用户名: 密码: 验证码:
烟夜蛾气味受体基因和G蛋白α亚基基因的克隆与表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
嗅觉在昆虫的生存和种族繁衍过程中发挥着重要作用。昆虫对气味的识别过程非常复杂,气味分子与嗅觉神经元树突膜上气味受体的结合,参与了昆虫嗅觉识别的初始过程。昆虫气味受体被普遍认为是G蛋白偶联受体,而一些证据却不支持此观点。针对上述两种不同的观点,本研究对重要农业害虫烟夜蛾的气味受体基因、G蛋白α亚基基因以及两种基因之间的关系进行了研究,以期为昆虫识别气味分子机理的探明提供一些试验依据。主要研究内容包括:烟夜蛾气味受体和G蛋白α亚基基因的克隆、原核表达以及在烟夜蛾不同组织和发育期的表达;利用原位杂交和免疫组化方法研究两基因在烟夜蛾触角内的表达异同,初步分析两基因间的关系。主要研究结果如下:
     (1)利用RT-PCR和RACE-PCR方法扩增获得了烟夜蛾Or83b-like基因的全长cDNA(1946bp),序列分析结果表明,该基因编码区全长1422bp,5′端非编码区长135bp,3′端非编码区长389bp;编码区推导表达473个氨基酸残基,预测所编码的蛋白质的分子量为53.51kD,等电点为8.73,预测氨基酸序列中含有7个跨膜区;此外,烟夜蛾Or83b类似受体与其他昆虫的Or83b家族受体的氨基酸序列有较高的一致性。证明获得的基因为昆虫的Or83b家族受体基因之一,暂命名为HassOr83b,此基因已在Genbank上登录,登录号为EU057178。
     (2)从烟夜蛾基因组中克隆出了一个长度为1202bp的HassOr83b基因片段,序列比对结果表明,该片段含有1087bp的内含子序列。此片段已在Genbank上登录,登录号为EU497670。
     (3)利用跨内含子引物和RT-PCR方法,研究了烟夜蛾HassOr83b基因在烟夜蛾不同发育期和组织内的表达情况。结果表明,HassOr83b基因在幼虫早期、幼虫晚期、蛹期、成虫期皆有表达,而在卵期没有表达;在雌雄成虫触角、下唇须和喙有表达,而在翅、足和去掉足、翅等附肢的躯干部没有表达。
     (4)利用原位杂交方法研究了HassOr83b基因在雄性烟夜蛾触角内的转录情况。结果表明,阳性标记出现在触角表皮下方的很多感觉细胞中,HassOr83b基因很可能在毛形感器下方的神经元胞体中表达。
     (5)利用RT-PCR方法,获得了烟夜蛾G蛋白αq亚基基因长度为1103bp的cDNA序列,其中编码区全长1062bp,5′端非编码区长21bp,3′端非编码区长20bp;该基因推导表达353个氨基酸残基,预测蛋白质的分子量为41.5kD,等电点为5.15。序列比对结果表明,烟夜蛾Gαq亚基与其他昆虫Gαq亚基的氨基酸序列有较高的一致性。此基因已在Genbank上登录,登录号为EU057176,该基因暂命名为HassGαq。
     (6)利用RT-PCR方法,研究了烟夜蛾HassGαq基因在烟夜蛾不同发育期和组织内的表达情况,结果表明,HassGαq基因在卵期、幼虫早期、幼虫晚期、蛹期和成虫期皆有表达,在触角、下唇须、喙、翅、足和躯干部也皆有表达。HassGαq基因在烟夜蛾体内为非组织特异性表达。
     (7)成功构建了HassGαq基因的原核融合表达载体,经过IPTG诱导以及SDS-PAGE和Western blot分析,结果显示原核表达产物的分子量约为66kD。由于HassGαq蛋白的预测分子量为41.5kD,GST标签的分子量为26kD,因此表达产物的大小与预测一致,试验结果证明融合蛋白得到了有效表达。
     (8)利用SDS-PAGE分离的目的条带作为抗原,免疫小鼠,获得了HassGαq蛋白的抗血清,Western blot分析结果表明,抗血清的特异性较差,而商品化的anti-Gq/11α抗血清的特异性较好。
     (9)利用anti-Gq/11α抗血清和免疫组化方法,对烟夜蛾HassGαq蛋白在雄性触角内的定位进行了研究,试验结果表明,HassGαq在毛形感器和锥形感器的基部以及感器腔中皆有表达。
     (10)通过比较HassOr83b基因和HassGαq蛋白在烟夜蛾触角内的表达情况(二者很可能皆在行使嗅觉功能的毛形感器下方的神经元胞体表达),支持烟夜蛾嗅觉信号传导与G蛋白偶联的观点。
Olfaction plays a crucial role in insect survival and reproduction. Insect odorant perception is a complex process. The initial steps in odor detection involve the binding of an odor to the odorant receptor (OR) displayed on dendrites of olfactory sensory neurons (OSNs). There is a widespread assumption that insect ORs belong to the family of G protein–coupled receptor (GPCR). However, there are several challenging evidences against the assumption. In this research, the genes encoding OR and G proteinαsubunit from Helicoverpa assulta, and the relationship between the two proteins were studied. The main results are as follows:
     (1) The full length cDNA encoding Or83b-like receptor of Helicoverpa assulta was isolated by using reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE). Nucleotide sequence analysis revealed that the cDNA contains a putative coding region of 1422 bp, 5′untranslated region (UTR) of 135bp and 3′UTR of 389bp. Sequencing analysis showed that the open reading frame (ORF) of the cDNA encodes a protein of 473 amino acids with a predicted molecular weights (MW) of 53.51kD and isoelectric point (PI) of 8.73. The predicted protein obtained, containing seven putative transmembrane domains, shares high amino acid identity with other Or83b family receptors. The results suggest that the gene obtained is one member of Or83b family genes and this gene was hence named as HassOr83b. This sequence has been deposited in the GenBank database with accession number EU057178.
     (2) A fragment of HassOr83b was amplified from genomic DNA. The sequencing of the DNA fragment generated a total of 1202bp nucleotide sequence. The intron position for the fragment was determined on the basis of a comparison of cDNA with the genomic sequence. The intron sequence in the fragment is 1087bp in length. The partial sequence of HassOr83b from genomic DNA has been deposited in the GenBank database with accession number EU497670.
     (3) The expression of HassOr83b transcript in several adult tissues as well as during preadult stages was described by using intron-spanning primers and RT-PCR. The results showed that the HassOr83b transcript is clearly observed in the antennae, labial palps and proboscises, but not in bodies, wings and legs. In addition, HassOr83b is also expressed in several preadult stages, including early-stage larvae, late-stage larvae and pupae, but not in embryos.
     (4) To assess HassOr83b are in fact expressed in antennal sensory cells, in situ hybridization experiments were performed. In situ hybridization of antennal sections with the HassOr83b antisense RNA probe provided clusters of labelled cells, most likely representing sensory cells housed in trichodic sensilla.
     (5) A 1103bp cDNA encoding Gαq protein of Helicoverpa assulta was isolated by RT-PCR. Nucleotide sequence analysis revealed that the cDNA contains a putative coding region of 1062 bp, 5′UTR of 21bp and 3′UTR of 20bp. Sequencing analysis showed that the ORF of the cDNA encodes a protein of 353 amino acids with a predicted MW of 41.5kD and PI of 5.15. The predicted protein obtained shares high amino acid identity with other known Gαq subunits. This sequence has been deposited in the GenBank database with accession number EU057176 and this gene was named as HassGαq.
     (6) The expression pattern of the HassGαq gene transcript was examined by RT-PCR analysis of RNA isolated from several developmental stages and adult tissues of Helicoverpa assulta. The HassGαq transcript is expressed in all adult tissues tested, as well as throughout preadult development. The expressions of HassGαq are not tissue specific.
     (7) HassGαq gene was constructed into expression vector pGEX-4T-2 for over expression in prokaryotic cells. The SDS-PAGE and Western blot analysis showed that induced by Isopropyl-β-D-Thiogalactoside (IPTG), the GST-HassGαq fusion protein is expressed in Escherichia coli BL21, and its MW was found to be about 66kD nearly equal to the predicted.
     (8) The specific band of expression was excised from the gel and used to immunize the mice. The antiserum was collected from the immunized mice. Male antennal homogenate of H. assulta was separated by SDS-PAGE and detected by Western blot using the antiserum prepared, and anti-Gq/11αantiserum purchased respectively. Of the tested sera, anti-Gq/11αantiserum detected a single immunoreactive band with an apparent molecular mass of 40 kD that was consistent with the molecular weight of HassGαq protein, and the antiserum prepared in this research detected several bands. The results indicated that anti-Gq/11αantiserum can recognize HassGαq protein with high specifity.
     (9) The expression sites of HassGαq in adult male antennae were examined by immunocytochemistry method using anti-Gq/11αantiserum against HassGαq. The results revealed that HassGαq was associated with trichodic sensilla and basiconic sensilla as immunolabeling were typically observed inside and at the base of the two kinds of sensilla.
     (10) The location of HassOr83b and HassGαq in the male adult antennae of H. assulta supports the view that HassOr83b belongs to the family of GPCR.
     There is no publication concerned with studies above.
引文
1.陈巨莲,Ge-zhi WENG,倪汉祥. 2001. G蛋白及其偶联信号传导途径的研究进展.生物工程学报,17(2):112-117.
    2.杜永均,严福顺,唐觉. 1995.大豆蚜触角嗅觉感器结构及其功能.昆虫学报,38(1):1-6.
    3.雷宏,邱宇彤,Christensen TA. 2005.昆虫嗅觉系统的结构与功能.见:刘同先,康乐主编.昆虫学研究进展与展望.北京科学出版社. pp133-169.
    4.李坤,罗梅浩,赵国强,刘晓光. 2006.烟实夜蛾(Helicoverpa assulta Guenée)触角感器的超微结构观察.河南农业大学学报,40(3):250-253.
    5.萨姆布鲁克J,弗里奇EF,曼尼阿蒂斯T著,金冬雁等译. 1992.分子克隆实验指南(第二版).北京:科学出版社,pp304-316,888-898,956.
    6.苏宏华,王桂荣,吴孔明,郭予元. 2006.棉铃虫Gq蛋白α亚基基因的克隆及组织特异性表达.中国农业科学,39(4):734-740.
    7.孙虹霞,胡新军,舒迎花,张古忍. 2006.白背飞虱触角感器的扫描电镜观察.昆虫学报, 49(2):349-354.
    8.王桂荣,吴孔明,苏宏华,郭予元. 2005.棉铃虫嗅觉受体基因的克隆及组织特异性表达.昆虫学报,48(6): 823-828.
    9.王四宝,周弘春,苗雪霞,樊美珍,李增智,司胜利,黄勇平. 2005.松褐天牛触角感器电镜扫描和触角电位反应.应用生态学报,16(2):317-322.
    10.杨慧,严善春、彭璐. 2008.鳞翅目昆虫化学感受器及其感受机理新进展.昆虫学报,51(2):204-215.
    11.周志军,王世贵. 2005.二化螟盘绒茧蜂触角感器的超微结构.昆虫知识,42(6):676-680.
    12. Abumrad NA, el-Maghrabi MR, Amri EZ, Lopez E, Grimaldi PA, 1993. Cloning of a rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that is induced during preadipocyte differentiation. Homology with human CD36. J. Biol. Chem., 268: 17 665-17 668.
    13. Almaas T, Mustaparta H, 1991. Heliothis virescens: Response characteristics of receptor neurons in sensilla trichodea Type 1 and Type 2. J. Chem. Ecol., 17(5): 953-972.
    14. Altner, H. 1977. Insect sensillum specificity and structure: an approach to a new typology, in Olfaction taste IV(eds). J Le Magnen and P Mac Leod (London: Information Retrieval). pp295-303.
    15. Anton S, Homberg U. 1999. Antennal lobe structure. In: Hansson BS ed. Insect Olfaction. Springer,Berlin. pp97-124.
    16. Asch AS, Liu I, Briccetti FM, Barnwell JW, Kwakye-Berko F, Dokun A, Goldberger J, Pernambuco M, 1993. Analysis of CD36 binding domains: ligand specificity controlled by dephosphorylation of an ectodomain. Science, 262: 1 436-1440.
    17. Ayer RK Jr, Carlson J. 1992. Olfactory physiology in the Drosophila antenna and maxillary palp: acj6 distinguishes two classes of odorant pathways. J. eurobiol., 23(8): 965-982.
    18. Barnea G, O’Donnell S, Mancia F, Sun X, Nemes A, Mendelsohn M, Axel R, 2004. Odorant receptors on axon termini in the brain. Science, 304: 1 468.
    19. Belluscio L, Gold GH, Nemes A, Axel R, 1998. Mice deficient in G (olf) are anosmic. Neuron, 20(1): 69-81.
    20. Benton R, 2006. On the origin of smell: odorant receptors in insects. Cell Mol. Life Sci., 63(14): 1 579-1 585.
    21. Benton R, Sachse S, Michnick SW, Vosshall LB, 2006. Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS. Biol., 4(2): 240-257.
    22. Berg BG, Galizia CG, Brandt R, Mustaparta H, 2002. Digital atlases of the antennal lobe in two species of tobacco budworm moths, the Oriental Helicoverpa assulta (male) and the American Heliothis virescens (male and female). J. Comp. Neurol., 446: 123-134.
    23. Breer H, Boekhoff I, Tareilus E, 1990. Rapid kinetics of second messenger formation in olfactory transduction. Nature, 345(6 270): 65-68.
    24. Breer H, Raming K, Krieger J. 1994. Signal recognition and transduction in olfactory neurons. Biochim. Biophys. Acta., 1 224(2): 277-287.
    25. Bourne HR, Sanders DA, McCormick F, 1991. The GTPase superfamily: conserved structure and molecular mechanism. Nature, 349(6 305): 117-127.
    26. Buck L, Axel R, 1991. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell, 65(1): 175-187.
    27. Christensen TA, Hidebrand JG, 1987. Male-specific, sex pheromone-selective projection neurons in the antennal lobes of the moth Manduca sexta. J. Comp. Physiol., A160: 553-569.
    28. Couto A, Alenius M, Dickson BJ, 2005. Molecular, anatomical, and functional organization of the Drosophila olfactory system. Curr. Biol., 15(17): 1 535-1 547.
    29. de Sousa SM, Hoveland LL, Yarfitz S, Hurley JB. 1989. The Drosophila Goalpha-like G protein gene produces multiple transcripts and is expressed in the nervous system and in ovaries. J. Biol. Chem., 264: 18 544-18 551.
    30. Dobritsa AA, van der Goes van Naters W, Warr CG, Steinbrecht RA, Carlson JR, 2003. Integrating the molecular and cellular basis of odor coding in the Drosophila antenna. Neuron, 37(5): 827-841.
    31. Elmore T, Smith DP, 2001. Putative Drosophila odor receptor OR43b localizes to dendrites of olfactory neurons. Insect Biochem. Mol. Biol., 31(8): 791-798.
    32. Feinstein JS, Stein MB, Castillo GN, Paulus MP, 2004. From sensory processes to conscious perception. Conscious Cogn., 13 (2): 323-335.
    33. Fox AN, Pitts RJ, Robertson HM, Carlson JR, Zwiebel LJ, 2001. Candidate odorant receptors from the malaria vector mosquito Anopheles gambiae and evidence of down-regulation in response to blood feeding. Proc. Natl. Acad. Sci. USA, 98(25): 14 693-14 697.
    34. Gnatzy W, Mohren W, Steinbrecht RA, 1984. Pheromone receptors in Bombryx mori and Antheraea pernyi.Ⅱ. Morphometric analysis. Cell Tissue Res., 235: 35-42.
    35. Ha TS, Smith DP, 2006. A pheromone receptor mediates 11-cis-vaccenyl acetate-induced responses in Drosophila. J. Neurosci., 26(34): 8 727-8 733.
    36. Hallem EA, Dahanukar A, Carlson JR. 2006, Insect odor and taste receptors. Annu. Rev. Entomol., 51: 113-135.
    37. Hallem EA, Fox AN, Zwiebel LJ, Carlson JR. 2004. Olfaction: mosquito receptor for human-sweat odorant. Nature, 427(6 971): 212-213.
    38. Hansson BS, Christensen TA, Hidebrand JG, 1991. Funtionally distinct subdivisions of the macroglomerular complex in the antennal lobe of the male sphinx moth Manduca sexta. J. Comp. Neurol., 312: 264-278.
    39. Heisenberg M, 2003. Mushroom body memoir: from maps to models. Nat. Rev. Neurosci., 4(4): 266-275.
    40. Hildebrand JG, Shepherd GM, 1997. Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. Annu. Rev. Neurosci., 20: 595-631.
    41. Hill CA, Fox AN, Pitts RJ, Kent LB, Tan PL, Chrystal MA, Cravchik A, Collins FH, Robertson HM, Zwiebel LJ, 2002. G protein-coupled receptors in Anopheles gambiae. Science, 298(5 591): 176-178.
    42. Hillier NK, Kleineidam C, Vickers NJ, 2006. Physiology and glomerular projections of olfactory receptor neurons on the antenna of female Heliothis virescens (Lepidoptera: Notuidae) responsive to behaviorally relevant odors. J. Comp. Physiol., A192: 199-219.
    43. Horgan AM, Lagrange MT, Copenhaver PF, 1995. A developmental role for the heterotrimeric G protein Goαin a migratory population of embryonic neurons. Dev. Biol., 172(2): 640-653.
    44. Hovemann BT, Sehlmeyer F, Malz J, 1997. Drosophila melanogaster NADPH-cytochrome P450 oxidoreductase: pronounced expression in antennae may be related to odorant clearance. Gene, 189(2): 213-219.
    45. Ishida Y, Leal WS, 2002. Cloning of putative odorant-degrading enzyme and integumental esterase cDNAs from the wild silkmoth, Antheraea polyperhus. Insect Biochem. Biol., 32: 1 775-1 780.
    46. Jacquin-Joly E, Fran?ois MC, Burnet M, Lucas P, Bourrat F, Maida R, 2002. Expression pattern in the antennae of a newly isolated lepidopteran Gq proteinαsubunit cDNA. Eur. J. Biochem., 269(8): 2 133-2 142.
    47. Jacquin-Joly E, Merlin C, 2004. Insect olfactory receptors: contributions of molecular biology to chemical ecology. J. Chem. Ecol., 30: 2 359-2 397.
    48. Jones WD, Nguyen TT, Kloss B, Lee KJ, Vosshall LB, 2005. Functional conservation of an insect odorant receptor gene across 250 million years of evolution. Curr. Biol., 15(4): R119-121.
    49. Kaissling KE, 2001. Olfactory perireceptor and receptor events in moths: a kinetic model. Chem. Senses., 26(2):125-150.
    50. Kaissling KE, Meng LZ, Bestmann HJ, 1989. Responses of bombykol receptor cell to (Z,E)-4,6-hexadecadiene and linalool. J. Comp. Physiol., A165: 147-154.
    51. Kiely A, Authier A, Kralicek AV, Warr CG, Newcomb RD, 2007. Functional analysis of a Drosophila melanogaster olfactory receptor expressed in Sf9 cells. J. Neurosci. Methods, 159(2): 189-194.
    52. Knight PJ, Grigliatti TA, 2004. Diversity of G proteins in Lepidopteran cell lines: partial sequences of six G protein alpha subunits. Arch. Insect. Biochem. Physiol., 57(3): 142-150.
    53. Kreher SA, Kwon JY, Carlson JR, 2005. The molecular basis of odor coding in the Drosophila larva. Neuron, 46(3): 445-456.
    54. Krieger J, Grosse-Wilde E, Gohl T, Dewer YME, Raming K, Breer H, 2004. Genes encoding candidate pheromone receptors in a moth (Heliothis virescens). Proc. Natl. Acad. Sci. USA, 101(32): 11 845-11 850.
    55. Krieger J, Klink O, Mohl C, Raming K, Breer H, 2003. A candidate olfactory receptor subtype highly conserved across different insect orders. J. Comp. Physiol., A, 189(7): 519-526.
    56. Krieger J, Raming K, Dewer YM, Bette S, Conzelmann S, Breer H, 2002. A divergent gene family encoding candidate olfactory receptors of the moth Heliothis virescens. Eur. J. Neurosci., 16(4): 619-628.
    57. Larsson MC, Domingos AI, Jones WD, Chiappe ME, Amrein H, Vosshall LB, 2004. Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron, 43(5): 703-714.
    58. Laue M, Maida R, Redkozubov A, 1997. G-protein activation, identification and immunolocalization in pheromone-sensitive sensilla trichodea of moths. Cell Tissue Res., 288(1): 149-158.
    59. Lee YJ, Dobbs MB, Verardi ML, Hyde DR, 1990. dgq: a Drosophila gene encoding a visual system-specific Gαmolecule. Neuron, 5(6): 889-898.
    60. Levasseur G, Persuy M, Grebert D, Remy JJ, Salesse R, Pajot-Augy E, 2003. Ligand-specific dose-response of heterologously expressed olfactory receptors. Eur. J. Biochem., 270(13): 2 905-2 912.
    61. Libert S, Zwiener J, Chu X, Vanvoorhies W, Roman G, Pletcher SD, 2007. Regulation of Drosophila life span by olfaction and food-derived odors. Science, 315(5 815): 1 133-1 137.
    62. Ljungberg H, Anderson P, Hansson BS, 1993. Physiology and morphology of pheromone-specific sensilla on the antennae of male and female Spodoptera littoralis (Lepidoptera: Noctuidae). J.Insect Physiol., 39: 253-260.
    63. Maibeche-Coisne M, Jacquin-Joly E, Francois MC, Nagnan-Le Meillour P, 2002. cDNA cloning of biotransformation enzymes belonging to the cytochrome P450 family in the antennae of the noctuid moth Mamestra brassicae. Insect Mol. Biol., 11(3): 273-281.
    64. Maibeche-Coisne M, Nikonov AA, Ishida Y, Jacquin-Joly E, Leal WS, 2004. Pheromone anosmia in a scarab beetle induced by in vivo inhibition of a pheromone-degrading enzyme. Proc. Natl. Acad. Sci. USA, 101(31): 11 459-11 464.
    65. Matarazzo V, Clot-Faybesse O, Marcet B, Guiraudie-Capraz G, Atanasova B, Devauchelle G, Cerutti M, Etievant P, Ronin C, 2005. Functional characterization of two human olfactory receptors expressed in the baculovirus Sf9 insect cell system. Chem. Senses, 30(3): 195-207.
    66. McIver SB. 1982. Sensilla mosquitoes (Diptera: Culicidae). J. Med. Entomol., 19(5): 489-535.
    67. Melo AC, Rützler M, Pitts RJ, Zwiebel LJ, 2004. Identification of a chemosensory receptor from the yellow fever mosquito, Aedes aegypti, that is highly conserved and expressed in olfactory and gustatory organs. Chem. Senses, 29(5): 403-410.
    68. Miura N, Atsumi S, Tabunoki H, Sato R, 2005. Expression and localization of three G proteinαsubunits, Go, Gq, and Gs, in adult antennae of the silkmoth (Bombyx mori). J. Comp. Neurol., 485(2): 143-152.
    69. Mombaerts P, 2004. Odorant receptor gene choice in olfactory sensory neurons: the one receptor-one neron hypothesis revisited. Current Opin. Neurobiol., 14: 1-6.
    70. Müller D, Abel R, Brandt R, Z?ckler M, Menzel R, 2002. Differential parallel processing of olfactory information in the honeybee, Apis mellifera L. J. Comp. Physiol., A188: 359-370.
    71. Nakagawa T, Sakurai T, Nishioka T, Touhara K, 2005. Insect sex-pheromone signals mediated by specific combinations of olfactory receptors. Science, 307(5 715): 1 638-1 642.
    72. Noel JP, Hamm HE, Sigler PB. 1993. The 2.2 A crystal structure of transducin-αcomplexed with GTPγS. Nature, 366(6 456): 628-629.
    73. Pennisi E, 1999. Fruit Fly Odor Receptors Found. Science, 283(5 406): 1 239.
    74. Pitts RJ, Fox AN, Zwiebel LJ, 2004. A highly conserved candidate chemoreceptor expressed in both olfactory and gustatory tissues in the malaria vector Anopheles gambiae. Proc. Natl. Acad. Sci. USA, 101(14): 5 058-5 063.
    75. Pophof B, 2002. Moth pheromone binding proteins contribute to the excitation of olfactory receptorcells. Naturwissenschaften, 89: 515-518.
    76. Quan F, Forte MA, 1990. Two forms of Drosophila melanogaster Gsαare produced by alternate splicing involving an unusual splice site. Mol. Cell. Biol., 10(3): 910-917.
    77. Quan F, Wolfgang WJ, Forte M, 1993. A Drosophila G-proteinαsubunit, Gfα, expressed in a spatially and temporally restricted pattern during Drosophila development. Proc. Natl. Acad. Sci. USA, 90(9): 4 236-4 240.
    78. Ratnaparkhi A, Banerjee S, Hasan G, 2002. Altered levels of Gq activity modulate axonal pathfinding in Drosophila. J. Neurosci., 22(11): 4 499-4 508.
    79. Riesgo-Escovar J, Raha D, Carlson JR, 1995. Requirement for a phospholipase C in odor response: overlap between olfaction and vision in Drosophila. Proc. Natl. Acad. Sci. USA, 92(7): 2 864-2 868.
    80. Robertson HM, Wanner KW, 2006. The chemoreceptor superfamily in the honey bee, Apis mellifera: expansion of the odorant, but not gustatory, receptor family. Genome Res., 16(11): 1 395-1 403.
    81. Robertson HM, Warr CG, Carlson JR, 2003. Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA, 100(Suppl. 2): 14 537-14 542.
    82. Rogers ME, Jani MK, Vogt RG, 1999. An olfactory-specific glutathione-S- transferase in the sphinx moth Manduca sexta. J. Exp. Biol., 202: 1 625-1 637.
    83. Rogers ME, Krieger J, Vogt RG, 2001. Antennal SNMPs (sensory neuron membrane proteins) of Lepidoptera define a unique family of invertebrate CD36-like proteins. J. Neurobiol., 49: 47-61.
    84. Rogers ME, Sun M, Lerner MR, Vogt RG, 1997. Snmp-1, a novel membrane protein of olfactory neurons of the silk moth Antheraea polyphemus with homology to the CD36 family of membrane proteins. J. Biol. Chem., 272: 14 792-14 799.
    85. Rützler M, Lu T, Zwiebel LJ, 2006. Gαencoding gene family of the malaria vector mosquito Anopheles gambiae: expression analysis and immunolocalization of AGαq and AGαo in female antennae. J. Comp. Neurol., 499(4): 533-545.
    86. Rützler M, Zwiebel LJ, 2005. Molecular biology of insect olfaction: recent progress and conceptual models. J. Comp. Physiol., A, 191(9): 777-790.
    87. Rybczynski R, Vogt RG, Lerner MR, 1990. Antennal-specific pheromone-degrading aldehyde oxidases from the moths Antheraea polypemus and Bombyx mori. J. Biol. Chem., 32: 19 712-19 715.
    88. Sakurai T, Nakagawa T, Mitsuno H, Mori H, Endo Y, Tanoue S, Yasukochi Y, Touhara K, Nishioka T, 2004. Identification and functional characterization of a sex pheromone receptor in the silkmoth Bombyx mori. Proc. Natl. Acad. Sci. USA, 101(47): 16 653-16 658.
    89. Sanz GI, Schlegel C, Pernollet JC, Briand L, 2005. Comparison of odorant specificity of two humanolfactory receptors from different phylogenetic classes and evidence for antagonism. Chem. Senses, 30(1): 69-80.
    90. Scott K, Becker A, Sun Y, Hardy R, Zuker C, 1995. Gq alpha protein function in vivo: genetic dissection of its role in photoreceptor cell physiology. Neuron, 15: 919-927.
    91. Shepherd GM, 1985. Are there labeled lines in the olfactory pathway? In: Plaff DW, Taste, olfaction, and the Central Nervoud System. New York: Rockefeller Univ. Press. pp307-321.
    92. Simon MI, Strathmann MP, Gautam N, 1991. Diversity of G proteins in signal transduction. Science, 252(5 007): 802-808.
    93. Smith DP, 1999. Drosophila odor receptors revealed. Neuron, 22(2): 203-204.
    94. Smith DP, 2007. Odor and pheromone detection in Drosophila melanogaster. Pflugers. Arch., 454(5): 749-758.
    95. Sprang SR, 1997. G protein mechanisms: insights from structural analysis. Annu. Rev. Biochem., 66: 639-678.
    96. Steinbrecht RA. 1970. Zur morphometrie der antenne des seindenspinners, Bombyx mori L. zahl und verteilung der Riechsensillen (Insecta, Eepidoptera). Z. Morphol.Tiere., 68:93-126.
    97. Steinbrecht RA, 1998. Odorant-binding proteins: expression and function. Ann. N. Y. Acad. Sci., 855: 323-332.
    98. Steinbrecht RA, Gnatzy W, 1984. Pheromone receptors in Bombryx mori and Antheraea pernyi. I. Reconstruction of celluar organization of sensilla trichodea. Cell Tissue Res, 235: 25-34.
    99. Steinbrecht RA, Laue M, Ziegelberger G, 1995. Immunocytochemical of pheromone-binding protein and general odorant binding protein in olfactory sensilla of the silk moth Antheraea and Bombyx. Cell Tissue Res., 282: 203-217.
    100. Steinbrecht RA, Ozaki M, Ziegelberger G, 1992. Immunocytochemical localization of pheromone-binding protein in moth antennae. Cell Tissue Res., 270: 287-302.
    101. St?rtkuhl KF, Kettler R, 2001. Functional analysis of an olfactory receptor in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA, 98(16): 9 381-9 385.
    102. Talluri S, Bhatt A, Smith DP, 1995. Identification of a Drosophila G protein alpha subunit (dGqα-3) expressed in chemosensory cells and central neurons. Proc. Natl. Acad. Sci. USA, 92(25): 11 475-11 479.
    103. Tandon NN, Lipsky RH, Burgess WH, Jamieson GA, 1989. Isolation and characterization of platelet glycoprotein IV (CD36). J. Biol. Chem., 264: 7 570-7 575.
    104. Troemel ER, Chou JH, Dwyer ND, Colbert HA, Bargmann CI, 1995. Divergent seven transmembrane receptors are candidate chemosensory receptors in C. elegans. Cell, 83(2): 207-218.
    105. Van der Goes van Naters WM, Den Otter CJ, Maes FW, 1998. Olfactory sensitivity in tsetse flies: a daily rhythm. Chem. Senses., 23(3): 351-357.
    106. Vogt RG, Callahan FE, Rogers ME, Dickens JC, 1999. Odorant binding protein diversity and distribution among the insect orders, as indicated by LAP, an OBP-related protein of the true bug Lygus lineolaris (Hemiptera, Heteroptera). Chem. Senses, 24(5): 481-495.
    107. Vogt RG, Riddiford LM, 1981. Pheromone binding and inactivation by moth antennae. Nature, 293: 161-163.
    108. Vosshall LB, Amrein H, Morozov PS, Rzhetsky A, Axel R, 1999. A spatial map of olfactory receptor expression in the Drosophila antenna. Cell, 96(5): 725-736.
    109. Vosshall LB, Stocker RF. 2007. Molecular architecture of smell and taste in Drosophila. Annu. Rev. Neurosci., 30: 505-533.
    110. Vosshall L, Wong A, Axel R, 2000. An olfactory sensory map in the fly brain. Cell, 102(2): 147-159.
    111. Wang Q, Hasan G, Pikielny C, 1999. Preferential expression of biotransformation enzymes in the olfactory organs of Drosophila.melanogaster, the antennae. J. Biol. Chem., 274: 10 309-10 315.
    112. Wanner KW, Anderson AR, Trowell SC, Theilmann DA, Robertson HM, Newcomb RD, 2007. Female-biased expression of odourant receptor genes in the adult antennae of the silkworm, Bombyx mori. Insect Mol. Biol., 16(1): 107-119.
    113. Wetzel CH, Behrendt HJ, Gisselmann G, Stortkuhl KF, Hovemann B, Hatt H, 2001. Functional expression and characterization of a Drosophila odourant receptor in a heterologous cell system. Proc. Natl. Acad. Sci. USA, 98(16): 9 377-9 380.
    114. Wicher D, Sch?fer R, Bauernfeind R, Stensmyr MC, Heller R, Heinemann SH, Hansson BS, 2008. Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature, 452(7 190): 1 007-1 011.
    115. Wolfgang WJ, Quan F, Goldsmith P, Unson C, Spiegel A, Forte M, 1990. Immunolocalization of G proteinα-subunits in the Drosophila CNS. J. Neurosci., 10(3): 1 014-1 024.
    116. Xia Y, Zwiebel LJ, 2006. Identification and characterization of an odorant receptor from the West Nile virus mosquito, Culex quinquefasciatus. Insect Biochem. Mol. Biol., 36(3): 169-176.
    117. Xu PX, 2005. A Drosophila OBP required for pheromone signaling. Science, 310: 798-799.
    118. Xu PX, Atkinson R, Jones DN, Smith DP, 2005. Drosophila OBP LUSH is required for activity of pheromone-sensitive neurons. Neuron, 45(2): 179-181, 193-200.
    119. Yoon J, Shortridge RD, Bloomquist BT, Schneuwly S, Perdew MH, Pak WL, 1989. Molecular characterization of Drosophila gene encoding Goαsubunit homolog. J. Biol. Chem., 264(31): 18 536-18 543.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700