用户名: 密码: 验证码:
东方田鼠KPNA2基因克隆及抗日本血吸虫实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
东方田鼠是迄今发现对日本血吸虫抗性最强的啮齿类哺乳动物。从东方田鼠体内分离其抗日本血吸虫的抗性物质,有助于人类从分子水平上揭示东方田鼠天然抗日本血吸虫的机理也有助于血吸虫病防治新型手段的研发。在前期研究中,我们从东方田鼠骨髓cDNA文库中分离获得了一个具有显著体外杀伤日本血吸虫童虫的次级亚基因池gE76。因此,我们拟从次级亚基因池gE76中继续分离单个活性的基因,并探讨其生物学功能。
     一、东方田鼠抗日本血吸虫抗性相关基因gE76.44的筛选
     实验利用表达克隆法对有较高体外杀伤日本血吸虫童虫活性的东方田鼠骨髓次级亚基因池gE76进行了筛选。将其转化大肠杆菌DH5a并铺板,随机挑取246个单克隆,分别进行质粒DNA抽提,EcoRⅠ酶切,1.0%琼脂糖凝胶电泳检测,共获取153个有插入片段质粒,选择插入片段≥800 bp的不同重组质粒37个,转化大肠杆菌DH5α并提取质粒DNA,转染HEK293 T细胞,制备条件培养基后,进行体外杀伤日本血吸虫童虫实验,在96 h内连续观察童虫死亡情况,统计死亡率,共获得四个杀虫效果较为显著的克隆:44号、69号、85号及109号,其童虫死亡率分别为16.7%、16.5%、10.4%、11.3%,与对照组比较具有统计学意义。经测序后其EST序列长度分别为2008bp、1626bp、1420bp、828bp。序列同源性比较发现:44号为核转运受体蛋白质karyopherin (importin) alpha 2,其序列中包含全长ORF,根据测序及多次重复杀虫实验结果,我们把44号基因作为从东方田鼠骨髓基因表达文库中筛选到的新的候选抗日本血吸虫相关基因,暂时命名为Mf-gE76.44进行下游实验。
     二、gE76.44基因生物信息学分析及其功能分析
     运用生物信息学方法对东方田鼠抗性相关基因gE76.44全长核苷酸序列进行结构和功能分析,BLASTN同源性比对发现:gE76.44与小鼠karyopherin alpha 2 (KPNA2) (NM-010655)的序列相似性为89.8%;多序列比对分析发现:小鼠、牛、人、大鼠和东方田鼠KPNA2的核苷酸及氨基酸序列存在差异;3D-JIGSAW (version 2.0)软件分析结果也证明东方田鼠和小鼠KPNA2蛋白分子立体结构上也存在明显差异。实验将小鼠KPNA2 (Ms-KPNA2)基因重组到真核表达载体pcDNA1.1,分别制备东方田鼠(Mf-KPNA2)及小鼠(Ms-KPNA2) KPNA2条件培养基,检测两者真核表达产物体外杀伤日本血吸虫童虫效果。扣除空白对照组童虫死亡率,Mf-KPNA2和Ms-KPNA2的条件培养基杀虫率分别为15.8%,2.8%,两者相比差异显著(P=0.003)。实验还从mRNA水平比较分析了KPNA2在正常东方田鼠和小鼠体内不同组织中的表达情况以及感染日本血吸虫0d,7d,12d后KPNA2基因在肝脏和肺脏组织中的表达。结果表明:不同组织间KPNA2的表达存在显著差异,东方田鼠在感染日本血吸虫后12d,肝脏KPNA2基因表达较小鼠显著上调。
     三、Mf-KPNA2基因治疗效果及表达情况分析
     为进一步确认Mf-KPNA2的抗日本血吸虫活性,我们建立了感染血吸虫小鼠模型,应用逆转录病毒载体pLXSN,建立pLXSN-KPNA2重组逆转录病毒载体系统,通过小鼠尾静脉注射,将重组病毒导入小鼠体内,检测重组病毒治疗后感染小鼠的减虫率、肝脏减卵率、血吸虫虫体改变及小鼠肝脏肉芽肿减少情况。pLXSN-KPNA2重组病毒经PA317细胞包装、浓缩、病毒滴度测定后,同空载体pLXSN病毒组,DMEM对照组一道,分三次尾静脉注射日本血吸虫感染小鼠。实验结果显示:pLXSN-KPNA2重组病毒治疗组较DMEM处理组,空载体pLXSN病毒对照组小鼠减虫率分别为:39.42%(P=0.006)和38.97%(P=0.007);肝脏减卵率分别为76.50%(P=0.000)和75.04%(P=0.000)差异显著,有统计学意义。不同处理组感染小鼠体内KPNA2基因在不同组织间的表达也存在明显差异,小鼠感染血吸虫后7d, pLXSN-KPNA2病毒处理组小鼠体内KPNA2基因在肝脏,肾脏和肌肉组织中高表达。
     四、东方田鼠胚胎成纤维永生化细胞系的建立
     Mf-KPNA2基因具有显著体外、体内杀伤日本血吸虫的作用,为了深入研究其抗虫机制,我们对东方田鼠胚胎成纤维细胞进行了体外分离和培养,并采用脂质体介导的基因转染法,将质粒pSV3 neo(含有SV40 T抗原基因和neo抗性基因)转染第三代东方田鼠胚胎成纤维细胞,首次建立了东方田鼠胚胎成纤维永生化细胞系,为进一步从细胞水平深入研究其抗虫机理及开展不同动物成纤维细胞间比较研究奠定基础和提供细胞实验材料。
     综上所述,本研究应用表达克隆法从东方田鼠骨髓基因表达文库筛选到一个日本血吸虫抗性相关基因Mf-KPNA2。东方田鼠与小鼠KPNA2在氨基酸结构域序列和数量上存在显著差异;东方田鼠体内不同组织间KPNA2表达丰度存在差异,而且与小鼠体内相同组织中的表达情况也完全不同。体外、体内实验结果均显示:该基因有着显著的抗日本血吸虫活性。同时,我们还建立了东方田鼠胚胎成纤维永生化细胞系,以上结果为进一步研究其抗日本血吸虫机制奠定了良好的基础。
Microtus fortis (M.fortis) is known as the only rodents mammalian in China, which is the highest ability of natural resistance to Schistosoma japonicum (S.japonicum) by preventing completion of life cycle of parasite. It was hypothesized that the anti-schistosome characteristic of M. fortis was due to some kind of unknown but heritable materials against S. japanicum. In previous study, we obtained a secondary subpool gE76 by expression cloning which had considerable anti-schistosomula effects in vitro. Therefore, the goals of this study were to screen and identify the anti-schistosome materials from the secondary subpool gE76 by expression cloning and to understand their potential mechanisms of anti-shcistosome effect.
     Chapter 1 Screening of resistance-associated gene gE76.44 against Schistosma japonicum from cDNA of Microtus fortis
     In our initial study we constructed a cDNA expression library of M. fortis marrow, and screened by expression cloning obtained a secondary subpool gE76 which had considerable anti-schistosomula effect.246 clones were randomly picked out from the gene pool gE76 and selected 153 clones according to the length of inserted gene fragments after EcoR I digestion. A total of 37 clones (≥800bp) was selected to further tested the schistosomula-killing capability of the conditioned media in vitro. Plasmids were extracted with High Pure Plasmid Isolation Kit, and transiently transfected into 293T cells cultured in 6-well plates using LipofectamineTM 2000. Expression supernatant (conditioned media) of each plasmid was collected 36~48 h later and tested at a concentration of 50% for their capacity of anti-schistosomula effects in vitro. The death rate of schistosomula was observed and calculated in 96 h. The plasmids with a higher death rate of schistosomula were selected.We selected and sequenced four clones bearing the most significant anti-schistosomula effect (16.7%、16.5%、10.4% and 11.3%, respectively). Their length of EST sequence were 2008 bp、1626 bp、1420 bp、828 bp respectively. Finally, clone gE76.44 with the most significant anti-schistosomula effect was selected. The average death rate of gE76.44 was 14.0% which was significantly higher than that of other plasmids and the negative control (P<0.05). After searching with BLASTN at the NCBI database, we found cDNA gE76.44 was homologous with karyopherin alpha 2 (KPNA2), so we named it Mf-gE76.44 for the following experiment.
     Chapter 2 Bioinformatics and functional analysis of the full-length of gene gE76.44
     After searching with BLASTN at the NCBI database, we found cDNA gE76.44 had 89.8% identities with mouse KPNA2 (NM-010655).Their full-length of gE76.44 cDNA was 2008 bp with ORF of 1590 bp encoded a polypeptide of 529 amino acid residue. Bioinformatics analysis results showed there were no significant difference of KPNA2 between M. fortis and other species in nucleotide and amino acid sequence. But the predicted stereochemical structures of KPNA2 between M. fortis and mouse was different. In order to confirm anti-schistosomula effect of Mf-KPNA2 in vitro, the mice KPNA2 cDNA were PCR-amplified and inserted into eukaryotic expression vector pcDNA1.1/Amp as a negative control to test its schistosomula-killing effect of the eukaryotic expression products in vitro. Conditioned medium of Mf-KPNA2 and Ms-KPNA2 were added to cultured schistosomula at a concentration of 50%. We observed and calculated death rate of the schistosomula in 96 h. Results showed that the average schistosomula-killing rate of Mf-KPNA2 was 15.8% which was significantly higher than that of the Ms-KPNA2 (2.80%), (P=0.003).We analyzed the expression abundance of the tissues by RT-PCR between M. fortis and mouse. The expression levels were different among tissues in each kind of animal and there was difference between two kinds of species, too. Besides the Mf-KPNA2 mRNA were higher expressed in liver after 12 days post-infection in M. fortis than that in mice.
     Chapter3 Recombinant retrovirus pLXSN-KPNA2 gene therapy and the expression levels analysis
     To confirm the anti-schistosome effect of Mf-KPNA2, it was inserted into retroviral expression vector pLXSN. We transfected recombinant pLXSN-KPNA2 into packaging cell PA317 to prepare the recombinant retrovirus. The biological viral titer was determined by the number of colonies presented at the highest dilution that containing positive colonies, multiplied with the dilution factor. Mice infected with S.japonicum cercariae were administrated by intravenous injection through tail vein with DMEM, pLXSN and pLXSN-KPNA2 retrovirus respectively. In all groups, adult worms were counted after heart perfusion of mice 42 d after infection. Compared with DMEM and pLXSN treatments, Mf-KPHA2 retrovirus treatment had 39.42%(P=0.006) and 38.97%(P=0.007) worm burden reductions and had 76.50%(P=0.000) and 75.04%(P= 0.000)egg reduction, respectively. We observed no statistically significant difference between DMEM and pLXSN retrovirus treatment in all examined assays (P=0.321). Also the mRNA expression levels of KPNA2 in pLXSN-KPNA2 treatment group mice was high in liver, kedney and mustle compared with DMEM and pLXSN treatment mice.
     Chapter4 Immortalization of M.fortis embryonic fibroblasts
     Our studies suggested that Mf-KPNA2 had anti-schistosome effect both in vitro and in vivo. It may be as a novel anti-schistosome molecule. The mechanisms how Mf-KPNA2 could killed schistosome were unclear. In order to understand the potential mechanisms and to get more clear picture, the M.fortis embryonic fibroblasts (MFEF) were successfully isolated and cultured and mammalian expression vector (pSV3 neo) containing the SV40 large T antigen was used to transfect the 3 rd passage MFEF using LipofectamineTM 2000. The immortalized cells of M fortis embryo fibroblasts are successfully established. It layed the foundation for further studies from cellular level on M. fortis against S. japonicum infection and for comparative fibroblast study between different animals.
     In summary, we screened M. fortis bone marrow cDNA expression library by expression cloning and identified a clone named Mf-KPNA2 and observed its anti-schistosome effect both in vitro and in vivo. We analyzed its bioinformatical structure and function, and also compared the expression abundance of the tissues by RT-PCR beween M. fortis and mouse. Besides the immortalized embryo fibroblasts of M.fortis are successfully established. All the results suggest KPNA2 as a novel anti-schistosome molecule.Although the mechanism by which the Mf-KPNA2 serves the anti-schistosomula effect is not clear, it sets the stage to further explore the role of KPNA2 in the natural resistance to S.japanicum.
引文
[1]陈贤义,姜庆五,王立英.2001年全国血吸虫病疫情通报.中国血吸虫病防治杂志,2002,14(4):241-243.
    [2]钱宗立,陈名刚.呼唤血防明天-日本血吸虫疫苗研究专项课题3年评估报告.中国血吸虫病防治杂志,1998,10(增刊):1-6.
    [3]Bergquist NR,Colley DG.. Schistosomiasis vaccinces research to development. Parasitology Today.1998,14(3):99~104.
    [4]刘杰生,容寿铭,陈佩玑,等.几种鼠类人工感染日本血吸虫的实验观察.中国血吸虫病防治杂志,1992,4(6):350-351.
    [5]马勇.中国有害啮齿类动物分布.中国农学通报,1986,6:76-82
    [6]H(?)rling J, Chizhikov V, Lundkvist A, et al. Khabarovsk virus:aphl ogenetically and serologically distinct hantavirus isolated from Microtus fortis trapped in far east Russia. J. Gen Virol.1996,77 (pt4):687~694.
    [7]武正军,陈安国,李波,等.洞庭湖区东方田鼠繁殖特性研究.兽类学报,1996,16(2):142-150.
    [8]贺宏斌,左家铮,刘伯香,等.室内繁殖和野生东方田鼠感染日本血吸虫比较.实用寄生虫病杂志,1995,3(21):72-74.
    [9]欧阳理,易新元,曾宪芳,等.东方田鼠血清及其不同部分对日本血吸虫童虫的体外杀伤作用.中国血吸虫病防治杂志2003,15(2):98-101.
    [10]Super HJ, Hasekrug KJ, Simmons S, et al. Fine mapping of the Friend retrovirus resistance gene, Rfv3, on mouse chromosome 15. J Virol,1999,73(9): 7848~7852.
    [11]Samson M, Libert F, Doranz BJ, et al. Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR5 chemokine receptor gene. Nature,1996,382(6593):722~725.
    [12]贺宏斌,左家铮.东方田鼠实验感染日本血吸虫的研究.湖南医学,1992,9:65-67.
    [13]李浩,何艳燕,林矫矫,等.东方田鼠重复感染日本血吸虫实验初步研究. 中国兽医寄生虫病,2000,8(2):12-15.
    [14]童群波,刘述先,曹建平,等.血吸虫免疫逃避相关分子的研究进展.中国寄生虫学与寄生虫病杂志,2004,22(1)57-60.
    [15]毛湘冰,杨德君.日本血吸虫免疫学研究的进展.上海畜牧兽医通讯,2005,(3):12-13.
    [16]王文实,李雍龙.日本血吸虫感染的免疫抑制现象与T细胞凋亡的关系.中国血吸虫病防治杂志,2000,12(5):257-260.
    [17]蒋守富,魏梅雄,林矫矫,等.东方田鼠天然抗日本血吸虫抗体及IgG亚类的初步研究.中国血吸虫病防治杂志,2001,13:1-3.
    [18]张新跃,何永康,李毅,等.正常东方田鼠血清及脾细胞体外杀血吸虫童虫作用的初步观察.中国血吸虫病防治杂志,2001,13(4):206-208.
    [19]刘金明,傅志强,李浩,等.东方田鼠血清体外杀伤日本血吸虫童虫效果的初步观察.中国人兽共患病杂志,2002,18(2):82-84.
    [20]蒋守富,魏梅雄,林矫矫.东方田鼠血清被动转移抗日本血吸虫的保护力研究.中国寄生虫病防治杂志,2004,17(5):298-300.
    [21]王庆林、易新元、曾宪芳,等.东方田鼠感染日本血吸虫后肺和肝的组织细胞反应及虫体的扫描电镜观察.中国人兽共患病杂志,2002,18(4):65-67.
    [22]孙军,林矫矫,程国锋,等.利用基因表达谱芯片研究东方田鼠和小鼠感染日本血吸虫前后基因的差异性表达.北京大学学报,2004,40(4):532-536.
    [23]杨榕,胡维新,朱敏,等.东方田鼠特异DNA片段的克隆及核苷酸序列分析.中国实验动物学报,2001,9(2):67-72.
    [24]阎玉涛,刘述先,宋光承,等.东方田鼠天然抗体相关的日本血吸虫抗原基因筛选和克隆.中国寄生虫学与寄生虫病杂志,2001,619(3):153-156.
    [25]秦志强,胡维新,邬国军,等.东方田鼠骨髓基因池的构建及抗日本血吸虫抗性相关基因的筛选.生命科学研究,2004,8(4):333-338.
    [26]邬国军,胡维新,秦志强. 东方田鼠天然抗日本血吸虫感染相关蛋白质的分离和纯化.中国人兽其患病杂志,2005,21(8):688-692.
    [27]Gong Q, Cheng G, Qin ZQ,et al.Identification of the resistance of a novel molecule heat shock protein 90a(HSP90a) in Microtus fortis to Schistosoma japonicum infection Acta Trop.2010,115(3):220~226.
    [28]Super HJ, Hasekrug KJ, Simmons S, et al. Fine mapping of the Friend retrovirus resistance gene, Rfv3, on mouse chromosome 15. J Virol,1999,73 (9):7848~7852.
    [29]Salafsky B, Fusco AC, Whitley K, et al. Schistosoma mansoni:analysis of cercarial transformation methods. Exp Parasitol,1988,67(1):116~127.
    [30]Gold D, Flecher E. Influence of mechanical tail-detachment techniques of schistosome cercariae on the production, viability, and infectivity of resultant schistosomula:a comparative study. Parasitol Res,2000,86(7):570~572.
    [31]Choi SJ, Reddy SV, Devlin RD, et al. Identification of human asparaginyl endopeptidase (legumain) as an inhibitor of osteoclast formation and bone resorption. J Biol Chem,1999,274(39):27747~27753.
    [32]Takahashi S, Reddy SV, Chirgwin JM, et al. Cloning and identification of annexin Ⅱ as an autocrine/paracrine factor that increases osteoclast formation and bone resorption. J Biol Chem,1994,269(46):28696~28701.
    [33]Kawai T, Takahashi K, Sato S, et al. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol,2005,6(10):981~ 988.
    [34]Zhong B, Yang Y, Li S, et al. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity,2008,29(4):538~ 550.
    [35]Melen K, Fagerlund R, Franke J.Importin alpha Nuclear Localization Signal Binding Sites for STAT1,STAT2, and Influenza A Virus Nucleoprotein. J Biol Chem.2003,278(30):28193~28200.
    [36]Hosokawa K, Nishi M, Sakamoto H, et al.Regional distribution of importin subtype mRNA expression in the nervoussystem:study of early postnatal and adult mouse. J Neuroscience.2008,157(4):864~877.
    [37]Jans DA, Xiao CY, Lam MH. Nuclear targeting signal recognition:a key control point in nuclear transport? Bioessays.2000,22(6):532~544.
    [38]Dahl E, Kristiansen G, Got tlob K, et al. Molecular profiling of laser-microdissected matched tumor and normal breast tissue identifies karyopherin alpha 2 as a potential novel prognosticmarker in breast cancer. Clin Cancer Res. 2006,12(13):3950~3960.
    [39]Winnepenninckx V, Lazar V, Michiels S, et al. Gene expression profiling of primary cutaneous melanoma and clinical outcome. J Natl Cancer Inst. 2006,98(7):472~482.
    [40]Miyamoto Y, Saiwaki T, Yamashita J, et al. Cellular stresses induce the nuclear accumulation of importinaand cause a conventional nuclear import block. J Cell Biol.2004,165(5):617~623.
    [41]Kodiha M, Tran D, Qian C, et al. Oxidative stress mislocalizes and retains transport factor importin alpha and nucleoporins Nupl53 and Nup88 in nuclei where they generate high molecular mass complexes. Biochim Biophys Acta. 2008,1783(3):405~418.
    [42]Furuta M, Kose S, Koike M,et al. Heat-shock induced nuclear retention and recycling inhibition of importin alpha Genes. Cells.2004,9(5):429~441.
    [43]Bian XL, Wilson VG. Common importin alpha specificity for papillomavirus E2 proteins. Virus Res,2010.150(1-2):135~137.
    [44]Bhuvanakantham R, Chong MK, Ng ML.Specific interaction of capsid protein and importin-alpha/beta influences West Nile virus production. Biochem Biophys Res Commun,2009,389(1):63~69.
    [45]Atasheva S, Fish A, Fornerod M, et al. Venezuelan equine encephalitis virus capsid protein forms a tetrameric complex with CRM1 and importin alpha/beta that obstructs nuclear pore complex function. J Virol,2010,84(9):4158~4171.
    [46]Jordan M, Wurm F. Transfection of adherent and suspended cells by calcium phosphate. Methods,2004,33(2):136~143.
    [47]Zeng ZJ, Li ZB, Luo SQ, et al. Retrovirus-mediated tk gene therapy of implanted human breast cancer in nude mice under the regulation of Tet-On. Cancer Gene Ther,2006,13(3):290~297.
    [48]Byun J, Kim JM, Kim SH. A simple and rapid method for the determination of recombinant retrovirus titer by G418 selection. Gene Ther,1996,3(11):1018~ 1020.
    [49]Yu J, Wang S, Li W, et al. Cloning, expression and protective immunity evaluation of the full-length cDNA encoding succinate dehydrogenase iron-sulfur protein of Schistosoma japonicum. Sci China C Life Sci,2007, 50(2):221~227.
    [50]Sayed AA, Simeonov A, Thomas CJ, et al. Identification of oxadiazoles as new drug leads for the control of schistosomiasis. Nat Med,2008,14(4):407~412.
    [51]McTaggart S, Al-Rubeai M. Retroviral vectors for human gene delivery. Biotechnol Adv,2002,20(1):1~31.
    [52]Franceschini I A, Feigenbaum-Lacombe V, Casanova P, et al. Efficient gene transfer in mouse neural precursors with bicistronic retroviral vector.J Neurosci Res,2001,65(3):208~219.
    [53]Mulligan RC. The basic science of gene therapy. Science,1993,260 (5110): 926~932.
    [54]Miller AD. Human gene therapy comes of age. Nature,1992,357 (6378):455~ 460.
    [55]Zhao Y, Low W, Collins MK. Improved safety and titre of murine Leukaemia virus (MLV)-based retroviral vectors. Gene Ther,2000,7(4):300~305.
    [56]Reeves L, Smucker P, Cornetta K. Packaging cell line characteristics and optimizing retroviral vector titer:the national gene vector laboratory experience. Hum Gene Ther,2000,11(15):2093~2103.
    [57]Seppen J, Barry S, Lam GM, et al. Retroviral preparations derived from PA317 Packaging cells contain inhibitors that copurify with viral particles and are devoid of viral vector RNA. Hum Gene Ther,2000,11(5):771~775.
    [58]Davis JL, Witt RM, Gross PR, et al. Retroviral particles produced from a stable human-derived packaging cell line transduce target cells with very high efficiencies. Hum Gene Ther,1997,8(12):1459~1467.
    [59]Kou B, Li Y, Zhang L, et al. In vivo inhibition of tumor angiogenesis by a soluble VEGFR-2 fragment. Exp Mol Pathol,2004,76(2):129~137.
    [60]Nollen EA, Morimoto RI.Chaperoning signaling pathways:molecular chaperones as stress-sensing 'heat shock' proteins.J Cell Sci.2002,115(Pt 14): 2809~2816.
    [61]Miyamoto Y, Saiwaki T, Yamashita J, et al. Cellular stresses induce the nuclear accumulation of importinαand cause a conventional nuclear import block. J Cell Biol.2004,165(5):617~623.
    [62]Kodiha M, Tran D, Qian C, et al. Oxidative stress mislocalizes and retains transport factor importin alpha and nucleoporins Nup153 and Nup88 in nuclei where they generate high molecular mass complexes. Biochim Biophys Acta. 2008,1783(3):405~418.
    [63]Furuta M, Kose S, Koike M, et al.Heat-shock induced nuclear retention and recycling inhibition of importin alpha Genes. Cells.2004,9(5):429~441.
    [64]Hogarth CA, Calanni S, Jans DA, et al. Importin alpha mRNAs Have Distinct Expression Profiles During Spermatogenesis Dev Dyn.2006,235(1):253~ 262.
    [65]Dahl E, Kristiansen G, Gottlob K, et al. Molecular profiling of laser microdissected matched tumor and normal breast tissue identifies karyopherin alpha 2 as a potential novel prognosticmarker in breast cancer. Clin Cancer Res. 2006,12(13):3950~3960.
    [66]Nitahara-Kasahara Y, Kamata M, Yamamoto T, et al. Novel Nuclear Import of Vpr Promoted by Importina Is Crucial for Human Immunodeficiency Virus Type 1 Replication in Macrophages. J Virol.2007,81(10):5284~5293.
    [67]Lee AS. The glucose-regulated proteins:stress induction and clinical applications. Trends Biochem Sci,2001,26(8):504~510.
    [68]Amith P,Josephc M,Mitchel SB, et al. Heat shock protein 90α recruits FLIPS to the death-inducing signaling complex and contributes to TRAIL resistance in human glioma. Cancer Res,2007,67(19):9482~9489.
    [69]Evans MJ, Kaufman MH. Establishment in culture of pluripotent cells from mouse embryos. Nature,1981; 292(5819):156.
    [70]刘民,李柏青.小鼠胚胎成纤维细胞的分离、扩增和抑制.中国实验动物学杂志,2002,12(4):215-219.
    [71]常万存,窦忠英,高志敏.人胚胎成纤维细胞的冷冻保存.西北农业学报,2000,9(1):6-9.
    [72]张怡,赵连三,汪成孝,等.人胚胎成纤维细胞与小鼠胚胎成纤维细胞生物学特性比较.生物医学工程学杂志,2003,20(2):251-254.
    [73]Xie CQ, Lin G, Luo KL, et al. Newly expressed proteins of mouse embryonic fibroblasts irradiated to be inactive. Biochemical and Biophysical Research Communications 2004,315(3):581~588.
    [74]申群喜,胡维新,许冰,等.东方田鼠组织、器官体外杀日本血吸虫童虫作用.湖南医科大学学报,2002,27(3):198-200.
    [75]Chen W, Hahn WC. SV40 early region oncoproteins and human cell transformation. Histol Histopathol,2003,18(2):541~550.
    [76]Poulin DL,Kung AL,Deciprio JA.p53 targets simian virus 40 large Tantigen for acetylation by CBP.J Virol,2004,78(15):8245~8253.
    [77]Sullivan CS,Baker AE,Pipas JM. Simian virus 40 infection disrupts p130-E2F complexes but does not perturb pRbE2F complexes. Virology,2004,320 (2): 218~228.
    [1]Dahl E, Kristiansen G, Got tlob K, et al. Molecular profiling of laser microdissected matched tumor and normal breast tissue identifies karyopherin alpha 2 as a potential novel prognosticmarker in breast cancer. Clin Cancer Res. 2006,12(13):3950~3960.
    [2]Melen K, Fagerlund R, Franke J.Importin alpha Nuclear Localization Signal Binding Sites for STAT1,STAT2, and Influenza A Virus Nucleoprotein. J Biol Chem.2003,278(30):28193~28200.
    [3]Mason DA, Stage DE, Goldfarb DS. Evolution of the Metazoan-Specific Importin alpha Gene Family. J Mol Evol.2009,68(4):351~365.
    [4]Hosokawa K, Nishi M, Sakamoto H, et al.Regional distribution of importin subtype mRNA expression in the nervoussystem:study of early postnatal and adult mouse. Neuroscience.2008,157(4):864~877.
    [5]Stewart M. Molecular mechanism of the nuclear protein import cycle. Nat Rev Mol Cell Biol.2007,8(3):195~208.
    [6]Nitahara KY, Kamata M, Yamamoto T, et al. Novel Nuclear Import of Vpr Promoted by Importina Is Crucial for Human Immunodeficiency Virus Type 1 Replication in Macrophages. J Virol.2007,81(10):5284~5293.
    [7]Kotera I, Sekimoto T, Miyamoto Y, et al. Importin alpha transports CaMKIV to the nucleus without utilizing importin beta. EMBO J.2005,24(5):942~951.
    [8]Lange A, Mills RE, Lange CJ. Classical nuclear localization signals:definition, function, and interaction with importin alpha. J Biol Chem.2007,282 (8):5101~ 5105.
    [9]Kosugi S, Hasebe M, Matsumura N, et al.Six Classes of Nuclear Localization Signals Specific to Different Binding Grooves of importin alpha. J Biol Chem. 2009,284(1):478~485.
    [10]Lange A, McLane LM, Mills RE.Expanding the Definition of the Classical Bipartite Nuclear Localization Signal. Traffic.2010,11 (3):311~323
    [11]Harreman MT, Hodel MR, Fanara P.Harreman-The Auto-inhibitory Function of Importin alpha Is Essential in Vivo J Biol Chem.2003,278(8):5854~5863.
    [12]Miyamoto Y, Hieda M, Harreman MT, et al. Importin alpha can migrate into the nucleus in an importin beta and Ran-independent manner. EMBO J.2002,21 (21):5833~5842.
    [13]Riddick G, Macara IG. The adapter importin alpha provides flexible control of nuclear import at the expense of efficiency. Mol Syst Biol.2007,3:118.
    [14]Jans DA, Xiao CY, Lam MH. Nuclear targeting signal recognition:a key control point in nuclear transport? Bioessays.2000,22(6):532~544.
    [15]Miyamoto Y, Saiwaki T, Yamashita J, et al. Cellular stresses induce the nuclear accumulation of importinaand cause a conventional nuclear import block. J Cell Biol.2004,165(5):617~623.
    [16]Kodiha M, Tran D, Qian C, et al. Oxidative stress mislocalizes and retains transport factor importin alpha and nucleoporins Nupl53 and Nup88 in nuclei where they generate high molecular mass complexes.Biochim Biophys Acta. 2008,1783(3):405~418.
    [17]Furuta M, Kose S, Koike M, et al. Heat-shock induced nuclear retention and recycling inhibition of importin alpha Genes. Cells.2004,9(5):429~441.
    [18]Pulliam KF, Fasken MB, McLane LM, et al. The Classical Nuclear Localization Signal Receptor, Importin alpha, Is Required for Efficient Transition Through the G1/S Stage of the Cell Cycle in Saccharomyces cerevisiae. Genetics.2009 181(1):105~118.
    [19]Adam SA, Sengupta K, Goldman RD. Regulation of Nuclear Lamin Polymerization by Importin alpha. J Biol Chem.2008,283(13):8462~8468.
    [20]Yasuhara N, Shibazaki N, Tanaka S, et al. Triggering neural differentiation of ES cells by subtype switching of importin alpha. Nat Cell Biol.2007,9(1):72~79.
    [21]Hogarth CA, Calanni S, Jans DA, et al. Importin alpha mRNAs Have Distinct Expression Profiles During Spermatogenesis. Dev Dyn.2006,235(1):253~262.
    [22]Kim BJ, Lee H. Caspase-mediated cleavage of importin alpha increases its affinity for MCM and downregulates DNA synthesis by interrupting the binding of MCM to chromatin. Biochim Biophys Acta.2008,1783(12):2287~2293.
    [23]Winnepenninckx V, Lazar V, Michiels S, et al. Gene expression profiling of primary cutaneous melanoma and clinical outcome.J Natl Cancer Inst.2006,98 (7):472~482.
    [1]Stechmann A, Cavalier ST. Evolutionary origins of Hsp90 chaperones and a deep paralogy in their bacterial ancestors. J Eukaryot Microbiol,2004,51(3): 364~373.
    [2]Jonathan DC, Radhey SG. Immunoelectron microscopy provides evidence that tumor necrosis factor receptor-associated protein 1 (trap-1) is a mitochondrial protein which also localizes at specific extramitochondrial sites. Exp Cell Res., 2000,260(1):30~39.
    [3]Monte AA, Baptiste V, Joel P, et al. Proof of interaction between Leishmania SIR2RP1 deacetylase and chaperone HSP83. Parasitol Res,2007,100(4):811~ 818.
    [4]Chen B, Piel WH, Gui L, et al. The HSP90 family of genes in the human genome:Insights into their divergence and evolution. Genomics,2005, (86): 627~637.
    [5]Schweinfest CW, Graber MW, Henderson KW,et al. Cloning and sequence analysis of Hsp89alpha DeltaN, a new member of theHsp90 gene family. Biochim Biophys Acta.1998;1398(1):18~24.
    [6]Anna Z, Jakub U, Pawel B. Hsp90n-An accidental product of a fortuitous chromosomal translocation rather than a regular Hsp90 family member of human proteome. Biochim Biophys Acta.,2008,1784(11):1844~1846.
    [7]Takayuki KN, NEMOTO, Toshio ONO. Substrate-binding characteristics of proteins in the 90 kDa heat shock protein family. Biochem J.,2001,354 (Pt 3): 663~670.
    [8]Kobayakawa T Yamada S, Mizuno A. Substitution of only two residues of human Hsp90alpha causes impeded dimerization of Hsp90 beta. Cell Stress Chaperones,2008,13(1):97~104.
    [9]Eustace BK, Sakurai T, Stewart JK, et al. Functional proteomic screens reveal an essential extracellular role for hsp90 alpha in cancer cell invasiveness. Nat Cell Biol,2004,6(6):507~514.
    [10]Cheng CF,Fan J, Fedesco M, et al. Transforming growth factor (TGF)-stimulated secretion of HSP90α:Using the receptor LRP-1/CD91 to promote human skin cell migration against a TGF-rich environment during wound healing. Mol Cell Biol., 2008,28(10):3344~3358.
    [11]Li W, Li Y, Guan S, et al. Extracellular heat shock protein 90:linking hypoxia to skin cell motility and wound healing. EMBO J,2007,26(5):1221~1233.
    [12]Liao DF, Jin ZG., Baas AS, et al. Purification and identification of secreted oxidative stress-induced factors from vascular smooth muscle cells. J Biol Chem, 2000,275(1):189~196.
    [13]Lei HT, Venkatakrishnan A, Yu S, et al Protein Kinase A-dependent transloca-tion of Hsp90 impairs endothelial nitric-oxide synthase activity in high glucose and diabetes. J Biol Chem,2007,282(13):9364~9371.
    [14]Yang Y, Rao R, Shen J, et al. Role of acetylation and extracellular location of heat shock protein 90alpha in tumor cell invasion. Cancer Res,2008,68(12): 4833~4842.
    [15]Millson SH, Truman AW, Racz A. Expressed as the sole Hsp90 of yeast, the alpha and beta isoforms of human Hsp90 differ with regard to their capacities for activation of certain client proteins, whereas only Hsp90beta generates sensitivity to the Hsp90 inhibitor radicicol. FEBS J,2007,274(17):4453~4463.
    [16]Chang YS, Lo CW, Sun FC, et al. Differential expression of Hsp90 isoforms in geldanamycin treated 9L cells. Biochem Biophys Res Commun.,2006,344(1): 37~44.
    [17]Chao CC, Sun FC, Wang CH, et al. Concerted actions of multiple transcription elements confer differential transactivation of HSP90 isoforms in geldanamycin-treated 9L rat gliosarcoma cells. J Cell Biochem,2008,104(4):1286~1296.
    [18]Ammirante M, Rosati A, Gentilella A. The activity of hsp90 alpha promoter is regulated by NF-kappa B transcription factors. Oncogene,2008,27(8):1175~ 1178.
    [19]Maria T, Marianthi T, George C, et al. Structural Characterization of the medfly hsp83 gene and functional analysis of its proximal promoter region in vivo by germ-line transformation. Arch Insect Biochem Physiol.,2008,67(1):20~35.
    [20]Lee AS. The glucose-regulated proteins:stress induction and clinical applications. Trends Biochem Sci,2001,26(8):504~510.
    [21]Amith P, Joseph CM, Mitchel S. Heat shock protein 90a recruits FLIPS to the death-inducing signaling complex and contributes to TRAIL resistance in human glioma. Cancer Res,2007,67(19):9482~9489.
    [22]Didelot C, Lanneau D, Brunet M, et al. Interaction of heat-shock protein 90 beta isoform (HSP90 beta) with cellular inhibitor of apoptosis 1 (c-IAP1) is required for cell differentiation. Cell Death Differ,2008,15(5):859~866.
    [23]Chadli A, Felts SJ, Toft DO. GCUNC45 is the first Hsp90 co-chaperone to show alpha/beta isofonn specificity. J Biol Chem,2008,283(15):9509~9512.
    [24]Taherian A, Krone PH, Ovsenek N. A comparison of Hsp90 alpha and Hsp90 beta interactions with cochaperones and substrates. Biochem Cell Biol,2008,86 (1):37~45.
    [25]Stephan F, Adriane L, Jochen R, et al. The ATPase Cycle of the Endoplasmic Chaperone Grp94. J Biol Chem,2007,282(49):35612~35620.
    [26]Shervington A, Cruickshanks N, Lea R, et al. Can the lack of HSP90alpha protein in brain normal tissue and cell lines, rationalise it as a possible therapeutic target for gliomas? Cancer Invest,2008,26(9):900~904.
    [27]Yamano T, Mizukami S, Murata S, et al. Hsp90-mediated assembly of the 26 S proteasome is involved in major histocompatibility complex class Ⅰ antigen processing. J Biol Chem,2008,283(42):28060~28065.
    [28]Cheng CK, Chi ML, ChenYL, et al. Involvement of heat shock protein (Hsp)90 but not Hsp90α in antiapoptotic effect of CpG-B oligodeoxy nucleotide. J Immunol.,2007,178(10):6100~6108.
    [29]Ni M, LEE AS. ER chaperones in mammalian development and human diseases. FEBS Lett,2007,581(19):3641~3651.
    [30]Wells AD, Malkovsky M. Heat shock proteins, tumor immunogenicity and antigen presentation:an integrated view. Immunol Today,2000,21(3):129.
    [31]Natasa S, Eckhard RP. Secreted heat shock protein gp96-Ig:An innovative vaccine approach. Am J Reprod Immunol.,2008,59(5):407~416.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700