用户名: 密码: 验证码:
神经生长因子受体p75NTR抑制肝癌生长的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
p75NTR(p75 neurotrophin receptor)是神经生长因子(neurotrophin, NT)的低亲和力受体,由427个氨基酸组成,属于肿瘤坏死因子受体超家族(TNFR)的一员。p75NTR不仅在神经系统的发育中起重要作用,而且在肿瘤的发生发展中也起重要作用。
     既往的研究表明,p75NTR是一个潜在的抑癌基因,它可以抑制前列腺癌细胞的生长。然而有报道认为p75NTR也可以作为生存受体促进黑色素瘤细胞的脑转移,这一矛盾提示p75NTR在不同的肿瘤中可能发挥了不同的作用。我科先前的研究发现,p75NTR在胃癌中的表达显著低于癌旁组织,p75NTR可以抑制胃癌的侵袭和转移。迄今为止,p75NTR在肝癌中的表达情况及在肝癌生长中的作用尚不清楚,本课题将对此进行探讨。
     【目的】
     1、研究p75NTR在肝癌及癌旁组织中的表达情况;2、研究p75NTR对肝癌细胞生长的影响;3、探讨p75NTR诱导肝癌细胞周期阻滞的可能机制。
     【方法】
     1、利用免疫组化方法研究p75NTR在肝癌及癌旁组织中的表达。2、Western Blot方法检测肝癌细胞系和正常肝细胞系中p75NTR的表达。3、通过基因重组方法构建p75NTR的siRNA载体,转染Chang细胞,G418筛选,获得稳定克隆。构建p75NTR的正义表达载体,转染HepG2细胞,G418筛选,获得稳定克隆。4、对稳定转染的细胞利用Western blot技术鉴定不同载体的转染效果。5、MTT法绘制转染细胞及对照细胞的生长曲线。6、流式细胞仪分析转染细胞和对照细胞的细胞周期分布。7、利用Hoechst33258染色法和流式细胞仪分析法检测转染细胞的凋亡百分率。8、软琼脂克隆形成实验观察转染细胞和对照细胞在体外的成瘤能力。9、裸鼠成瘤实验观察转染细胞及其对照细胞的体内成瘤能力。10、用Western blot法检测转染细胞中细胞周期相关分子表达水平的变化。
     【结果】
     1、利用免疫组化技术检测了p75NTR在肝癌和癌旁组织中的表达,发现p75NTR在肝癌组织中的表达显著低于癌旁组织,肝癌的分化程度越低、临床分期越差则p75NTR的表达也越低。2、Western Blot方法检测肝癌细胞系和正常肝细胞系中p75NTR蛋白的表达,发现p75NTR在正常肝细胞系中表达较高,而在肝癌细胞系中表达较低。3、构建了p75NTR的siRNA载体,将其转染Chang细胞,G418筛选获得稳定表达的克隆,经蛋白水平检测证实成功建立了p75NTR下调的稳定细胞系。同时构建了p75NTR的正义表达载体,将其转染HepG2细胞,G418筛选获得稳定表达的克隆,经蛋白水平检测证实成功建立了p75NTR上调的稳定细胞系。4、用MTT法检测细胞生长情况,结果发现,p75NTR-siRNA转染的Chang细胞生长加快,而p75NTR正义转染的HepG2细胞生长减慢。5、细胞周期检测显示,p75NTR-siRNA转染的Chang细胞增殖指数增加,G1/S期的转换加快;而p75NTR正义转染的的HepG2细胞增殖指数降低,发生G1/S期的阻滞。6、Hoechst33258染色法和流式细胞仪分析法检测转染细胞的凋亡情况,结果发现,p75NTR正义转染的HepG2细胞的凋亡百分率增加。7、软琼脂克隆形成实验显示,p75NTR正义转染的HepG2细胞生长减慢,克隆形成率显著低于对照细胞。8、裸鼠体内成瘤实验结果显示,p75NTR正义转染的HepG2细胞的成瘤性显著低于对照细胞。9、Western blot检测转染细胞的细胞周期相关分子发现,p75NTR表达的下调使PCNA、Cyclin D1和p-Rb的表达上调,但使Rb的表达下调;p75NTR表达的上调使PCNA、Cyclin D1和p-Rb的表达下调,但使Rb的表达上调。这提示p75NTR通过上述机制引起了G1/S期的阻滞。
     【结论】
     1、p75NTR在肝癌组织中的表达显著低于癌旁组织,肝癌的分化程度越低、临床分期越差则p75NTR的表达就越低。2、p75NTR可以抑制肝癌细胞的增殖,促进肝癌细胞的凋亡,从而抑制了肝癌细胞的生长和成瘤能力。3、p75NTR能够通过下调Cyclin D1、p-Rb和PCNA的表达和上调Rb的表达来诱导肝癌细胞的G1/S期阻滞,从而抑制了肝癌的生长。
The nerve growth factor receptor p75 (p75NTR), which contains 427 amino acids, is a low-affinity receptor of neurotrophin. P75NTR plays an important role not only in the development of nerve system, but also in the carcinogenesis and development of cancers.
     Previous studies have shown that p75NTR has been identified as a potential tumor suppressor associated with growth inhibition, which could negatively regulate cell growth and proliferation in prostate cancer, however, it was also reported that p75NTR acted as a survival receptor in brain-metastatic melanoma cells. This results indicated that p75NTR play different roles in different kinds of tumors and cell context. Our previous showed that the expression of p75NTR was significantly decreased in gastric cancer tissues than the adjacent noncancerous counterparts, and p75NTR could inhibit the invasion and metastasis of gastric cancer.
     Until now, it is unclear whether p75NTR was expressed in hepatocellular carcinoma and the effects of p75NTR on cell proliferation and apoptosis in hepatocellular carcinoma is still unknown. Our purposes in this study are as following:
     【Objectives】
     (1) To investigate the expression of p75NTR in hepatocellular carcinoma tissues and the adjacent noncancerous counterparts. (2) To study the relationship between p75NTR and growth of hepatocellular carcinoma by expressional and functional studies; (3) To examine the possible mechanisms of cell cycle arrest in hepatocellular carcinoma induced by p75NTR.
     【Methods】
     (1) The expression of p75NTR protein in hepatocellular carcinoma tissues and their adjacent noncancerous counterparts was investigated by immunohistochemistry assay. (2) The expression of p75NTR protein in hepatocellular carcinoma tissues and their adjacent noncancerous counterparts was measured by Western blot. And the expression of p75NTR protein in hepatocellular carcinoma cell lines and normal liver cell lines was also measured by Western blot. (3) Construct the siRNA vector of p75NTR, transfect it into Chang and select stable clones by G418 screening. Construct the sense expression vector of p75NTR, transfect it into HepG2 and select stable clones by G418 screening. (4) Perform Western blot on different stable clones to identify the effect of transfection. (5) Depict the growth curves of the transfected cells and the control cells. (6) Flow CytoMeter (FCM) is used to identify the cell cycle distribution of these cells. (7) To study the effect of p75NTR on cell apotosis, Hoechst/PI staining and Annexin V flow cytometric experiments were performed. (8) Cloning formation assay on soft agar is applied to test the in vitro tumorigenesis of the transfected HCC cells. (9) Tumor xenograft in nude mice is performed to test the in vivo tumorigenesis of the transfected HCC cells. (10) Identify the expression of the cell cycle associated molecules (cyclin D1, Rb, p-Rb, and PCNA) by Western blot.
     【Results】
     (1) The expression of p75NTR was decreased significantly in hepatocellular carcinoma tissues as compared with their adjacent noncancerous counterparts, and its expression levels were correlated with the degree of tumor differentiation. (2) The expression of p75NTR was also significantly decreased in various human hepatocellular carcinoma cell lines. (3) The siRNA vector of p75NTR was successfully constructed and transfected into Chang cells. The expression vector of p75NTR was also successfully constructed and transfected into HepG2 cells. The stable clones were selected and identified. (4) The growth of the p75NTR-siRNA transfected Chang cells was accelerated, but the growth of the p75NTR-expressing vector transfected HepG2 cells was slowed down. (5) The FCM indicated that p75NTR inhibited hepatocellular carcinoma cells entering S phase from G1 phase and the proliferative index was decreased. (6) The results of FCM and Hoechst33258/PI staining showed that p75NTR induced apoptosis in hepatocellular carcinoma cells. (7) The cloning formation assay showed that the clone formation rate of p75NTR-expressing vector transfected HepG2 cells was lower than the control cells. (8) The tumorigenicity of p75NTR-expressing vector transfected HepG2 cells was reduced compared with the control cells. (9) Western blot revealed that up-regulating p75NTR could down-regulate the expression of cyclin D1, p-Rb and PCNA, but up-regulate the expression of Rb. Conversely, the results were inverse when p75NTR was down-regulated by specific siRNA.
     【Conclusion】
     (1) The expression of p75NTR was decreased significantly in hepatocellular carcinoma tissues as compared with their adjacent noncancerous counterparts, and its expression levels were correlated with the degree of tumor differentiation. (2) P75NTR can inhibit the proliferation and induce apoptosis of hepatocellular carcinoma cells. (3) P75NTR can induce G1/S phase arrest throgh down-regulating the expression of cyclin D1, p-Rb and PCNA and up-regulating the expression of Rb.
引文
1. 王红阳,吴孟超. 加强原发性肝癌基础研究. 中华肝脏病杂志,2004;12(11):641-2.
    2. Zeng JZ,WangHY,Chen ZJ,et a1.Molecular cloning and characterization of a novel gene which is highly expressed in hepatocellular carcinoma.Oncogene,2002,2(32):4932-4943.
    3. Khwaja F., Allen J., Lynch J., Andrews P., Djakiew D. Ibuprofen inhibits survival of bladder cancer cells by induced expression of the p75NTR tumor suppressor protein. Cancer Res. 2004; 64:6207–6213.
    4. Haifeng Jin, Yanglin Pan, Lina Zhao, Huihong Zhai, Xiaohua Li, Li Sun, Lijie He, Yu Chen, Liu Hong, Yulei Du, and Daiming Fan. P75NTR suppresses proliferation of human gastric cancer cells.Neoplasia. 2007.
    5. Tuszynski MH. Neurotrophic factors. In: CNS Regeneration: Basic Science and Clinical Applications, Tuszynski MH and Kordower JH, eds. Academic Press, San Diego.1999.pp109-158.
    6. Chen ZY, Cao L, Wang LM, et al. Development of neurotrophic molecules for treatment of neurodegeneration. Curr Protein Pep Sci,2001,2(3) :261-276.
    7. 郭雨霁,李盛芳. 神经营养因子家族及其受体的研究进展. 神经解剖学杂志,2001,17:288-294.
    8. Kaplan DR, Miller FD.Signal transduction by the neurotrophin receptors. Curr Opin Cell Biol. 1997 Apr;9(2):213-21.
    9. 魏传银,王丽梅,陈雪红等. 神经营养素受体p75NTR 介导的信号转导. 细胞与分子免疫学杂志,2005;21(2):258-60.
    10. Chao, M.V., Bothwell, M.A., Ross, A.H., Koprowski, H., Lanahan, A.A., Buck, C.R., Sehgal, A. Gene transfer and molecular cloning of the human NGF receptor. Science. 1986; 232, 518–521.
    11. Johnson, D., Lanahan, A., Buck, C.R., Sehgal, A., Morgan, C., Mercer, E., Bothwell, M., Chao, M. Expression and structure of the human NGF receptor. Cell. 1986; 47, 545–554.
    12. Rabizadeh, S., Bredesen, D.E. Ten years on: mediation of cell death by the common neurotrophin receptor p75 (NTR). Cytokine Growth Factor Rev. 2003; 14:225–239.
    13. Sehgal, A., Wall, D.A., Chao, M.V. Efficient processing and expression of human nerve growth factor receptors in Xenopus laevis oocytes: effects on maturation. Mol. Cell. Biol.1988; 8, 2242–2246.
    14. Metsis, M. Genes for neurotrophic factors and their receptors: structure and regulation. Cell. Mol. Life Sci. 2001; 58, 1014–1020.
    15. Sehgal, A., Patil, N., Chao, M. A constitutive promoter directs expression of the nerve growth factor receptor gene. Mol. Cell. Biol. 1988; 8, 3160–3167.
    16. Chiaramello, A., Neuman, K., Palm, K., Metsis, M., Neuman, T. Helix-loop-helix transcription factors mediate activation and repression of the p75LNGFR gene. Mol. Cell. Biol. 1995; 15, 6036–6044.
    17. Naveilhan, P., Neveu, I., Baudet, C., Funakoshi, H., Wion, D., Brachet, P., Metsis, M. 1,25-Dihydroxyvitamin D3 regulates the expression of the low-affinity neurotrophin receptor. Brain Res. Mol. Brain Res. 1996; 41, 259–268.
    18. Hutson, L.D., Bothwell, M. Expression and function of Xenopus laevis p75 (NTR) suggest evolution of developmental regulatory mechanisms. J. Neurobiol. 2001; 49, 79–98.
    19. Liepinsh, E., Ilag, L.L., Otting, G., Ibá?ez, C.F. NMR structure of the death domain ofthe p75 neurotrophin receptor. EMBO J. 1997; 16, 4999–5005.
    20. Barker, P.A., Barbee, G., Misko, T.P., Shooter, E.M. The low affinity neurotrophin receptor, p75LNTR, is palmitoylated by thioester formation through cysteine 279. J. Biol. Chem. 1994; 269, 30645–30650.
    21. von Schack, D., Casademunt, E., Schweigreiter, R., Meyer, M., Bibel, M., Dechant, G. Complete ablation of the neurotrophin receptor p75NTR causes defects both in the nervous and the vascular system. Nat. Neurosci. 2001; 4, 977–978.
    22. Baker SJ, Reddy EP. Transducers of life and death: TNF receptor superfamily and associated proteins.Oncogene. 1996 Jan 4;12(1):1-9.
    23. Feinstein E, Kimchi A, Wallach D, Boldin M, Varfolomeev E.The death domain: a module shared by proteins with diverse cellular functions.Trends Biochem Sci. 1995 Sep;20(9):342-4.
    24. Huang, B., Eberstadt, M., Olejniczak, E.T., Meadows, R.P., Fesik, S.W. NMR structure and mutagenesis of the Fas (APO-1/CD95) death domain. Nature. 1996; 384, 638–641.
    25. Large, T.H., Weskamp, G., Helder, J.C., Radeke, M.J., Misko, T.P., Shooter, E.M., Reichardt, L.F. Structure and developmental expression of the nerve growth factor receptor in the chicken central nervous system. Neuron 1989; 2, 1123–1134.
    26. Smith, C.A., Farrah, T., Goodwin, R.G. The TNF receptor superfamily of cellular and viral proteins. Cell. 1994; 76, 959–962.
    27. Shamovsky, I.L., Ross, G.M., Riopelle, R.J., Weaver, D.F. The interaction of neurotrophins with the p75NTR common neurotrophin receptor: a comprehensive molecular modeling study. Protein Sci. 1999; 8, 2223–2233.
    28. Siegel, R.M., Frederiksen, J.K., Zacharias, D.A., Chan, F.K., Johnson, M., Lynch, D., Tsien, R.Y., Lenardo, M.J. Fas preassociation required for apoptosis signaling and dominant inhibition by pathogenic mutations. Science. 2000; 288, 2354–2357.
    29. Coulson EJ, Reid K, Baca M, Shipham KA, Hulett SM, Kilpatrick TJ, Bartlett PF.Chopper, a new death domain of the p75 neurotrophin receptor that mediates rapid neuronal cell death.J Biol Chem. 2000 Sep 29;275(39):30537-45.
    30. Myers, S.M., Ross, G.M., Dostaler, S.M., Anderson, M.N., Weaver, D.F., Riopelle, R.J. Putative cytoplasmic amphiphilic domains in the nerve growth factor/tumour necrosis factor receptor superfamily. Bioch. Biophys. Acta. 1994; 1196, 21–28.
    31. DiStefano, P., Chelsea, D., Schick, C., McKelvy, J. Involvement of a metalloprotease in low-affinity nerve growth factor receptor truncation: inhibition of truncation in vitro and in vivo. J. Neurosci. 1993; 13, 2405–2414.
    32. DiStefano, P.S., Clagett-Dame, M., Chelsea, D.M., Loy, R. Developmental regulation of human truncated nerve growth factor receptor. Ann. Neurol. 1991; 29, 13–20.
    33. Cotrina, M.L., Gonzalez-Hoyuela, M., Barbas, J.A., Rodriguez-Tebar, A. Programmed cell death in the developing somites is promoted by nerve growth factor via its p75NTR receptor. Dev. Biol. 2000; 228, 326–336.
    34. Salehi, A.H., Roux, P.P., Kubu, C.J., Zeindler, C., Bhakar, A., Tannis, L.L., Verdi, J.M., Barker, P.A. NRAGE, a novel MAGE protein, interacts with the p75 neurotrophin receptor and facilitates nerve growth factor-dependent apoptosis. Neuron. 2000; 27, 279–288.
    35. Bothwell, M.A. Keeping track of neurotrophin receptors. Cell. 1991; 65, 915–918.
    36. Dreyfus, C.F. Effects of nerve growth factor on cholinergic brain neurons. Trends Pharmacol. Sci. 1989; 10, 145–149.
    37. Henry, M.A., Westrum, L.E., Bothwell, M., Press, S. Electron microscopic localization of nerve growth factor receptor (p75)-immunoreactivity in pars caudalis/medullary dorsal horn of the cat. Brain Res. 1994; 642, 137–145.
    38. Armstrong, D.M., Brady, R., Hersh, L.B., Hayes, R.C., Wiley, R.G. Expression ofcholine acetyltransferase and nerve growth factor receptor within hypoglossal motoneurons following nerve injury. J. Comp. Neurol. 1991; 304, 596–607.
    39. Cohen-Cory, S., Dreyfus, C.F., Black, I.B. NGF and excitatory neurotransmitters regulate survival and morphogenesis of cultured cerebellar Purkinje cells. J. Neurosci. 1991; 11, 462–471.
    40. Sofroniew, M.V., Isacson, O., O’Brien, T.S. Nerve growth factor receptor immunoreactivity in the rat suprachiasmatic nucleus. Brain Res. 1989; 476, 358–362.
    41. Schatteman, G.C., Langer, T., Lanahan, A.A., Bothwell, M.A. Distribution of the p75 low-affinity nerve growth factor receptor in the primate peripheral nervous system. Somatosens. Motor Res. 1993; 10, 415–432.
    42. Thomson, T.M., Rettig, W.J., Chesa, P.G., Green, S.H., Mena, A.C., Old, L.J. Expression of human nerve growth factor receptor on cells derived from all three germ layers. Exp. Cell Res. 1988; 174, 533–539.
    43. Wheeler, E.F., Gong, H., Grimes, R., Benoit, D., Vazquez, L. p75NTR and Trk receptors are expressed in reciprocal patterns in a wide variety of non-neural tissues during rat embryonic development, indicating independent receptor functions. J. Comp. Neurol. 1998; 391, 407–428.
    44. Stark, B., Risling, M., Carlstedt, T. Distribution of the neurotrophin receptors p75 and TrkB in peripheral mechanoreceptors observations on changes after injury. Exp. Brain Res. 2001; 136, 101–107.
    45. Casha, S., Yu, W.R., Fehlings, M.G. Oligodendroglial apoptosis occurs along degenerating axons and is associated with Fas and p75 expression following spinal cord injury in the rat. Neurosci. 2001; 103, 203–218.
    46. Andsberg, G., Kokaia, Z., Lindvall, O. Upregulation of p75 neurotrophin receptor after stroke in mice does not contribute to differential vulnerability of striatal neurons. Exp.Neurol. 2001; 169, 351–363.
    47. Heumann, R., Lindholm, D., Bandtlow, C., Meyer, M., Radeke, M.J., Misko, T.P., Shooter, E.M., Thoenen, H. Differential regulation of mRNA encoding nerve growth factor and its receptor in rat sciatic nerve during development, degeneration and regeneration: role of macrophages. Proc. Natl. Acad. Sci. U.S.A. 1987; 84, 8735–8739.
    48. Nataf, S., Naveilhan, P., Sindji, L., Darcy, F., Brachet, P., Montero-Menei, C.N. Low affinity NGF receptor expression in the central nervous system during experimental allergic encephalomyelitis. J. Neurosci. Res. 1998; 52, 83–92.
    49. Giehl, K.M., Rohrig, S., Bonatz, H., Gutjahr, M., Leiner, B., Bartke, I., Yan, Q., Reichardt, L.F., Backus, C., Welcher, A.A., Dethleffsen, K., Mestres, P., Meyer, M. Endogenous brain-derived neurotrophic factor and neurotrophin-3 antagonistically regulate survival of axotomized corticospinal neurons in vivo. J. Neurosci. 2001; 21, 3492–3502.
    50. Oh, J.D., Chartisathian, K., Chase, T.N., Butcher, L.L. Overexpression of neurotrophin receptor p75 contributes to the excitotoxin-induced cholinergic neuronal death in rat basal forebrain. Brain Res. 2000; 853, 174–185.
    51. Dowling, P., Ming, X., Raval, S., Husar, W., Casaccia-Bonnefil, P., Chao, M., Cook, S., Blumberg, B. Up-regulated p75NTR neurotrophin receptor on glial cells in MS plaques. Neurology 1999; 53, 1676–1682.
    52. Conti, G., Stoll, G., Scarpini, E., Baron, P.L., Bianchi, R., Livraghi, S., Scarlato, G. p75 neurotrophin receptor induction and macrophage infiltration in peripheral nerve during experimental diabetic neuropathy: possible relevance on regeneration. Exp. Neurol. 1997; 146, 206–211.
    53. Yaar, M., Zhai, S., Pilch, P.F., Doyle, S.M., Eisenhauer, P.B., Fine, R.E., Gilchrest, B.A. Binding of α-amyloid to the p75 neurotrophin receptor induces apoptosis: a possiblemechanism for Alzheimer’s disease. J. Clin. Invest. 1997; 100, 2333–2340.
    54. Weis, C., Wiesenhofer, B., Humpel, C. Nerve growth factor plays a divergent role in mediating growth of rat C6 glioma cells via binding to the p75 neurotrophin receptor. J. Neurooncol. 2002; 56, 59–67.
    55. Fanburg-Smith JC, Miettinen M. Low-affinity nerve growth factor receptor (p75) in dermatofibrosarcoma protuberans and other nonneural tumors: a study of 1,150 tumors and fetal and adult normal tissues. Hum Pathol. 2001 Sep;32(9):976-83.
    56. Reis-Filho JS, Steele D, Di Palma S, Jones RL, Savage K, James M, Milanezi F, Schmitt FC, Ashworth A.Distribution and significance of nerve growth factor receptor (NGFR/p75NTR) in normal, benign and malignant breast tissue. Mod Pathol. 2006 Feb;19(2):307-19.
    57. Davidson B, Reich R, Lazarovici P, Ann Fl?renes V, Nielsen S, Nesland JM.Altered expression and activation of the nerve growth factor receptors TrkA and p75 provide the first evidence of tumor progression to effusion in breast carcinoma. Breast Cancer Res Treat. 2004 Jan;83(2):119-28.
    58. Davidson B, Lazarovici P, Ezersky A, Nesland JM, Berner A, Risberg B, Tropé CG, Kristensen GB, Goscinski M, van de Putte G, Reich R.Expression levels of the nerve growth factor receptors TrkA and p75 in effusions and solid tumors of serous ovarian carcinoma patients. Clin Cancer Res. 2001 Nov;7(11):3457-64.
    59. Davidson B, Reich R, Lazarovici P, Fl?renes VA, Risberg B, Nielsen S, Sert B, Bedrossian C. Expression of the nerve growth factor receptors TrkA and p75 in malignant mesothelioma. Lung Cancer. 2004 May;44(2):159-65.
    60. Allen J, Khwaja F, Djakiew D. Gene therapy of prostate xenograft tumors with a p75NTR lipoplex. Anticancer Res. 2004 Sep-Oct;24(5A):2997-3003.
    61. Schneider MB, Standop J, Ulrich A, Wittel U, Friess H, Andrén-Sandberg A, PourPM.Expression of nerve growth factors in pancreatic neural tissue and pancreatic cancer. J Histochem Cytochem. 2001 Oct;49(10):1205-10.
    62. Zhang Y, Dang C, Ma Q, Shimahara Y. Expression of nerve growth factor receptors and their prognostic value in human pancreatic cancer. Oncol Rep. 2005 Jul;14(1):161-71.
    63. Jin H, Pan Y, He L, Zhai H, Li X, Zhao L, Sun L, Liu J, Hong L, Song J, Xie H, Gao J, Han S, Li Y, Fan D. p75 neurotrophin receptor inhibits invasion and metastasis of gastric cancer. Mol Cancer Res. 2007 May;5(5):423-33.
    64. Tongiorgi, E., Armellin, M., Cattaneo, A. Differential somato-dendritic localization of TrkA, TrkB, TrkC and p75 mRNAs in vivo. Neuroreport 2000; 11, 3265–3268.
    65. Dougherty, K.D., Milner, T.A. p75NTR immunoreactivity in the rat dentate gyrus is mostly within pre-synaptic profiles but is also found in some astrocytic and post-synaptic profiles. J. Comp. Neurol. 1999; 407, 77–91.
    66. Reynolds, A.J., Bartlett, S.E., Hendry, I.A. Molecular mechanisms regulating the retrograde axonal transport of neurotrophins. Brain Res. Brain Res. Rev. 2000; 33, 169–178.
    67. Grimes, M.L., Beattie, E., Mobley, W.C. A signaling organelle containing the nerve growth factor-activated receptor tyrosine kinase, TrkA. Proc. Natl. Acad. Sci. U.S.A. 1997; 94, 9909–9914.
    68. Loeb, D.M., Greene, L.A. Transfection with trk restores “slow” NGF binding, efficient NGF uptake, and multiple NGF responses to NGF-non-responsive PC12 cell mutants. J. Neurosci. 1993; 13, 2919–2929.
    69. Zhang, Y., Moheban, D.B., Conway, B.R., Bhattacharyya, A., Segal, R.A. Cell surface Trk receptors mediate NGF-induced survival while internalized receptors regulate NGF-induced differentiation. J. Neurosci. 2000; 20, 5671–5678.
    70. Bhattacharyya, A., Watson, F.L., Bradlee, T.A., Pomeroy, S.L., Stiles, C.D., Segal, R.A.Trk receptors function as rapid retrograde signal carriers in the adult nervous system. J. Neurosci. 1997; 17, 7007–7016.
    71. Reynolds, A.J., Bartlett, S.E., Hendry, I.A. Signalling events regulating the retrograde axonal transport of 125I-nerve growth factor in vivo. Brain Res. 1998; 798, 67–74.
    72. Reynolds, A.J., Heydon, K., Bartlett, S.E., Hendry, I.A. Evidence for phosphatidylinositol 4-kinase and actin involvement in the regulation of 125I-nerve growth factor retrograde axonal transport. J. Neurochem. 1999; 73, 87–95.
    73. Johnson, E.M., Taniuchi, M., Clark, H.B., Springer, J.E., Koh, S., Tayrien, M.W., Loy, R. Demonstration of the retrograde transport of NGF receptor in the peripheral and central nervous system. J. Neurosci. 1987; 7, 923–929.
    74. Curtis, R., Adryan, K.M., Stark, J.L., Park, J., Compton, D.L., Weskamp, G., Huber, L.J., Chao, M.V., Jaenisch, R., Lee, K.F., Lindsay, R.M., DiStefano, P.S. Differential role of the low affinity neurotrophin receptor (p75) in retrograde transport of the neurotrophins. Neuron 1995; 14, 1201–1211.
    75. von Bartheld, C.S., Williams, R., Lefcort, F., Clary, D.O., L, F., Bothwell, M. Retrograde transport of neurotrophins from the eye to the brain in chick embryos—roles of the p75NTR and TrkB receptors. J. Neurosci. 1996; 16, 2995–3008.
    76. Kahle, P., Barker, P.A., Shooter, E.M., Hertel, C. p75 nerve growth factor receptor modulates p140TrkA kinase activity, but not ligand internalization, in PC12 cells. J. Neurosci. Res. 1994; 38, 599–606.
    77. Huang, C.S., Zhou, J., Feng, A.K., Lynch, C.C., Klumperman, J., DeArmond, S.J., Mobley, W.C. Nerve growth factor signaling in caveolae-like domains at the plasma membrane. J. Biol. Chem. 1999; 274, 36707–36714.
    78. Bilderback, T.R., Gazula, V.R., Lisanti, M.P., Dobrowsky, R.T. Caveolin interacts with Trk A and p75NTR and regulates neurotrophin signaling pathways. J. Biol. Chem. 1999;274, 257–263.
    79. Khursigara G, Orlinick JR, Chao MV. Association of the p75 neurotrophin receptor with TRAF6. J Biol Chem. 1999 Jan 29;274(5):2597-600.
    80. Ye X, Mehlen P, Rabizadeh S, VanArsdale T, Zhang H, Shin H, Wang JJ, Leo E, Zapata J, Hauser CA, Reed JC, Bredesen DE. TRAF family proteins interact with the common neurotrophin receptor and modulate apoptosis induction. J Biol Chem. 1999 Oct 15;274(42):30202-8.
    81. Klug, A., Schwabe, J.W. Protein motifs 5: zinc fingers. FASEB J. 1995; 9, 597–604.
    82. Casademunt E, Carter BD, Benzel I, Frade JM, Dechant G, Barde YA. The zinc finger protein NRIF interacts with the neurotrophin receptor p75(NTR) and participates in programmed cell death.EMBO J. 1999 Nov 1;18(21):6050-61.
    83. Gentry JJ, Rutkoski NJ, Burke TL, Carter BD. A functional interaction between the p75 neurotrophin receptor interacting factors, TRAF6 and NRIF. J Biol Chem. 2004 Apr 16;279(16):16646-56.
    84. Chittka A, Chao MV. Identification of a zinc finger protein whose subcellular distribution is regulated by serum and nerve growth factor. Proc Natl Acad Sci U S A. 1999 Sep 14;96(19):10705-10.
    85. Ren, B., Chee, K.J., Kim, T.H., Maniatis, T. PRDI–BF1/Blimp-1 repression is mediated by corepressors of the Groucho family of proteins. Genes Dev. 1999; 13, 125–137.
    86. Luo, L. Rho GTPases in neuronal morphogenesis. Nat. Rev. Neurosci. 2000; 1, 173–180.
    87. Mukai J, Hachiya T, Shoji-Hoshino S, Kimura MT, Nadano D, Suvanto P, Hanaoka T, Li Y, Irie S, Greene LA, Sato TA. NADE, a p75NTR-associated cell death executor, is involved in signal transduction mediated by the common neurotrophin receptor p75NTR. J Biol Chem. 2000 Jun 9;275(23):17566-70.
    88. Kimura MT, Irie S, Shoji-Hoshino S, Mukai J, Nadano D, Oshimura M, Sato TA. 14-3-3 is involved in p75 neurotrophin receptor-mediated signal transduction. J Biol Chem. 2001 May 18;276(20):17291-300.
    89. Sato, T., Irie, S., Kitada, S., Reed, J.C. FAP-1: a protein tyrosine phosphatase that associates with Fas. Science 1995; 268, 411–415.
    90. Irie S, Hachiya T, Rabizadeh S, Maruyama W, Mukai J, Li Y, Reed JC, Bredesen DE, Sato TA. Functional interaction of Fas-associated phosphatase-1 (FAP-1) with p75(NTR) and their effect on NF-kappaB activation. FEBS Lett. 1999 Oct 29;460(2):191-8.
    91. Barker, P.A., Salehi, A. The MAGE proteins: emerging roles in cell cycle progression, apoptosis, and neurogenetic disease. J. Neurosci. Res. 2002; 67, 705–712.
    92. Salehi AH, Roux PP, Kubu CJ, Zeindler C, Bhakar A, Tannis LL, Verdi JM, Barker PA. NRAGE, a novel MAGE protein, interacts with the p75 neurotrophin receptor and facilitates nerve growth factor-dependent apoptosis.Neuron. 2000 Aug;27(2):279-88.
    93. Kong H, Boulter J, Weber JL, Lai C, Chao MV. An evolutionarily conserved transmembrane protein that is a novel downstream target of neurotrophin and ephrin receptors. J Neurosci. 2001 Jan 1;21(1):176-85.
    94. Parton, R.G. Caveolae and caveolins. Curr. Opin. Cell Biol. 1996; 8, 542–548.
    95. Okamoto, C.T. Endocytosis and transcytosis. Adv. Drug Deliv. Rev. 1998; 29, 215–228.
    96. Dobrowsky RT, TCarter BD. p75 neurotrophin receptor signaling: mechanisms for neurotrophic modulation of cell stress? J Neurosci Res. 2000 Aug 1;61(3):237-43.
    97. Khursigara G, Bertin J, Yano H, Moffett H, DiStefano PS, Chao MV. A prosurvival function for the p75 receptor death domain mediated via the caspase recruitment domain receptor-interacting protein 2.J Neurosci. 2001 Aug 15;21(16):5854-63.
    98. Blochl, A., Sirrenberg, C. Neurotrophins stimulate the release of dopamine from ratmesencephalic neurons via Trk and p75LNTR receptors. J. Biol. Chem. 1996; 271, 21100–21107.
    99. Brann, A.B., Scott, R., Neuberger, Y., Abulafia, D., Boldin, S., Fainzilber, M., Futerman, A.H. Ceramide signaling downstream of the p75 neurotrophin receptor mediates the effects of nerve growth factor on outgrowth of cultured hippocampal neurons. J. Neurosci. 1999; 19, 8199–8206.
    100. Wang JJ, Tasinato A, Ethell DW, Testa MP, Bredesen DE. Phosphorylation of the common neurotrophin receptor p75 by p38beta2 kinase affects NF-kappaB and AP-1 activities. J Mol Neurosci. 2000 Aug;15(1):19-29.
    101. Rabizadeh S, Bredesen DE. Ten years on: mediation of cell death by the common neurotrophin receptor p75 (NTR). Cytokine Growth Factor Rev 2003;14: 225–239.
    102. Mahadeo, D., Kaplan, L., Chao, M.V., Hempstead, B.L. High affinity nerve growth factor binding displays a faster rate of association than p140Trk binding: implications for multi-subunit polypeptide receptors. J. Biol. Chem. 1994; 269, 6884–6891.
    103. Verdi, J.M., Birren, S.J., Ibanez, C.F., Persson, H., Kaplan, D.R., Benedetti, M., Chao, M.V., Anderson, D.J. p75LNGFR regulates Trk signal transduction and NGF-induced neuronal differentiation in MAH cells. Neuron 1994; 12, 733–745.
    104. Hantzopoulos, P.A., Suri, C., Glass, D.J., Goldfarb, M.P., Yancopoulos, G.D. The low affinity NGF receptor can collaborate with each of the Trks to potentiate functional responses to the neurotrophins. Neuron 1994; 13, 187–201.
    105. Barde, Y.A. Trophic factors and neuronal survival. Neuron 1989; 2, 1525–1534.
    106. Lee, K.F., Davies, A.M., Jaenisch, R. p75-deficient embryonic dorsal root sensory and neonatal sympathetic neurons display a decreased sensitivity to NGF. Development 1994; 120, 1027–1033.
    107. Lachance, C., Belliveau, D.J., Barker, P.A. Blocking nerve growth factor binding tothe p75 neurotrophin receptor on sympathetic neurons transiently reduces TrkA activation but does not affect neuronal survival. Neurosci. 1997; 81, 861–871.
    108. Ryden, M., Hempstead, B., Ibanez, C.F. Differential modulation of neuron survival during development by nerve growth factor binding to the p75 neurotrophin receptor. J. Biol. Chem. 1997; 272, 16322–16328.
    109. Esposito, D., Patel, P., Stephens, R.M., Perez, P., Chao, M.V., Kaplan, D.R., Hempstead, B.L. The cytoplasmic and transmembrane domains of the p75 and TrkA receptors regulate high affinity binding to nerve growth factor. J. Biol. Chem. 2001; 276, 32687–32695.
    110. Lee, K.-F., Davies, A.M., Jaenisch, R. p75-deficient embryonic dorsal root sensory and neonatal sympathetic neurons display a decreased sensitivity to NGF. Development 1994; 120, 1027–1033.
    111. Benedetti, M., Levi, A., Chao, M.V. Differential expression of nerve growth factor receptors leads to altered binding affinity and neurotrophin responsiveness. Proc. Natl. Acad. Sci. U.S.A. 1994; 90, 7859–7863.
    112. Mischel, P.S., Smith, S.G., Vining, E.R., Valletta, J.S., Mobley, W.C., Reichardt, L.F. The extracellular domain of p75NTR is necessary to inhibit neurotrophin-3 signaling through TrkA. J. Biol. Chem. 2001; 276, 11294–11301.
    113. Theroux, S.J., Latour, D.A., Stanley, K., Raden, D.L., Davis, R.J. Signal transduction by the epidermal growth factor receptor is attenuated by a COOH-terminal domain serine phosphorylation site. J. Biol. Chem. 1992; 267, 16620–16626.
    114. Kanety, H., Feinstein, R., Papa, M., Hemi, R., Karasik, A. Tumor necrosis factor-induced phosphorylation of insulin receptor substrate-1 (IRS-1): possible mechanism for suppression of insulin-stimulated tyrosine phosphorylation of IRS-1. J. Biol. Chem. 1995; 270, 23780–23784.
    115. Kim, J.K., Kim, Y.J., Fillmore, J.J., Chen, Y., Moore, I., Lee, J., Yuan, M., Li, Z.W., Karin, M., Perret, P., Shoelson, S.E., Shulman, G.I. Prevention of fat-induced insulin resistance by salicylate. J. Clin. Invest. 2001; 108, 437–446.
    116. MacPhee, I.M., Barker, P.A. Brain-derived neurotrophic factor binding to the p75 neurotrophin receptor reduces TrkA signaling while increasing serine phosphorylation in the TrkA intracellular domain. J. Biol. Chem. 1997; 272, 23547–23551.
    117. Yoon, S.O., Casaccia-Bonnefil, P., Carter, B., Chao, M.V. Competitive signaling between TrkA and p75 nerve growth factor receptors determines cell survival. J. Neurosci. 1998; 18, 3273–3281.
    118. Bilderback, T.R., Gazula, V.R., Dobrowsky, R.T. Phosphoinositide 3-kinase regulates crosstalk between Trk A tyrosine kinase and p75NTR-dependent sphingolipid signaling pathways. J. Neurochem. 2001; 76, 1540–1551.
    119. Ross, A.H., Daou, M.C., Mckinnon, C.A., Condon, P.J., Lachyankar, M.B., Stephens, R.M., Kaplan, D.R., Wolf, D.E. The neurotrophin receptor, gp75, forms a complex with the receptor tyrosine kinase TrkA. J. Cell Biol. 1996; 132, 945–953.
    120. Gargano, N., Levi, A., Alema, S. Modulation of nerve growth factor internalization by direct interaction between p75 and TrkA receptors. J. Neurosci. Res. 1997; 50, 1–12.
    121. Kong, H., Boulter, J., Weber, J.L., Lai, C., Chao, M.V. An evolutionarily conserved transmembrane protein that is a novel downstream target of neurotrophin and ephrin receptors. J. Neurosci. 2001;21, 176–185.
    122. Chao MV, Hempstead BL. p75 and Trk: a two-receptor system. Trends Neurosci. 1995 Jul;18(7):321-6.
    123. Wong BR, Besser D, Kim N, Arron JR, Vologodskaia M, Hanafusa H, Choi Y. TRANCE, a TNF family member, activates Akt/PKB through a signaling complex involving TRAF6 and c-Src. Mol Cell. 1999 Dec;4(6):1041-9.
    124. Rabizadeh, S., Oh, J., Zhong, L.T., Yang, J., Bitler, C.M., Butcher, L.L., Bredesen, D.E. Induction of apoptosis by the low-affinity NGF receptor. Science 1993; 261, 345–348.
    125. Lievremont, J.P., Sciorati, C., Morandi, E., Paolucci, C., Bunone, G., Della Valle, G., Meldolesi, J., Clementi, E. The p75NTR-induced apoptotic program develops through a ceramide–Caspase pathway negatively regulated by nitric oxide. J. Biol. Chem. 1999; 274, 15466–15472.
    126. Gu, C., Casaccia-Bonnefil, P., Srinivasan, A., Chao, M.V. Oligodendrocyte apoptosis mediated by Caspase activation. J. Neurosci. 1999; 19, 3043–3049.
    127. Soilu-Hanninen, M., Ekert, P., Bucci, T., Syroid, D., Bartlett, P.F., Kilpatrick, T.J. Nerve growth factor signaling through p75 induces apoptosis in Schwann cells via a Bcl-2-independent pathway. J. Neurosci. 1999; 19, 4828–4838.
    128. Trim, N., Morgan, S., Evans, M., Issa, R., Fine, D., Afford, S., Wilkins, B., Iredale, J. Hepatic stellate cells express the low affinity nerve growth factor receptor p75 and undergo apoptosis in response to nerve growth factor stimulation. Am. J. Pathol. 2000; 156, 1235–1243.
    129. Davey, F., Davies, A.M. TrkB signalling inhibits p75-mediated apoptosis induced by nerve growth factor in embryonic proprioceptive neurons. Curr. Biol. 1998; 8, 915–918.
    130. Frade, J.M. Unscheduled re-entry into the cell cycle induced by NGF precedes cell death in nascent retinal neurones. J. Cell. Sci. 2000; 113, 1139–1148.
    131. Frade, J.M., Rodriguez-Tebar, A., Barde, Y.-A. Induction of cell death by endogenous nerve growth factor through its p75 receptor. Nature 1996; 383, 166–168.
    132. Frade, J.M., Barde, Y.-A. Genetic evidence for cell death mediated by nerve growth factor and the neurotrophin receptor p75 in the developing mouse retina and spinal cord. Development 1999; 126, 683–690.
    133. Majdan, M., Lachance, C., Gloster, A., Aloyz, R., Zeindler, C., Bamji, S., Bhakar, A., Belliveau, D., Fawcett, J., Miller, F.D., Barker, P.A. Transgenic mice expressing the intracellular domain of the p75 neurotrophin receptor undergo neuronal apoptosis. J. Neurosci. 1997; 17, 6988–6998.
    134. Philippe P., Roux, Philip A., Barker.Neurotrophin signaling through the p75 neurotrophin receptor. Progress in Neurobiology 2002; 67: 203–233.
    135. Cheema, S.S., Barrett, G.L., Bartlett, P.F. Reducing p75 nerve growth factor receptor levels using antisense oligonucleotides prevents the loss of axotomized sensory neurons in the dorsal root ganglia of newborn rats. J. Neurosci. Res. 1996; 46, 239–245.
    136. Denecker, G., Vercammen, D., Declercq, W., Vandenabeele, P. Apoptotic and necrotic cell death induced by death domain receptors. Cell. Mol. Life Sci. 2001; 58, 356–370.
    137. Harris, C.A., Johnson Jr., E.M. Bh3-only Bcl-2 family members are coordinately regulated by the JNK pathway and require Bax to induce apoptosis in neurons. J. Biol. Chem. 2001; 276, 37754–37760.
    138. Matsuyama, S., Reed, J.C. Mitochondria-dependent apoptosis and cellular pH regulation. Cell Death Differ. 2000; 7, 1155–1165.
    139. Coulson, E.J., Reid, K., Baca, M., Shipham, K.A., Hulett, S.M., Kilpatrick, T.J., Bartlett, P.F. Chopper, a new death domain of the p75 neurotrophin receptor that mediates rapid neuronal cell death. J. Biol. Chem. 2000; 275, 30537–30545.
    140. Martin, D.P., Schmidt, R.E., DiStefano, P.S., Lowry, O.H., Carter, J.G., Johnson Jr., E.M. Inhibitors of protein synthesis and RNA synthesis prevent neuronal death caused by nerve growth factor deprivation. J. Cell Biol. 1988; 106, 829–844.
    141. Harding, T.C., Xue, L., Bienemann, A., Haywood, D., Dickens, M., Tolkovsky, A.M., Uney, J.B. Inhibition of JNK by overexpression of the JNL binding domain of JIP-1 prevents apoptosis in sympathetic neurons. J. Biol. Chem. 2001; 276, 4531–4534.
    142. Bazenet, C.E., Mota, M.A., Rubin, L.L. The small GTP-binding protein Cdc42 is required for nerve growth factor withdrawal-induced neuronal death. Proc. Natl. Acad. Sci. U.S.A. 1998; 95, 3984–3989.
    143. Sakuma, H., Ikeda, A., Oka, S., Kozutsumi, Y., Zanetta, J.P., Kawasaki, T. Molecular cloning and functional expression of a cDNA encoding a new member of mixed lineage protein kinase from human brain. J. Biol. Chem. 1997; 272, 28622–28629.
    144. Xu, Z., Maroney, A.C., Dobrzanski, P., Kukekov, N.V., Greene, L.A. The MLK family mediates c-Jun N-terminal kinase activation in neuronal apoptosis. Mol. Cell. Biol. 2001; 21, 4713–4724.
    145. Whitfield, J., Neame, S.J., Paquet, L., Bernard, O., Ham, J. Dominant-negative c-Jun promotes neuronal survival by reducing BIM expression and inhibiting mitochondrial cytochrome c release. Neuron 2001; 29, 629–643.
    146. Barrett, G.L., Georgiou, A. The low-affinity nerve growth factor receptor p75NGFR mediates death of PC12 cells after nerve growth factor withdrawal. J. Neurosci. Res. 1996; 45, 117–128.
    147. Barrett, G.L., Bartlett, P.F. The p75 nerve growth factor receptor mediates survival or death depending on the stage of sensory neuron development. Proc. Natl. Acad. Sci. U.S.A. 1994; 91, 6501–6505.
    148. Barrett, G.L. The p75 neurotrophin receptor and neuronal apoptosis. Prog. Neurobiol. 2000; 61, 205–229.
    149. Majdan, M., Walsh, G.S., Aloyz, R., Miller, F.D. TrkA mediates developmental sympathetic neuron survival in vivo by silencing an ongoing p75NTR-mediated death signal. J. Cell Biol. 2001; 155, 1275–1286.
    150. Harrington, A.W., Kim, J.Y., Yoon, S.O. Activation of Rac GTPase by p75 is necessary for JNK-mediated apoptosis. J. Neurosci. 2001; 22, 156–166.
    151. Aloyz, R.S., Bamji, S.X., Pozniak, C.D., Toma, J.G., Atwal, J., Kaplan, D.R., Miller, F.D. p53 is essential for developmental neuron death as regulated by the TrkA and p75 neurotrophin receptors. J. Cell Biol. 1998; 143, 1691–1703.
    152. Friedman, W.J. Neurotrophins induce death of hippocampal neurons via the p75 receptor. J. Neurosci. 2000; 20, 6340–6346.
    153. Roux, P.P., Bhakar, A.L., Kennedy, T.E., Barker, P.A. The p75 neurotrophin receptor activates Akt (protein kinase B) through a phosphatidylinositol 3-kinase-dependent pathway. J. Biol. Chem. 2001; 276, 23097–23104.
    154. Park, D.S., Morris, E.J., Bremner, R., Keramaris, E., Padmanabhan, J., Rosenbaum, M., Shelanski, M.L., Geller, H.M., Greene, L.A. Involvement of retinoblastoma family members and E2F/DP complexes in the death of neurons evoked by DNA damage. J. Neurosci. 2000; 20, 3104–3114.
    155. Benzel, I., Barde, Y.-A., Casademunt, E. Strain-specific complementation between NRIF1 and NRIF2, two zinc proteins sharing structural and biochemical properties. Gene 2001; 281, 19–30.
    156. Gehler S., Gallo G., Veien E., Letourneau P.C. p75NTR signaling regulates growth cone filopodial dynamics through modulating RhoA activity. The Journal of Neuroscience. 2004; 24(18): 4363-72.
    157. Hu, M.C., Qiu, W.R., Wang, Y.P. JNK1, JNK2 and JNK3 are p53 N-terminal serine 34 kinases. Oncogene 1997; 15, 2277–2287.
    158. Kume, T., Nishikawa, H., Tomioka, H., Katsuki, H., Akaike, A., Kaneko, S., Maeda, T., Kihara, T., Shimohama, S. p75-mediated neuroprotection by NGF against glutamate cytotoxicity in cortical cultures. Brain Res. 2000; 852, 279–289.
    159. Cheng, B., McMahon, D.G., Mattson, M.P. Modulation of calcium current, intracellular calcium levels and cell survival by glucose deprivation and growth factorsin hippocampal neurons. Brain Res. 1993; 607, 275–285.
    160. De Freitas, M.F., McQuillen, P.S., Shatz, C.J. A novel p75NTR signaling pathway promotes survival, not death, of immunopurified neocortical subplate neurons. J. Neurosci. 2001; 21, 5121–5129.
    161. Gentry, J.J., Casaccia-Bonnefil, P., Carter, B.D. Nerve growth factor activation of nuclear factor kB through its p75 receptor is an anti-apoptotic signal in RN22 Schwannoma Cells. J. Biol. Chem. 2000; 275, 7558–7565.
    162. Hamanoue, M., Middleton, G., Wyatt, S., Jaffray, E., Hay, R.T., Davies, A.M. p75-mediated NF-kappaB activation enhances the survival response of developing sensory neurons to nerve growth factor. Mol. Cell. Neurosci. 1999; 14, 28–40.
    163. Descamps, S., Toillon, R.A., Adriaenssens, E., Pawlowski, V., Cool, S.M., Nurcombe, V., Le Bourhis, X., Boilly, B., Peyrat, J.P., Hondermarck, H. Nerve growth factor stimulates proliferation and survival of human breast cancer cells through two distinct signaling pathways. J. Biol. Chem. 2001; 276, 17864–17870.
    164. Khursigara, G., Bertin, J., Yano, H., Moffett, H., DiStefano, P.S., Chao, M.V. A prosurvival function for the p75 receptor death domain mediated via the Caspase recruitment domain receptor-interacting protein 2. J. Neurosci. 2001; 21, 5854–5863.
    165. Hughes, A.L., Messineo-Jones, D., Lad, S.P., Neet, K.E. Distinction between differentiation, cell cycle, and apoptosis signals in PC12 cells by the nerve growth factor mutant, which is selective for the p75 neurotrophin receptor. J. Neurosci. Res. 2001; 63, 10–19.
    166. O’Neill, L.A., Kaltschmidt, C. NFκB: a crucial transcription factor for glial and neuronal cell function. Trends Neurosci. 1997; 20, 252–258.
    167. Denk, A., Wirth, T., Baumann, B. NFκB transcription factors: critical regulators of hematopoiesis and neuronal survival. Cytokine Growth Factor Rev. 2000; 11, 303–320.
    168. Carter, B.D., Kaltschmidt, C., Kaltschmidt, B., Offenhauser, N., Bohm, M.R., Baeuerle, P.A., Barde, Y.-A. Selective activation of NFκB by nerve growth factor through the neurotrophin receptor p75. Science 1996; 272, 542–545.
    169. Ladiwala, U., Lachance, C., Simoneau, S.J., Bhakar, A., Barker, P.A., Antel, J.P. p75 neurotrophin receptor expression on adult human oligodendrocytes: signaling without cell death in response to NGF. J. Neurosci. 1998; 18, 1297–1304.
    170. Foehr, E.D., Lin, X., O’Mahony, A., Geleziunas, R., Bradshaw, R.A., Greene, W.C. NFκB signaling promotes both cell survival and neurite process formation in nerve growth factor-stimulated PC12 cells. J. Neurosci. 2000; 20, 7556–7563.
    171. Brunet, A., Datta, S.R., Greenberg, M.E. Transcription-dependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway. Curr. Opin. Neurobiol. 2001; 11, 297–305.
    172. Romashkova, J.A., Makarov, S.S. NFκB is a target of Akt in anti-apoptotic PDGF signalling. Nature 1999; 401, 86–90.
    173. Bentley, C.A., Lee, K.F. p75 is important for axon growth and Schwann cell migration during development. J. Neurosci. 2000; 20, 7706–7715.
    174. Lee, K.-F., Li, E., Huber, J., Landis, S.C., Sharpe, A.H., Chao, M.V., Jaenisch, R. Targeted mutation of the gene encoding the low affinity NGF receptor leads to deficits in the peripheral sensory nervous system. Cell 1992; 69, 737–749.
    175. Anton, E.S., Weskamp, G., Reichardt, L.F., Matthew, W.D. Nerve growth factor and its low-affinity receptor promote Schwann cell migration. Proc. Natl. Acad. Sci. U.S.A. 1994; 91, 2795–2799.
    176. Bixby, J.L., Lilien, J., Reichardt, L.F. Identification of the major proteins that promote neuronal process outgrowth on Schwann cells in vitro. J. Cell Biol. 1988; 107, 353–361.
    177. Walsh, G.S., Krol, K.M., Crutcher, K.A., Kawaja, M.D. Enhancedneurotrophin-induced axon growth in myelinated portions of the CNS in mice lacking the p75 neurotrophin receptor. J. Neurosci. 1999; 19, 4155–4168.
    178. Holbrook, K.A., Smith, L.T., Kaplan, E.D., Minami, S.A., Hebert, G.P., Underwood, R.A. Expression of morphogens during human follicle development in vivo and a model for studying follicle morphogenesis in vitro. J. Invest. Dermatol. 1993; 101, 39S–49S.
    179. Botchkareva, N.V., Botchkarev, V.A., Chen, L.H., Lindner, G., Paus, R. A role for p75 neurotrophin receptor in the control of hair follicle morphogenesis. Dev. Biol. 1999; 216, 135–153.
    180. Locksley, R.M., Killeen, N., Lenardo, M.J. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 2001; 104, 487–501.
    181. Baldwin, A.N., Shooter, E.M. Zone mapping of the binding domain of the rat low affinity nerve growth factor receptor by the introduction of novel N-glycosylation sites. J. Biol. Chem. 1995; 270, 4594–4602.
    182. 王炜. P75NGFR 在胰腺导管腺癌生长、侵袭和转移中的作用. 第二军医大学. 2006
    183. Krygier S, Djakiew D. The neurotrophin receptor p75NTR is a tumor suppressor in human prostate cancer.Anticancer Res. 2001 Nov-Dec;21(6A):3749-55.
    184. Khwaja F, Djakiew D. Inhibition of cell-cycle effectors of proliferation in bladder tumor epithelial cells by the p75NTR tumor suppressor. Mol Carcinog. 2003 Mar;36(3):153-60.
    185. Dollé L, Adriaenssens E, El Yazidi-Belkoura I, Le Bourhis X, Nurcombe V, Hondermarck H. Nerve growth factor receptors and signaling in breast cancer. Curr Cancer Drug Targets. 2004,Sep;4(6):463-70.
    186. Satoh F, Mimata H, Nomura T, Fujita Y, Shin T, Sakamoto S, Hamada Y, Nomura Y.Autocrine expression of neurotrophins and their receptors in prostate cancer. Int J Urol. 2001 Jul;8(7):S28-34.
    187. Denkins Y, Reiland J, Roy M, Sinnappah-Kang ND, Galjour J, Murry BP, Blust J, Aucoin R, Marchetti D. Brain metastases in melanoma: roles of neurotrophins. Neuro Oncol. 2004 Apr;6(2):154-65.
    188. Missale C, Codignola A, Sigala S, Finardi A, Paez-Pereda M, Sher E, Spano PF. Nerve growth factor abrogates the tumorigenicity of human small cell lung cancer cell lines. Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):5366-71.
    189.McKay JA, Douglas JJ, Ross VG, Curran S, Loane JF, Ahmed FY, Cassidy J, McLeod HL, Murray GI. Analysis of key cell-cycle checkpoint proteins in colorectal tumours. J Pathol. 2002 Apr;196(4):386-93.
    190.Hunter T, Pines J. Cyclins and cancer. II: Cyclin D and CDK inhibitors come of age. Cell. 1994 Nov 18;79(4):573-82.
    191.Coqueret O. Linking cyclins to transcriptional control. Gene. 2002 Oct 16;299(1-2): 35-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700