用户名: 密码: 验证码:
空间站零燃料大角度姿态机动方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间站姿态控制技术是实施空间站工程需要突破的关键技术,空间站零燃料大角度姿态机动是当前在国际空间站得到应用的先进姿态机动控制概念。本文以我国空间站工程任务为背景,较为系统地研究了空间站零燃料大角度姿态机动问题中的力矩平衡姿态、姿态机动路径规划、关键参数分析与优化及Simulink仿真验证等问题。全文主要研究成果如下:
     改进了力矩平衡姿态的求解方法。1)推导了瞬时力矩平衡姿态的解析解,建立了瞬时力矩平衡姿态与构型参数的显式解析关系,从而为空间站的构型设计提供重要的指导意义;2)推导了平均和动态力矩平衡姿态的求解方程,并通过数值仿真验证了平均和动态力矩平衡姿态作为空间站长期在轨运行姿控模式的有效性。
     研究了零燃料姿态机动路径规划。1)采用无约束且不易出现奇异的修正罗德里格斯参数建立了姿态机动路径规划模型,包括动力学模型、约束条件及目标函数;2)采用直接打靶法与Gauss伪谱法对零燃料姿态机动路径规划问题进行求解,并对两种算法的求解效率进行了对比分析;3)设计了转换目标函数的分步优化策略,实现了零燃料消耗和特定姿态指向规避的能量最优姿态机动。
     完成了零燃料姿态机动关键参数分析与优化。1)分析了机动时间、轨道、构型、空间环境等关键参数对姿态机动过程中的角动量峰值、最大控制力矩和能量消耗等性能指标的影响;2)将参数作为优化变量,求解了零燃料姿态机动的单参数优化和多参数组合优化问题;3)基于物理规划方法求解了满足不同偏好结构的多目标最优参数及姿态机动路径。
     开展了零燃料姿态机动Simulink仿真验证。1)设计和开发了零燃料姿态机动仿真模型,构建了数据初始化、姿态动力学与控制、空间环境和数据输出等模块;2)对空间站零燃料大角度姿态机动过程进行了Simulink仿真验证。
     论文以我国空间站工程任务为背景,系统开展了零燃料大角度姿态机动的分析理论与设计方法研究。论文为空间站等大型航天器大角度姿态机动控制提供了创新性思路和途径,研究成果对于空间站在轨运行减少燃料消耗、延长寿命、提高安全性具有重要实践价值。
Space station attitude control technology is essential for space station project. Zero-propellant maneuver is an advanced concept of space station attitude maneuver control, which has been applied to International Space Station recently. With the background of preliminary tasks of the Chinese Space Station project, this dissertation studies torque equilibrium attitude of space station, attitude maneuver path planning, analysis and optimization of key parameters, and simulation demonstration based on Simulink. The main achievements obtained in this dissertation are summarized as follows.
     The calculation method of torque equilibrium attitude is improved. 1) The analytical solution of instantaneous torque equilibrium attitude is deduced, the explicit relation between the instantaneous torque equilibrium attitude and the configuration parameters is established, which provides valuable suggestions for the space station configuration design; 2) The calculation formula of the average and dynamic torque equilibrium attitude are deduced. The average and dynamic torque equilibrium attitude can be used as on-orbit attitude control modes with a long period, whose effectivity has been proved by simulation results.
     The attitude path planning of zero-propellant maneuver is studied. 1) The model of attitude maneuver path planning is established by the modified rodrigues parameter, which has no constrains and does not incline to be singular. Path planning model contains the dynamic model, constrain conditions and cost functions; 2) The problem of attitude maneuver path planning is solved by the direct shooting method and the Gauss pseudospectral method, and efficiencies of these two methods are compared and analyzed; 3) A solving strategy of two-steps conversion of cost functions is designed. With this strategy, the large-angle optimal attitude path for space station is obtained, which consumes no propellant and uses least energy, with the geometry constrain satisfied.
     The key parameters analysis and optimization of zero-propellant maneuver are finished. 1) The influence on performance criteria caused by the key parameters is analyzed. The key parameters contain maneuver time, orbit elements, configuration and environment parameters. The performance criteria contain the peak momentum of control torque gyroscopes, the maximal control torque and energy consumption; 2) Defining the key parameters as optimal variables, the single parameter and multi-parameter optimization problems of zero-propellant maneuver are solved; 3) Physical programing method is used to solve the multi-objective optimal parameters and attitude path that satisfies different preference structures.
     The simulation demonstration of zero-propellant maneuver based on Simulink is executed. 1) The zero-propellant maneuver simulation model is designed and established, and the parameters initialization, attitude dynamics and control, space environment and data display modules are constructed; 2) The simulation demonstration of zero-propellant large-angle attitude maneuver based on Simulink is executed.
     With the background of the Chinese Space Station project, this dissertation investigates the analysis theory and design method of zero-propellant large-angle attitude maneuver. The dissertation provides some new thoughts and approaches for the large-angle maneuver of space station and large-scale spacecrafts. The research results have practical significance for reducing fuel consumption, prolonging on-orbit time and enhancing the safety of space station.
引文
[1] Wie B, Byun K W, Warren V W. New Approach to Attitude/Momentum Control for the Space Station [J]. Journal of Guidance, Control and Dynamics, 1989, 12(5): 714-722.
    [2] Mapar J. Innovative Approach to the Momentum Management Control for Space Station Freedom[J]. Journal of Guidance, Control and Dynamics, 1993, 16(1): 175-181.
    [3] Harduvel J T. Continous Momentum Management of Earth-Oriented Spacecraft [J]. Journal of Guidance, Control and Dynamics, 1992, 15(6):1417-1426.
    [4]吴忠.空间站姿态/动量联合非线性控制[J].航空学报, 2006, 27(6): 1155-1160.
    [5] Varatharajoo R. A Combined Energy and Attitude Control System for Small Satellites [J]. Acta Astronautica, 2004, 54: 701-712.
    [6]张军,徐世杰.采用VSCMG的航天器IPACS设计的一种投影矩阵方法[J].宇航学报, 2006, 27(4): 609-615.
    [7]贾英宏.航天器姿态与能量一体化控制研究[D].哈尔滨工业大学, 2004.
    [8] Zhang Jun, Xu Shi-jie. Discrete Steering Law of Variable-speed Control Moment Gyros in Intergrated Power/Attitude Control System[C]. Proceedings of the 11th International Space Conference of Pacific-basin Societies, 2007: 334-341.
    [9]周黎妮,考虑动量管理和能量存储的空间站姿态控制研究[D].长沙:国防科技大学,2010.
    [10] Roithmayr C M, et al. Dynamics and Control of Attitude, Power, and Momentum for a Spacecraft Using Flywheels and Control Moment Gyroscopes[R]. NASA/TP-2003-212178.
    [11] Bedrossian N, Bhatt S, Zero-Propellant Maneuver Guidance [J]. IEEE Control Systems Magazine, 53-73 2009(10).
    [12] Bedrossian N, Bhatt S. Space Station Zero-Propellant Maneuver Guidance Trajectories Compared To Eigenaxis [C]. 2008 American Control Conference 2008.
    [13] Bedrossian N, Bhatt S, et al. First Ever Flight Demonstration of Zero Propellant Maneuver Attitude Control Concept [C]. 2007 AIAA GN&C Conference, AIAA Paper 2007-6734.
    [14] Bennett G J, Sebelius K P, Barth A L. ISS Russian Segment Motion Control System Operating Strategy During Orbiter Repair Maneuver[C]. AIAA Paper 2005-5855.
    [15] Nguyen L H, et al. Shuttle Return to Flight: On-Orbit GN&C and RoboticSystem Operation Overview [C]. AIAA 2005-5850.
    [16] Bedrossian N, Jang J W, Alaniz A. International Space Station US&C Attitude Hold Controller Design for Orbiter Repair Maneuver [C]. AIAA Paper 2005-5853.
    [17] Chubb W B, Seltzer S M. Skylab Attitude and Pointing Control System[R]. NASA TN D-6068, February 1971.
    [18] Coon T R, Irby J E. Skylab Attitude Control System [J]. IBM Journal of Research and Development, 1976, 20(1):58-66.
    [19] Bedrossian N, Metzinger R, Adams N. Centralized Momentum Management[R]. Draper Lab Presentation, 1996.
    [20] McCants E, Bedrossian N, Ghorbel F. Space Station Momentum Optimal CMG Maneuver Logic During Payload Operations [C]. AIAA Paper 2000-4451.
    [21] Pietz J, Bedrossian N. Momentum Dumping Using Only CMGs [C]. AIAA Paper 2003.
    [22] Bedrossian N, Bhatt S, Lammers M, Nguyen L. Zero-Propellant Maneuver TM Flight Results for 180 deg ISS Rotation [C]. Proceedings of the 20th International Symposium on Space Flight Dynamics, 2008.
    [23] Kang W, Bedrossian N. Pseudospectral Optimal Control Theory Makes Debut Flight, Saves NASA $1 M in Under Three Hours [J]. SIAM News, 2007, 40(7).
    [24]徐开,金光,陈娟,陈长春.敏捷小卫星姿态机动切换算法[J].光学精密工程,2008,16(18):1528-1532.
    [25] Sungyung L. New quaternion feedback control for efficient large angle maneuvers[C]. AIAA Paper 2001-4211.
    [26]王峰,曹喜滨,张世杰.小卫星模型独立大角度姿态机动半实物仿真[J].系统仿真学报,2006,18(9):2389-2392.
    [27]李俊峰,林原.重力梯度卫星大角度姿态机动的变结构控制[J].动力学与控制学报,2003,1(1):66-69.
    [28]孙兆伟,林晓辉,曹喜滨.小卫星姿态大角度机动联合控制算法[J].哈尔滨工业大学学报,2003,35(6):663-667.
    [29] Messerschmid E, Bertrand R. Space Stations Systems and Utilization [M] Struttgart: Springer 1999.
    [30] Lyndon B. International Space Station Familiarization Mission Operations Directorate Space Flight Training Division[R] National Aeronautics and Space Administration 1998.
    [31] Larson W J, Pranke L K. Human Spaceflight: Mission Analysis and Design [M]. New York: The McGraw-Hill Companies.
    [32] Likins P W, Roberson R E. Uniqueness of Equilibrium Attitudes for Earth Pointing Satellites [J]. Journal of Astronautical Science, 1966, 13: 87-88.
    [33] Elgersma M R, Chang D S. Determination of torque equilibrium attitude for orbiting space station [C]. AIAA-92-4481-CP.
    [34] Kumar R R, Heck M L, Robertson B P. Predicted Torque Equilibrium Attitude Utilization for Space Station Attitude Control [C]. AIAA-90-3318-CP.
    [35] Sarychev V A, Guerman A, Paglione P. Influence of Constant Torque Equlibria of Satellite in Circular Orbit [J]. Celestial Mechanics Dynamical Astronomy, 2003, 87:219-239.
    [36] Sarychev V A, Mirer S A. Relative Equlibria of Satellite Subjected to Gravitation and Areodynamic Torque [J]. Celestial Mechanics Dynamical Astronomy, 2000,76: 55-68.
    [37] Sarychev V A, Mirer S A, Degtyarev A A. Duarte, E.K. Investigation of equilibria of a satellite subjected to gravitational and aerodynamic torques[J]. Celestial Mechanics Dynamical Astronomy, Astron. 2007, 97(4), 267–287.
    [38] Sarychev V A, Mirer S A, Degtyarev A A. Equilibria of a satellite subjected to gravitational and aerodynamic torqueswith pressure center in a principal plane of inertia [J]. Celestial Mechanics Dynamical Astronomy, 2008, 100(4), 301–318.
    [39] Sarychev V A, Paglione P, Guerman A. Stability of Equilibria for a Satellite Subject to Graviational Constant Torques[J]. Journal of Guidance Control and Dynamics. 2008, 31(2), 386-400.
    [40]程迎坤,孙承启,张锦江.空间站力矩平衡姿态和动量平衡姿态的研究[J].航天控制, 2008, 26(2): 3-8.
    [41]高普云.非线性动力学[M].国防科技大学出版社, 2005.
    [42]周黎妮,唐国金,罗亚中,李海阳.空间站力矩平衡姿态稳定性研究[J].系统工程与电子技术, 2009, 31 (5): 1162-1166.
    [43] Roger C T. Torque Equilibrium Attitude for the Space Station[C]. AIAA-94-24449.
    [44] Thomas L T, Brent C, Matt M. H∞-Based Torque Equilibrium Attitude Seeker Designs for the Reaction Control System of the Space Station [C] Vancouver.B.C. Second IEEE Conference on Control Application 1993 13-16.
    [45] Lee S W, Matulenko R, Caldwell J B. Space Station RCS Attitude Control System [C]. AIAA-91-2661-CP.
    [46] Beck J A. Relative Equilibria of a Rigid Satellite in a Central gravitational field [D]. Shool of Engineering of the Force Institute of Technology Air University, 1997.
    [47] Moraes R V, Cabette R E. Attitude Stability of Artificial Satellites Subject to Gravity Gradient Torque [J]. Celes.Mech.Dyn.Astron. 2009, 104:337-353.
    [48] Cheng P, Shen Z, Lavalle S M. RRT-Based Trajectory Design for Autonomous Automobiles and Spacecraft [J]. Archives of Control Sciences, 2001, 11(34):51-78.
    [49]王平,郭继峰,陈诚,崔乃刚.考虑时间因素的敏捷自主航天器四维姿态运动规划方法研究[J].宇航学报,2011,32(3): 523-528.
    [50] Kennedy J, Eberhart R C, Particle swarm optimization[C]. Proc of IEEE International Conference on Neural Networks. Piscataway, NJ: IEEE Service Center, 1995: 1942-1948.
    [51]杨思亮,徐世杰.基于粒子群算法的航天器姿态机动路径规划[J].北京航空航天大学学报, 2010,1(36):48-51.
    [52] Geand S S, Cui Y J. New potential function for mobile robot path planning [J]. IEEE Transanction on Robotics and Automation, 2000, 16(10): 615-619.
    [53] Wisniewskia R, Kulczvcki P. Slew maneuver control for spacecraft equipped with star camera reaction whells [J]. Control Engineering Practice, 2005, 13(3): 349-356.
    [54] Roger A R, McInnes C R. Safety constrained free flyer path planning at the international space station [J]. Journal of Guidance, Control and Dynamics. 2000, 23(6): 971-979.
    [55] Huntington G, Benson D, Rao A V. A comparison of accuracy and computational efficiency of three pseudospectral methods[C]. AIAA Guidancd, Navigation and Control Conference and Exhibit, Hilton Head, South Carolina, August 20-23, 2007.
    [56] Ross I M, Fahroo F, Strizzi J. Adaptive grids for trajectory optimization by pseudospectral methods [J]. Advances in the Astronautical Sciences, 2003, 114(1): 649-668.
    [57] Williams P, Blanksby C, Trivailo P. Receding horizon control of tether system using quasilinearization and Chebyshev pseudospectral approximations[C]. AAS/AIAA Astrodynamics Specialist Conference, Big Sky, MT, Aug. 3-7, 2003.
    [58] Yan H, Alfriend K T, Three-axis Magnetic Attitude Control Using Pseudospectral Control Law in Eccentric Orbits[C]. AAS Spaceflight Mechanics Meeting, Tampa FL, Jan.2-5, 2006.
    [59] Lu P, Sun H, Tsai B. Closed-Loop endoatmospheric ascent guidance [J]. Journal of Guidance, Control and Dynamics, 2003, 26(2): 283-294.
    [60] Fahroo F, Ross I M, User’s Manual for DIDO 2002: A MATLAB Application Package for Dynamic Optimization [R]. Naval Postgraduate School Technical Report No. NPS-AA-02-002, June 2002.
    [61] Jackson M C, McDonald R D. Draper Simulation Analysis Tool (DSAT): Graphical Object Simulation Techniques and Tools for Simulink[C]. AIAA Modeling and Simulation Technologies Conference and Exhibit 16-19 August2004, Providence, Rhode Island. AIAA 2004-5458.
    [62] Kulick W J. Development of A Control Moment Gyroscope Controlled, Three Axis Satellite Simulator, with Active Balancing for the Bifocal Relay Mirror Initiative [D]. Naval Postgraduate School, 2004.
    [63] Jung D, Tsiotras P. An Experimental Comparison of CMG Steering Control Laws [C]. AIAA Paper 2004-5294.
    [64] Malcolm S. Survey of attitude representations [J]. Journal of the Astronautical Sciences, 1993, 41(4): 439-517.
    [65]雍恩米,唐国金,陈磊.基于Gauss伪谱方法的高超声速飞行器再入轨迹快速优化[J].宇航学报, 2008, 29(6): 1766-1772.
    [66] Achille M. Physical programming Effective optimization for computational design [J]. AIAA Journal, 1996, 34(1): 149-158.
    [67] Messac A, Melachrinoudis E, Sukam C P. Physical Programming: A Mathematical Perspective [R]. AIAA Paper 2000-0686.
    [68] Betts J T. Survey of Numerical Methods for Trajectory Optimization [J]. Journal of Guidance, Control, and Dynamics, 1998, 21(2): 193-207.
    [69] Melton R. Boundary Points and Arcs in Constrained, Time-Optimal Satellite Reorientation Maneuvers [C]. AIAA Paper 2010-8376.
    [70] Ross I M, Fahroo F. Pseudospectral Knotting Methods for Solving Optimal Control Problems [J]. Journal of Guidance, Control and Dynamics, 2004, 27(3):397-405.
    [71] Bedrossian N, Bhatt S, et al. ISS Contingency Attitude Control Reconvery Method for Loss of Automatic Thruster Control[C]. 31st Annual AAS Guidance and Control Conference, 2008.
    [72]黄永安,马路,刘慧敏. MATLAB7.0/Simulink建模仿真开发与高级工程应用[M].清华大学出版社, 2006.
    [73]张亮,郭仕剑,王宝顺. MATLAB7.x系统建模与仿真[M].人民邮电出版社, 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700