmelmann, A., Boudou, J-P., Lewan, M. D. and Wintsch, R. P., Experimental controls on D/H and 13C/12C ratios of kerogen, bitumen and oil during hydrous pyrolysis, Org. Geochem., 2001, 32(8): 1009-1018.
    Seewald, J. S., Benitez-Nelson, B. C. and Whelan, J. K., Laboratory and theoretical constraints on the
     generation and composition of natural gas, Geochimica et Cosmochimica Acta, 1998, 62(9): 1599-1617.
    Seewald, J. S., Evidence for metastable equilibrium between hydrocarbons under hydrothermal conditions, Nature, 1994,370,285-287.
    Seifert, W. K. Steranes nd terpanes in kerogen pyrlysis for correlation of oils and source rocks, GCA, 1978, 42:473-484.
    Senftle, J. T. and Larter, S. R., The geochemistry of exinites-I. Evaluation of spectral fluorescence of a series of modern resins and fossil resinites, rg. Geochem., 1988,13:973-980
    Senftle, J. T., Larter, S. R., Bromley, B. W. and Brown, J. H., Quantitative chemical characterization of vitrinite concentrates using pyrolysis-gas chromatography. Rank variation of pyrolysis products, organic geochemistry, 1986,9(6): 345-350.
    Shanmugan, G., Significance of coniferous rain forests and related organic matter in generating commercial quantities of oils, Gippsland Basin, Australia, AAPG, 1985,69(8), 1241-1254.
    Sharma, D. K. and Mishra, S., 13C-NMR spectral studies of the depolymerized coal obtained by acidic phenolation, Fuel Science and Technology Int'l. 1990, 8(4), 351-377
    Snowdon, L. R., Powell, T. G., Immature oil and condensate- Modification of hydrocarbon generation model for terrestrial organic matter, AAPG, 1982,66,775-788.
    Stach, E., M. -TH. Mackowsky, M. Teichmuller, G. H. Taylor, D. Chandra and R. Teichmuller, 1982, Coal Petrology, Gebriider Borntraeger Berlin, pp. 535
    Stout, S. A., Lasers in organic petrology and organic geochemistry: II. In-situ laser micropyrolysis-GCMS of coal macerals, International Journal of Coal Geology, 1993,24,309-331.
    Suggate, R. P. and Dickinson, W. W., Carbon NMR of coals: the effects of coal type and rank, International Journal of Coal Geology, 57(1), 1-22
    Sun, Y., Sheng, G., Peng, P., Fu, J., Compound-specific stable carbon isotope analysis as a tool for correlating coal-sourced oils and interbedded shale-sourced oils in coal measure: an example from Turpan basin, North-westen China, Organic Geochemistry, 2000, 31,1349-1362
    Thomas B. M. Land-Plant source rocks for oil and their significance in Australian basin. AEPA Joural, 1982,22(1), 164-177
    Thompson, S., Cooper. B. S., Morley,. J., Barnard, P. C, Oil generating coals, In: Petroleum Geochemistry in Exploration of the Norwegian Shelf, Norwegian Petroleum Society (Graham & Trotmen eds.), 1985, 59-73.
    Tissot, B. P. and Welte, D. H., Petroleum formation and occurrence, Springer-Vevlag Berlin Heidelberg New York, 1984.
    Van Krevelen, D. W., coal, Elsevier, Amsterdam, 1961.
    Van Krevelen, D. W., Coal, typology-Chemistry-physics-constitution, Elsevier, Amsterdam, 1981
    VanderHart, D., Retcofsky, H. L., Estimation of coal aromaticities by proton-decoupled carbon-13 magnetic resonance spectra of whole coals, Fuel, 1976, 55,202-204
    Vitorovic, D., Amble, A., Bajc, S. et al., Kerogen diversity demonstrated by oxidation, I: Type Ikerogens, Journal of Serbian Chemical Society, 59, 85-95
    Wilkins, R. W. T. and George, S. C, Coal as a source rock for oil, a review, International Journal of Coal Geology, 2002,50:317-361
    Yingting Guo, B. R. M. (1999). "Micro-FTIR spectroscopy of liptinite macerals in coal." International Journal of Coal Geology 36: 259-275.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700