用户名: 密码: 验证码:
奶牛乳腺主要乳成分合成代谢的转录组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳腺是哺乳动物特有的器官,乳腺的功能是泌乳。哺乳动物乳腺经历了形态和结构上-系列的变化,这些变化与乳腺的物质代谢密切相关,乳腺物质代谢直接影响乳的质量和产量。目前尚缺乏对乳腺物质代谢的系统研究。
     本实验以荷斯坦奶牛为实验材料,采用荧光定量PCR技术检测αs1-casein、αs2-casein、 β-casein、κ-casein、β-lactoglobin、WAP基因在乳腺发育各时期的表达,结果显示,这些蛋白质基因在泌乳期表达均上调。PCR技术检测与乳腺蛋白质转录和翻译作用相关的PRLR、 AKT1、STAT5、 ELF5、EIF4EBP1、S6K基因表达,结果显示,EIF4EBP1的基因表达下调,其它基因表达上调,并且与乳蛋白质基因表达趋势基本一致,提示EIF4EBP1对泌乳具有抑制作用,其它基因在转录或翻译水平调控乳蛋白质的合成。PRLR通过JAK2激活STAT5在转录水平发挥作用,AKT1则通过mTOR对EIF4EBP1的负调控和对S6K的正调控在翻译水平发挥作用。采用HPLC方法检测乳腺中β-酪蛋白,最早出现在妊娠6个月。
     采用荧光定量PCR技术检测乳腺发育各时期一系列乳脂合成相关基因,脂肪酸摄入(VLDLR、LPL)、外源胆固醇运输(ABCA1、ABCG2)、细胞内脂肪酸运输(FABP3、ACBP)、长链(ACSL1)和短链脂肪酸(ACSS2、ACSS1)的活化、脂肪酸从头合成(ACACA、FAS)、去饱和(SCD、FADS1、FADS2)、三酰基甘油合成(AGPAT6、GPAM、LPIN、DGAT1、DGAT2)、脂质小滴形成(BTN1A1、XDH、ADFP)(?)口转录调节(PPARG、SREBF1、SREBF2)等基因的表达,结果显示这些基因在泌乳期表达上调。SREBP1、SREBP2和PPARG对乳脂合成相关的许多基因表达具有调控作用,PRLR、AKT1对奶牛乳腺脂代谢的调控主要是通过PRLR、AKT1对SREBP1的调控来实现。采用气相色谱方法检测乳中脂肪酸组成及含量,荷斯坦奶牛乳脂肪酸中C18:1含量最高,其次为C16:0、C18:0。
     采用荧光定量PCR技术检测乳腺发育各时期GLUT1、HKⅠ、HKⅡ、LALBA、β-1,4-半乳糖基转移酶基因的表达,结果表明,这些基因在泌乳期表达上调,表明奶牛乳腺组织在泌乳期合成大量的乳糖。乳糖主要由β-1,4-半乳糖基转移酶和LALBA催化合成。采用HPLC方法检测乳腺乳糖含量,直到妊娠6月乳腺开始出现乳糖。采用Western blotting (?)(?)免疫荧光法对奶牛乳腺发育各时期GLUT1蛋白水平表达及GLUT1蛋白定位进行检测,结果表明:在乳腺发育各时期,GLUT1蛋白水平和GLUT1mRNA水平表达趋势相似。青春期,乳腺中GLUT1mRNA和蛋白的表达量较低;妊娠期开始升高,整个泌乳期持续高表达,泌乳140日达到峰值,此后开始下降。进入退化期,乳腺上皮细胞凋亡,GLUT1蛋白和GLUT1mRNA表达显著下降。青春期和妊娠早期,GLUT1主要定位在乳腺导管上皮细胞;妊娠晚期和泌乳期,GLUT1主要定位在乳腺上皮细胞基底侧细胞膜和顶膜;这些研究结果表明,奶牛乳腺主要通过GLUT1吸收葡萄糖为乳腺发育和泌乳提供能量和底物。
Mammary gland is a unique organ in mammals. Its function is lactation. Mammary gland undergoes a series of changes in morphology and structure.These changes are closely related to material metabolism in mammary gland which directly affect the quality and product of milk. There are very a few substance metabolism studies on the development of mammalian mammary gland in different period, especially dairy cow.
     Genes of four caseins and two whey proteins were detected by using fluorescent quantitative RT-PCR in different developmental periods of mammary gland. The results showed that all genes were up-regulated in lactation period. The expression of PRLR, AKT1, STAT5, ELF5, EIF4BP1、 S6K which may relate to protein metabolism in mammary gland were detected, the results showed that other genes had the same expression tendency with milk proteins genes expect EIF4EBP1. It implied that they involved in processes of transcription or translation of milk proteins. Down-regulation of EIF4EBP1demonstrated its negative roles in lactation. PRLR regulated the transcription of milk proteins by the activation of STAT5from JAK2. AKT1played important roles at the level of translation of milk proteins through the negative regulation of mTOR on EIF4EBP1and positive regulation of mTOR on S6K.β-casein was first appeared at6month in pregnancy in cow mammary gland.
     Some genes were chosen from different aspects in lipid metabolism to detect their mRNA levels by fluorescent quantitative RT-PCR. They included:VLDLR, LPL which related to the uptake of fatty acid. FABP3, ACBP which related to the transport of fatty acid in cell.ABCA1, ABCG2which related to the transport of foreign cholesterol. Activation of ACSL1, ACSS2, ACSS1. ACACA, FAS which related to the fatty acid de novo synthesis. SCD, FADS1, FADS2which related to desaturation. AGPAT6, GPAM, LPIN, DGAT1, DGAT2which related to the synthesis of triacylglycerol. BTNlA1, XDH, ADFP which related to the synthesis of lipid droplet. PPARG, SREBF1and SREBF2which related to transcriptional regulation. The results showed that these genes expressed in mammary gland epithelium appeared up-regulated in lactation period. SREBP1and SREBP2and PPARG were located in the centre of the lipid metabolism regulation.The Regulation of PRLR、AKT1to lipid metabolism in diary cow mammary gland was realized through regulation of SREBP1.C16:0, C18:0and C18:1contents were higher than the other fatty acids in cow milk.
     Technology of fluorescent quantitative RT-PCR was used to detect the mRNA expression of HK Ⅰ, HKⅡ, GLUT1, LALBA and β-1,4-galactosyl transferase in different period of dairy cow mammary gland. The results showed that mRNA expression of these genes were increased and large of lactose was synthesized in mammary gland of cows during the whole lactation. LALBA and β-1,4-galactosyl transferase were the key enzyme that catalysis lactose. HPLC was chosen to detect the lactose in mamary gland to determine the time point of lactose synthesis and its production. Lactose appeared until6month in pregnancy in mammary gland.The expression and the localization of glucose transporter-1(GLUT1) were detected in different period of dairy cow mammary gland by Western blotting and laser scanning confocal microscopy. The results showed that the expression of GLUT1protein are similar to the expression of GLUT1mRNA in different period of dairy cow mammary gland. In virgin, the expression of GLUT1mRNA and GLUT1protein was lowest and increased during pregnancy. On140day of lactation, the expression of GLUT1mRNA and GLUT1protein reached the highest levels and remained high levels during the whole lactation. In involution, the expression of GLUT1mRNA and GLUT1protein was decresaed because of apoptosis of mammary epithelial cells. In virgin and early pregnancy, GLUT1was found in ductal epithelial cells; in late pregnancy and lactation, GLUT1was detected in alveolus epithelial cells near to the basal lamina and epiphragm.These results showed that GLUT1could taransfer extracellular glucose into cells to provide enerage and substance for mammary gland development and lactation.
引文
[1]Bauman D E, Mather I H, Wall R J, et al. Major advances associated with the biosynthesis of milk[J]. Dairy Sci,2006,89(4):1235-1243.
    [2]Connell A, Calder A G, Anderson S E, et al. Hepatic protein synthesis in the sheep:effect of intake as monitored by use of stable-isotope-labelled glycine, leucine and phenylalanine[J]. Br J Nutr,1997,77:255-271.
    [3]Bequette B J, Backwell F R C, Calder A G, et al. Application of a U-13C-labeled amino acid tracer in lactating dairy goats for simultaneous measurements of the flux of amino acids in plasma and the partition of amino acids to the mammary gland[J]. Dairy Sci,1997,80: 2842-2853.
    [4]Chilliard Y, Ferlay A. Dietary lipids and forages interactions on cow and goat milk fatty acid composition and sensory properties[J]. Reprod Nutr Dev,2004,44:467-492.
    [5]Jensen R G. The composition of bovine milk lipids: January 1995 to December 2000[J]. Dairy Sci,2002,85:295-350.
    [6]Barber M C, Clegg R A, Travers M T, et al. Lipid metabolism in the lactating mammary gland[J]. Biochimica et Biophysica Acta,1997,1347:101-126.
    [7]F. Q. Zhao, E. K. Okine and J. J. Kennelly. Glucose transporter gene expression in bovine mammary gland[J]. Anim Sci,1999.77:2517-2522.
    [8]F.-Q. Zhao, A. F. Keating. Expression and Regulation of Glucose Transporters in the Bovine Mammary Gland[J]. Dairy Sci,2007,90:76-86.
    [9]Burnol A F, Loizeau M, Girard J. Insulin receptor activity and insulin sensitivity in mammary gland of lactating rats[J]. Am J Physiol,1990,259:828-834.
    [10]Joost HG, Thorens B. The extended GLUT-family of sugar polyol transport facilitators: nomenclature, sequence characteristics, and potential function of its novel members[J]. Mol Membr Biol,2001,18 (4):247-256.
    [11]Amy L. Wilson-O'Brien, Carrie L. DeHaan, and Suzanne Rogers. Mitogen-stimulated and rapamycin-sensitive glucose transporter 12 targeting and functional glucose transport in renal epithelial cells[J]. Endocrinology,2007,149 (3):917-924.
    [12]Hurley W L. Lactation Biology Website (http://classes. Ansci. uiuc. edu/ansc438). Department of Animal Sciences at the University of Illinois,2007.
    [13]Russo J, Russo I H. Atlas and histologic classification of tumors of the rat mammary gland[J]. Mammary Gland Biol Neoplasia,2000,5 (2):187-200.
    [14]Lucas J N, Rudmann D G, Credille K M, et al. The Rat Mammary Gland:Morphologic Changes as an Indicator of Systemic Hormonal Perturbations Induced by Xenobiotics[J]. Toxicologic Pathology,2007,22:199-207.
    [15]Wang X J, Bartolucci-Page E, Fenton S E, et al. Altered mammary gland development in male rats exposed to genistein and methoxychlor[J]. Toxicol Sci,2005,91:93-103.
    [16]Richert M M, Schwertfeger K L, Ryder J W, et al. An atlas of Mouse Mammary Gland Development[J]. J Mammary Gland Biol Neoplasia,2000,5 (2):227-241.
    [17]Harris J, Stanford P M, Oakes S R, et al. Prolactin and the prolactin receptor:new targets of an old hormone[J]. Ann Med,2004,36 (6):414-425.
    [18]Ruan W, Monaco M E, Kleinberg D L. Progesterone stimulates mammary gland ductal morphogenesis by synergizing with and enhancing insulin-like growth factor-Ⅰ action[J]. Endocrinology,2005,146 (3):1170-1178.
    [19]Ji F, Hurley W L, Kim S W. Characterization of mammary gland development in pregnant gilts[J]. Anim Sci,2006,84:579-587.
    [20]RICHERT M M, Schwertfeger K L, Ryder J W, et al. An atlas of mouse mammary gland development[J]. Mammary Gland Biol Neoplasia,2000,5:227-241.
    [21]Streuli CH, Edwards GM, Delcommenne M, et al. Stat5 as a target for regulation by extracellular matrix[J]. Biol Chem,1995,270(21):639-21644.
    [22]Fata J E, Werb Z, Bissell M J. Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes[J]. Breast Cancer Res,2004,6:1-11.
    [23]Neville MC, McFadden TB, Forsyth I. Hormonal regulation of mammary differentiation and milk secretion [J]. Mammary Gland Biol Neoplasia.2002,7:49-66.
    [24]Rudolph MC, McManaman JL, Hunter L, Phang T, Neville MC:Functional development of the mammary gland:use of expression profiling and trajectory clustering to reveal changes in gene expression during pregnancy, lactation, and involution. J Mammary Gland Biol Neoplasia,2003,8:287-307.
    [25]Stingl J, Raouf A, Emerman JT, et al. Epithelial progenitors in the normal human mammary gland. J Mammary Gland Biol Neoplasia,2005,10:49-59.
    [26]Traurig H. Cell Proliferation in the mammary gland during late pregnancy and lactation[J]. Anatomical Record,1967,157:489-503.
    [27]Nguyen D A, Parlow A F, Neville M C. Hormonal regulation of tight junction closure in the mouse mammary epithelium during the transition from pregnancy to lactation[J]. Endocrinol, 2001,170:347-356.
    [28]Brisken C, Park S, Vass T, et al. A paracrine role for the epithelial progesterone receptor in mammary gland development[J]. ProcNatl Acad Sci,1998,95:5076-5081.
    [29]Oakes S R, Hilton H N, Ormandy C J. The alveolar switch:coordinating the cus and cell fate decisions that drive the formation of lobuloalveoli from ductal epithelium [J]. Breast Cancer Res,2006:8(2):207.
    [30]Neville M C. Physiology of lactation[J]. Clin. Perinatol,1999,26:251-279.
    [31]Furth P A. Conditional control of gene expression in the mammary gland[J]. J Mammary Gland Biol Neoplasia,1997,2 (4):373-383.
    [32]Schaal B, Doucet S, Sagot P, t al. Human breast areolae as scent organs:morphological data and possible involvement in maternal-neonatal coadaptation[J]. Dev Psychobiol,2005, 48:100-110.
    [33]Nickerson S C. Immunological aspects of mammary involution[J]. Dairy Sci,1989,72: 1665-1678.
    [34]Quarrie L H, Addey C V, Wilde C J. Apoptosis in lactating and involuting mouse mammary tissue demonstrated by nick-end DNA labelling[J]. Cell Tiss Res,1995,281:413-419.
    [35]Hurley W L. Mammary Gland Function During Involution[J]. Dairy Sci,1989,72: 1637-1646.
    [36]Holst B D, Hurley W L, Nels on D R. Involution of the bovine mammary gland:histological and struct u ral changes [J]. Dairy Sci,1987,70:935-942.
    [37]Taniguchi T. Cytokine signalling through nonreceptor protein tyrosine kinases[J]. Science, 1995,268(5208)251-255.
    [38]Lebrun J-J, Ali S, Ullrich A. et al. Proline-rich sequence-mediated Jak2 association to the prolactin receptor is required but not sufficient for signal transduction[J]. Journal of BiologicalChemistry,1995,270:10664-10670.
    [39]Kelly, P. A., A. Bachelot, C. Kedzia, et al. The role of prolactin and growth hormonein mammary gland development[J]. Mol. Cell. Endocrinol,2002,197:127-131.
    [40]Kelly P A, Bachelot A, Kedzia C. The role of prolactin and growth hormone in mammary gland development[J]. Mol Cell Endocrinol,2002,197(1-2):127-131.
    [41]Donnison M, Beaton A, Davey H W, et al. Loss of the extraembryonic ectoderm in Elf5 mutants leads to defects in embryonic patterning[J]. Development Biol,2005,132: 2299-2308.
    [42]Flint D, Knight C. Interactionofprolactinandgrowth hormone (GH) in the regulation of mammary gland function and epithelial cell survival[J]. Mammary Gland Biol Neoplasia, 1997,2:41-48.
    [43]Travers, M. T., M. C. Barber, E. Tonner, et al. The role of prolactin and growth hormone in the regulation of casein gene expression and mammary cell survival:relationships to milk synthesis and secretion[J]. Endocrinology,1996,137:1530-1539.
    [44]王建元.催乳素及影响催乳素分泌的药物[J].国外兽医学-畜禽疾病,1984,11:1-5.
    [45]Linxi Qian, Veronica Lopez, Young Ah Seo, et al. Prolactin regulates ZNT2 expression through the JAK2/STAT5 signaling pathway in mammary cells[J]. Am J Physiol Cell Physiol.2009,297 (2):369-377.
    [46]Freeman M, Kanyicska B, Anna Lerant, et al. Prolactin:Structure, Function, and Regulation of Secretion[J]. Physiological reviews,2000,80 (4):1523-1631.
    [47]Cherepanov G. G, Danfaer A, Cant J. P. Simulation analysis of substrate utilization in the mammary gland of lactating cows[J]. J. Dairy Res,2000,67:171-188.
    [48]Feuermann Y, Mabjeesh S J, Shamay A. Leptin Affects Prolactin Action on Milk Protein and Fat Synthesis in the Bovine Mammary Gland[J]. Dairy Sci,2004,87:2941-2946.
    [49]Akers R M. Major advances associated with hormone and growth factor regulation of mammary growth and lactation in dairy cows[J]. Dairy Sci,2006,89 (4):1222-1234.
    [50]Swaminathan U, Varghese B, Fuchs S Y. Regulation of prolactin receptor levels and activity in breast cancer[J]. Mammary Gland Biol Neoplasia,2008,13 (1):81-91.
    [51]Hennighausen L, Robinson G W. Interpretation of cytokine signaling through the transcription factors STAT5A and STAT5B[J]. Genes Dev,2008,22:711-721.
    [52]Desrivieres S, Kunz C, Barash I, et al. The biological functions of the versatile transcription factors STAT3 and STAT5 and new strategies for their targeted inhibition[J]. J Mammary Gland Biol Neoplasia,2006,11:75-87.
    [53]Ferbeyre G, Moriggl R. The role of Stat5 transcription factors as tumor suppressors or oncogenes[J]. Biochim Biophys Acta,2011,1815:104-114.
    [54]Silva C M. Role of STATs as downstream signal transducers in Src family kinase-mediated tumorigenesis[J]. Oncogene,2004,23:8017-8023.
    [55]Liu X, Robinson G W, Gouilleux F, et al. Cloning and expression of Stat5 and an additional homologue (Stat5b) involved in prolactin signal transduction in mouse mammary tissue[J]. Proc Natl Acad Sci,1995,92:8831-8835.
    [56]Tan S H, Nevalainen M T. Signal transducer and activator of transcription 5A/B in prostate and breast cancers[J]. Endocr Relat Cancer,2008,15:367-390.
    [57]Wagner K U, Rui H:Jak2/Stat5 signaling in mammogenesis, breast cancer initiation and progression[J]. J Mammary Gland Biol Neoplasia,2008,13:93-103.
    [58]Yamaji D, Na R, Feuermann Y, et al. Development of mammary luminal progenitor cells is controlled by the transcription factor STAT5A[J]. Genes Dev,2009,23:2382-2387.
    [59]Bernichtein S, Touraine P, Goffin V. New concepts in prolactin biology[J]. J Endocrinol, 2010,206:1-11.
    [60]Arendt L M, Evans L C, Rugowski D E, Garcia-Barchino MJ, Rui H, Schuler LA:Ovarian hormones are not required for PRL-induced mammary tumorigenesis, but estrogen enhances neoplastic processes[J]. J Endocrinol,2009,203:99-110.
    [61]Arendt L M, Rugowski D E, Grafwallner-Huseth T A, et al. Prolactin-induced mouse mammary carcinomas model estrogen resistant luminal breast cancer[J]. Breast Cancer Res, 2011,13:R11.
    [62]Kelly P A, Bachelo A, Kedzia C, et al. The role of prolactin and growth hormone in mammary gland development[J]. Mol Cell Endocrinol,2002,197:127-131.
    [63]Schindler C. JAK-STAT signaling:from interferons to cytokines[J]. J Biol Chem,2007, 282:20059-20063.
    [64]Aoki N. A nuclear protein tyrosine phosphatase TC-PTP is a potential negative regulator of the PRL-mediated signaling pathway:dephosphorylation and deactivation of signal transducer and activator of transcription 5a and 5b by TC-PTP in nucleus[J]. Mol Endocrinol,2002, 16:58-69.
    [65]Buitenhuis M, Coffer P J, Koenderman L. Signal transducer and activator of transcription 5 (STAT5) [J]. Biochem Cell Biol,2004,36 (11):2120-2124.
    [66]Zhao X H, Wang J Y, Zhang G X, et al. Single nucleotide polymorphism in the STAT5b gene is associated with body weight and reproductive traits of the Jinghai Yellow chicken[J]. Mol Biol Rep,2012,39 (4):4177-4183.
    [67]Rane S G, Reddy E P. JAKs, STATs and src kinases inhematopoiesis[J]. Oncogene,2002, 21 (21):3334-3358.
    [68]Eftihia Cocolakis, Meiou Dai, Loren Drevet, et al. Smad Signaling Antagonizes STAT5-mediated Gene Transcription and Mammary Epithelial Cell Differentiation[J]. The Journal of Biological Chemistry,2008,283 (3):1293-1307.
    [69]Bellacosa A, Testa J R, Staal S P, et al. A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region[J]. Science.1991,254 (5029): 274-277.
    [70]Chan T O, Rittenhouse S E, Tsichlis P N. AKT/PKB and other D3 phosphoinositide-regulated kinases:kinase activation by phosphoinositide-dependent phosphorylation[J]. Annu Rev Biochem,1999,68:965-1014.
    [71]Franke T F, Yang S I, Chan T O, et al. The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase[J]. Cell,1995,81 (5): 727-736.
    [72]Manning B D, Cantley L C. AKT/PKB Signaling:Navigating Downstream[J]. Cell,2007, 129 (7):1261-1274.
    [73]Huang B X, Akbar M, Kevala K, et al. Phosphatidylserine is a critical modulator for Akt activation[J]. Cell Biol,2011,192 (6):979-992.
    [74]ROMMEL C, CAMPSM, JIH. PI3K and PI3K:partners in crime in inflammation in rheumatoid arthritis and beyond[J]. Nat Rev Immuno,2007,7(3):191-201.
    [75]Manning B D, Cantley L C. AKT/PKB signaling:Naviga ting downstream[J]. Cell,2007, 129(7):1261-1274.
    [76]Porstmann T, Griffiths B, CHung Y-L, et al. PKB/Akt induces transcription of enzymes involved in cholesterol and fatty acid biosynthesis via activation of SREBP. Oncogene, 2005,24:6465-6481.
    [77]Sundqvist A, Goechea-Alonso M T, Ye X, et al. Control of lipid metabolism by phos-phorylation-dependent degradation of the SREBP family of transcription factors by SCFFbw7[J]. Cell Metabolism,2005,1:379-391.
    [78]Cross D A, Alessi D R, Cohen P, et al. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B[J]. Nature,1995,378:785-789.
    [79]Boxer R B, Stairs D B, Dugan K D, et al. Isoform-specific requirement for Aktl in the developmental regulation of cellular metabolism during lactation[J]. Cell Metabolism,2006, 4:475-490.
    [80]Wagner K U, Rui H. Jak2/Stat5 signaling in mammogenesis, breast cancer initiation and progression[J]. J Mammary Gland Biol Neoplasia,2008,13:93-103.
    [81]Berwick DC, Hers I, Heesom K J, et al. The identification of ATP-citrate lyase as a protein kinase B (Akt) substrate in primary adipocytes[J]. J Biol Chem,2002,277:33895-33900.
    [82]Hobbs A A, Richards D A, Kessle D J, et al. Complex hormonal regulation of rat casein gene expression[J]. J Biol Chem,1982,257:3598-3605
    [83]Choi K M, Barash I, Rhoads R E. Insulin and prolactin synergistically stimulate beta-casein messenger ribonucleic acid translation by cytoplasmic polyadenylation[J]. Mol Endocrinol, 2004,18:1670-1686.
    [84]Camarillo I G, Thordarson G, Moffat J G, et al. Prolactin receptor expression in the epithet-lia and stroma of the rat mammary gland[J]. Journal of Endocrinology,2001,171(1):85-95.
    [85]Choi Y S, Chakrabarti R, Escamilla-Hernandez R, et al. Elf5 conditional knockout mice reveal its role as a master regulator in mammary alveolar development:failure of Stat5 activation and functional differentiation in the absence of Elf5[J]. Dev Biol,2009,329:227-241.
    [86]Harris J, Stanford P M, Sutherland K, et al. Socs2 and Elf5 mediate prolactin-induced mammary gland development[J]. Mol Endocrinol,2006,20:1177-1187.
    [87]Fielding B A, Frayn K N. Lipoprotein lipase and the disposition of dietary fatty acids[J]. Br J Nutr,1998,80(6):495-502.
    [88]Rudolph M C, McManaman J L, Phang T, et al. Metabolic regulation in the lactating mammary gland:a lipid synthesizing machine[J]. Physiological Genomics,2007,28(3): 323-336.
    [89]Jensen D R, Gavigan S, Sawicki V, et al. Regulation of lipoprotein lipase activity and mRNA in the mammary gland of the lactating mouse[J]. Biochem J,1994,298 (2):321-327.
    [90]Tacken P J, Hofker M H, Havekes L M, etal. Living up to a name:the role of the VLDL receptor in lipid metabolism [J]. Curr Opin Lipidol,2001,12(3):275-279.
    [91]Uchide T, Onda K, Bonkobara M, et al. Utilization of intestinal triglyceride-rich lipoproteins in mammary gland of cows[J]. Vet Med Sci,1999,61 (10):1143-1146.
    [92]Mashek D G, Coleman R A. Cellular fatty acid uptake:the contribution of metabolism[J]. Curr Opin Lipidol,2006,17 (3):274-278.
    [93]Bionaz M, Loor J J. ACSL1, AGPAT6, FABP3, LPIN1, and SLC27A6 are the most abundant isoforms in bovine mammary tissue and their expression is affected by stage of lactation[J]. Nutr,2008,138 (6):1019-1024.
    [94]Bauman D E, Mather I H, Wall R J, et al. Major advances associated with the biosynthesis of milk[J]. J Dairy Sci,2006,89 (4):1235-1243.
    [95]Chung M, Ha S, Jeong S, et al. Cloning and characterization of bovine stearoyl CoA desaturasel cDNA from adipose tissues. Biosci Biotechnol Biochem,2000,64 (7): 1526-1530.
    [96]Kinsella J E. Stearyl COA as a precursor of oleic acid and glycerolipids in mammary Microsomes from lactating bovine:possible regulatory step in milk triglyceride synthesis[J]. Lipids,1972,7 (5):349-355.
    [97]Rodriguez-Cruz, Tovar A R, Palacios-Gonzalez, et al. Synthesis of long-chain polyunsaturated fatty acids in lactating mammary gland: role of Delta5 and Delta6 desaturases, SREBP-1, PPARalpha, and PGC-1[J]. J Lipid Res,2006,47(3):553-560.
    [98]Short V J, Brindley D N, DILS. Co-ordinate changes in enzymes of fatty acid synthesis, activation and esterification in rabbit mammary gland during pregnancy and lactation[J]. Biochem,1977,162 (2):445-450.
    [99]Beigneux A P, Vergnes L, Qiao X, et al. Agpat6-a novel lipid biosynthetic gene required for triacylglycerol production in mammary epithelium[J]. J Lipid Res,2006,47(4):734-744.
    [100]Bionaz M, Rodriguez-Zas S L, Everts R E, et al. Mamm-OmicsTM:transcript profiling of the mammary gland during the lactation cycle in Holstein cows[J]. Dairy Sci,2007:272.
    [101]Jensen R G. The composition of bovine milk lipids:January 1995 to December 2000[J]. J Dairy Sci,2002,85 (2):295-350.
    [102]Grisart B, Farnir F, Karim L, et al. Genetic and functional confirmation of the causality of the DGAT1 K232A quantitative trait nucleotide in affecting milk yield and composition. Proc Natl Acad Sci USA,2004,101 (8):2398-2403.
    [103]Xu P, Hu ecks teadt T, Ho idal J R. M olecu lar clon ing and characterization of the human xanthine dehydrogenase gene (XDH) [J]. Genomics,1996,34:173-180.
    [104]Dupont G P, Hueck steadt T, Marshal 1B C, et al. Regulation of xanthine dehydrogenase and xanthine oxidase activity and gene express ion in cultured rat pulmonary endothelial cells [J]. Clin Invest,1992,89 (4):197-202.
    [105]Reinhardt T A, Lippolis J D. Bovine milk fat globule membrane proteome[J]. Dairy Res, 2006,73 (4):406-416.
    [106]Ishii T, Aoki N, Noda A, et al. C arboxy-term inal cytoplasm ic domain of mouse butyrophilin specifically associates with a 150-kDa protein of mammary epithelial cells and milk fat globule membrane[J]. Biochim Biophys Acta,1995,1245 (3):285-292.
    [107]Baumgard L H, Matitashvili E, Corl B A, et al. Trans-10, cis-12 conjugated linoleic acid decreases lipogenic rates and expression of genes involved in milk lipid synthesis in dairy cows[J]. J Dairy Sci,2002.85:2155-2163.
    [108]Peterson D G, Matitashvili E A, Bauman D E. Diet-induced milk fat depression in dairy cows results in increased trans-10, cis-12 CLA in milk fat and coordinate suppression of mRNA abundance for mammary enzymes involved in milk fat synthesis[J]. J Nutr,2003, 133:3098-3102.
    [109]Harvatine K J, Bauman D E. SREBP1 and thyroid hormone responsive spot 14 (S14) are involved in the regulation of bovine mammary lipid synthesis during diet-induced milk fat depression and treatment with CLA[J]. J Nutr,2006,136:2468-2474.
    [110]Eberle D, Hegarty B, Bossard P, et al. SREBP transcription factors:master regulators of lipid homeostasis[J]. Biochimie,2004,86:839-848.
    [111]Clarke S D. Polyunsaturated fatty acid regulation of gene transcription:a molecular mechanism to improve the metabolic syndrome[J]. J Nutr,2001,131:1129-1132.
    [112]Harvatine K J, Bauman D E. SREBP1 and thyroid hormone responsive spot 14 (S14) are involved in the regulation of bovine mammary lipid synthesis during diet-induced milk fat depression and treatment with CLA[J]. J Nutr,2006,136 (10):2468-2474.
    [113]Porstmann T, Griffiths B, CHung Y-L, et al. PKB/Akt induces transcription of enzymes involved in cholesterol and fatty acid biosynthesis via activation of SREBP[J]. Oncogene, 2005,24:6465-6481.
    [114]Mc Pherson R, Gauthier A. Molecular regulation of SREBP function:the Insig-SCAP connection and isoform-specific modulation of lipid synthesis[J]. Biochem Cell Biol,2004, 82(1):201-211.
    [115]Horton J D, Goldstein J L, Brown M S. REBPs:activators of the complete program of cholesterol and fatty acid synthesis in the liver[J]. J Clin Invest,2002,109(9):1125-1131.
    [116]Kadegowda A K G, Bionaz M, Piperova L S, et al. Peroxisome proliferator-activated receptor-gamma activation and long-chain fatty acids alter lipogenic gene networks in bovine mammary epithelial cells to various extents[J]. J Dairy Sci,2009,92(9):4276-4289.
    [117]Naylor M J, Oakes S R, Gardiner-Garden M, et al. Transcriptional changes underlying the secretory activation phase of mammary gland development[J]. Mol Endocrinol,2005,19: 1868-1883.
    [118]Cameron, C. M., B. E. Linebaugh, and J. A. Rillema. Hor-monal control of lipid metabolism in mouse mammary gland ex-plants[J]. Endocrinology,1983,112:1007-1011.
    [119]Porstmann T, Griffiths B, CHung Y-L, et al. PKB/Akt induces transcription of enzymes involved in cholesterol and fatty acid biosynthesis via activation of SREBP[J]. Oncogene, 2005,24:6465-6481.
    [120]Du X, Kristiana I, Wong J, et al. Involvement of Akt in ER-to-Golgi transport of SCAP/ SREBP:a link between a key cell proliferative pathway and membrane synthesis[J]. Mol Biol Cell,2006,17:2735-2745.
    [121]Zhangna, liqingzhang, gaoxuejun, et al. Expression and location of glucose transporter (GLUT1) in dairy goat mammary gland at different physiological stages[J]. journal of animal science,2009,89:475-480.
    [122]Li R W, Meyer M J, Van Tassel C P, et al. Identification of estrogen-responsive genes in the parenchyma and fat pad of the bovine mammary gland bymicroarray analysis[J]. Physiol Genomics,2006,27 (1):42-53.
    [123]Kaselonis G L, Mc Cabe ERB, Gray S M. Expression of hexokinasel and hexokinase 2 in mammary tissue of nonlactating and lactating rats:evaluation by RT-PCR[J]. Mol Genet Metab,1999,68:371-374.
    [124]Steven M Anderson, Michael C Rudolph, James L Mc Manaman, et al. Secretory activation in the mammary gland:it's not just about milk protein synthesis![J]. Breast Cancer Research,2007,9 (1):204-218.
    [125]Kuhn N J, Carrick D T, Wilde C J. Lactose Synthesis:The Possibilities of Regulation[J]. Dairy Sci,1980,63 (2):328-336.
    [126]Bleck G T, Wheeler M B, Hansen L B, et al. Lactose synthase components in milk: concentrations of alpha-lactalbumin and beta 1,4-galactosyltransferase in milk of cows from several breeds at various stages of lactation[J]. Reprod Domest Anim,2009,44 (2): 241-247.
    [127]Masao Sasaki, W. N. Eigel, AND T. W. Keenan. Lactose and major milk proteins are present in secretory vesicle-rich fractions from lactating mammary gland[J]. Cell Biology, 1978,75 (10):5020-5024.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700