用户名: 密码: 验证码:
昆虫CREB激活机制及Arrestin蛋白功能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
cAMP响应元件(CRE)及其结合蛋白(CREB)在G蛋白联受体信号通路中发挥着至关重要的作用,影响着精子发生、记忆形成以及生物节律等多项生理功能。PKA对CREB的133位丝氨酸的磷酸化修饰,使得CREB可以招募CBP/p300等辅激活子以及通用的转录因子,通过RNA聚合酶Ⅱ组建转录起始复合体,增强CRE驱动的下游基因的转录。CRE元件驱动报告基因表达已经成为常用的cAMP检测方法,但是哺乳动物细胞中常用的pCRE-luc载体在昆虫细胞中不能响应cAMP的变化。本文通过启动子替换构建了适合于鳞翅目昆虫细胞的pCRE-luciferase报告基因载体,检测发现Gs隅联的家蚕脂动激素受体(AKHR)和Corazonin受体可以激活CRE驱动的报告基因的表达,但是常用的腺苷酸环化酶激动剂forskloin却未能增强CRE的转录活性。进一步研究发现,胞内钙流变化在CRE激活过程中发挥决定性作用。有趣的是,以PKC特异的抑制剂处理后显著地增强了AKH1激发的CRE驱动的转录,并且PKC的激动剂PMA可以阻断这一效应;而钙调蛋白磷酸酶PP2B的抑制剂却强烈的抑制了CRE驱动的萤光素酶的表达。由此推测昆虫细胞中,PKC组成性的抑制CRE驱动的转录,而PP2B对CREB的去磷酸化是CREB激活转录所必需的。此外,抑制胞外信号调节激酶(ERK)的磷酸化对CRE的转录活性没有显著的影响。
     顾名思义,Arrestin蛋白的作用是限制受体的活性,这一特性已成为重要的GPCR信号通路及配体筛选研究方法。Arrestin蛋白分视觉相关和非视觉相关两大类。视觉相关Arrestin蛋白主要在视紫红质受体的脱敏过程中发挥作用,而非视觉相关Arrestin蛋白(β-arrestin1/2)作为重要的支架蛋白,分布更为广泛,除了限制激动剂对受体的活化外,还参与受体的内吞、胞外信号调节激酶的活化、RhoA/ROCK通路、白细胞介素和肿瘤坏死因子的合成以及转录因子NF-κB的激活等多个依赖或J依赖于GPCR的信号通路的调控。本文以果蝇非视觉相关△rrestin蛋白一—Kurtz为模板,通过EST序列拼接结合RACE技术克隆了家蚕非视觉相关△rrestion蛋白,参考果蝇的同源蛋白,命名为BmKurtz。序列相似性分析发现,该蛋白具有典型的非视觉相关Arrestin蛋白结构域;荧光定量PCR显示该蛋白在家蚕五龄幼虫的各个组织中均有表达;激动剂激活的AKHR可以招募该蛋白,说明其参与GPCR信号通路的调控;过表达该蛋白也显著的延迟了ERK的磷酸化,这一点与果蝇的Kurtz蛋白也是类似的。
     本研究利用CRE元件构建了适合于鳞翅目昆虫细胞的GPCR信号通路检测系统,并初步揭示了家蚕CREB激活的调控机制。家蚕非视觉相关Arrestin蛋白——Kurtz的克隆与功能鉴定,使其成为昆虫GPCR信号通路的检测方法的重要补充。
The cAMP response element-binding protein, CREB, is a GPCR signal activated transcription factor implicated in the control of many biological processes, such as spermatogenesis, memory and circadian rhythms. CREB is phosphorylated at serine residue133by cAMP-dependent protein kinase A, resulting in initiation of transcription of CREB target genes by recruiting the coactivators CBP or p300that associate with the RNA polymerase Ⅱ complexes. CRE-driven luciferase expression has been widely used to detect the cAMP elevation, but the vector used in mammalian cell is not suitable for insect cells. In the current study, a CRE-driven luciferase assay system was constructed for GPCR characterization in insect cells, our data indicated that Bombyx Gs-coupled adipokinetic hormone receptor and corazonin receptor could effectively initiate CRE-driven luciferase transcription, but forskolin, a reagent to be widely used for activating adenylyl cyclase in mammalian system, failed to induce CRE-driven luciferase expression in insect cells transfected with a CRE-driven reporter construct. Further investigation revealed that PKC specific inhibitor exhibited stimulatory effect on the CRE-driven reporter transcription, whereas blockade of Ca2+signal and inhibition of Ca2+-dependent calcineurin resulted in a significant decrease on the expression of luciferase in insect cells. These results suggest that PKC is likely as a negative regulator to modulate CREB activation, in contrast, other than PK.A, Ca2+signal and Ca2+-dependent calcineurin also essentially contribute to the positive regulation of CREB activity. In addition, the extracellular signal-regulated kinase (ERK) has no significant effect on CRE-driven luciferase expression.
     As their names imply, Arrestins "arrest" the agonist to activate GPCR. This belrivor has been widely applied to GPCR signaling detection and ligand screening. Artestins are divided into two groups:visual arrestins turn off the Rhodopsin signaling specilicly, while as important scaffold protein, the non-visual arrestins (β-aneslin1/2) ate distributed more widely and related to receptor internalization, ERK phosphorylation. Rho/ROCK signaling, interleukins/tumor necrosis factor production, activation of NF-κB and so on, besides GPCR desensitization. Referring to non-visual arrest in of Drosophila melanogaster, DmKurtz, we obtained the cDNA sequence containing a coding sequence of kurtz of Bomhyx mori by ESTs (expression sequence tags) splicing and RACE (rapid amplification of cDNA ends) and named after DmKurlz. Sequence alignment showed that BmKurtz contained the non-visual arrestin specific domains, and the result of real-time PCR demonstrated that BmKurtz was distributed widely in5th instar day-3larvae. Furthermore, just like DmKurtz, the BmKurtz could also be recruited by activated AKHR, and the ERK phosphorylation was delayed significantly by over-expression of BmKurtz.
     Here we modified the CRE-Luc vector and to make it suitable for GPCR signaling in lepidopteran cell lines. Furthermore, our study shed new light on the underlying molecular mechanism by which CREB activation is regulated in insect. The identification of BmKurtz is an important supplement of GPCR signaling detection system.
引文
1. J. A. Beavo and L. L. Brunton. Cyclic nucleotide research -- still expanding after half a century. Nat Rev Mol Cell Biol 2002,3 (9):710-718
    2. M. J. Lynch, E. V. Hill and M. D. Houslay. Intracellular targeting of phosphodiesterase-4 underpins compartmentalized cAMP signaling. Curr Top Dev Biol 2006,75 225-259
    3. G. S. Baillie, J. D. Scott and M. D. Houslay. Compartmentalisation of phosphodiesterases and protein kinase A:opposites attract. FEBS Lett 2005,579 (15):3264-3270
    4. J. S. Fink, M. Verhave, S. Kasper, et al. The CGTCA sequence motif is essential for biological activity of the vasoactive intestinal peptide gene cAMP-regulated enhancer. Proc Nail Acad Sci U S A 1988,85 (18):6662-6666
    5. E. Lalli and P. Sassone-Corsi. Signal transduction and gene regulation:the nuclear response to cAMP. JBiol Chem 1994,269(26):17359-17362
    6. J. P. Hocfflcr, T. E. Meyer, Y. Yun, et al. Cyclic AMP-responsive DNA-binding protein:structure based on a cloned placental cDNA. Science 1988,242 (4884):1430-1433
    7. M. Gonzales and G. T. Bowden. Ultraviolet B (UVB) induction of the c-fos promoter is mediated by phospho-cAMP response element binding protein (CREB) binding to CRE and c-fos activator protein I site (FAP1) cis elements. Gene 2002,293 (1-2):169-179
    8. J. Poels, V. Franssens, T. Van Loy, et al. Isoforms of cyclic AMP response element binding proteins in Drosophila S2 cells. Biochemical and Biophysical Research Communications 2004,320 (2): 318-324
    9. Y. Tanaka, M. Takase and S. Gamo. Relationship between general anesthesia and memory in Drosophila involving the cAMP/PKA pathways and adhesion-related molecules. Curr Med Chem 2007, 14(13):1479-1488
    10. P. Sassone-Corsi. Transcription factors responsive to cAMP. Annu Rev Cell Dev Biol 1995, 11 355-377
    11. M. Johannessen, M. P. Delghandi and U. Moens. What turns CREB on? Cellular Signalling 2004, 16(11):1211-1227
    12. N. S. Foulkes and P. Sassone-Corsi. More is better:activators and repressors from the same gene. Cell 1992,68 (3):411-414
    13. T. W. Ilai, F. Liu, W. J. Coukos, et al. Transcription factor ATF cDNA clones:an extensive family of leucine zipper proteins able to selectively form DNA-binding heterodimers. Genes Dev 1989,3 (12B):2083-2090
    14. W. H. Landschulz, P. F. Johnson and S. L. McKnight. The leucine zipper:a hypothetical structure common to a new class of DNA binding proteins. Science 1988,240 (4860):1759-1764
    15. C. R. Vinson, P. B. Sigler and S. L. McKnight. Scissors-grip model for DNA recognition by a family of leucine zipper proteins. Science 1989,246 (4932):911-916
    16. D.De Cesare and P. Sassone-Corsi. Transcriptional regulation by cyclic AMP-responsive factors. Progress in Nucleic Acid Research and Molecular Biology 2000. Volume 64 343-369
    17..1. C. Yin, J. S. Wallach, E. L. Wilder, et al. A Drosophila CREB/CREM homolog encodes multiple isoforms, including a cyclic AMP-dependent protein kinase-responsive transcriptional activator and antagonist. Mol Cell Biol 1995,15 (9):5123-5130
    18. K. K. Yamamoto, G. A. Gonzalez, P. Menzel, et al. Characterization of a bipartite activator domain in transcription factor CREB. Cell 1990,60 (4):611-617
    19. S. Ruppert, T. J. Cole, M. Boshart, et al. Multiple mRNA isoforms of the transcription activator protein CREB:generation by alternative splicing and specific expression in primary spermatocytes. EMBO J 1992,11 (4):1503-1512
    20. W. H. Walker, B. M. Sanborn and J. F. Habener. An isoform of transcription factor CREM expressed during spermatogenesis lacks the phosphorylation domain and represses cAMP-induccd transcription. Proc Natl Acad Sci U S A 1994,91 (26):12423-12427
    21. C. A. Molina, N. S. Foulkes, E. Lalli, et al. Inducibility and negative autoregulation of CREM:an alternative promoter directs the expression of ICER, an early response repressor. Cell 1993,75 (5): 875-886
    22. J. Bodor, Z. Fehervari, B. Diamond, et al. ICER/CREM-mediated transcriptional attenuation of IL-2 and its role in suppression by regulatory T cells. Eur J Immunol 2007,37 (4):884-895
    23. H. Tomita, M. Nazmy, K. Kajimoto, et al. Inducible cAMP early repressor (ICER) is a negative-feedback regulator of cardiac hypertrophy and an important mediator of cardiac myocyte apoptosis in response to beta-adrenergic receptor stimulation. Circ Res 2003,93 (1):12-22
    24. J. Monteserin-Garcia, O. Al-Massadi, L. M. Seoane, et al. Sirtl inhibits the transcription factor CREB to regulate pituitary growth hormone synthesis. FASEB J 2013,27 (4):1561-1571
    25. I. R. Thompson, N. A. Ciccone, S. Xu, et al. GnRH Pulse Frequency-Dependent Stimulation of FSHbeta Transcription Is Mediated via Activation of PKA and CREB. Mol Endocrinol 2013,27 (4): 606-618
    26. S. Dalle, J. Quoyer, E. Varin, et al. Roles and regulation of the transcription factor CREB in pancreatic beta -cells. Curr Mol Pharmacol 2011,4 (3):187-195
    27. W. H. Walker, C. Girardet and J. F. Habener. Alternative exon splicing controls a translational switch from activator to repressor isoforms of transcription factor CREB during spermatogenesis. J BiolChem 1996,271 (33):20145-21050
    28. J. Don and G. Stelzer. The expanding family of CREB/CREM transcription factors that are involved with spermatogenesis. Mol Cell Endocrinol 2002,187 (1-2):115-124
    29. J. Horiuchi, D. Yamazaki, S. Naganos, et al. Protein kinase A inhibits a consolidated form of memory in Drosophila. Proceedings of the National Academy of Sciences 2008,105 (52):20976-20981
    30. Z. Guan, L. K. Buhl, W. G. Quinn, et al. Altered gene regulation and synaptic morphology in Drosophila learning and memory mutants. Learn Mem 2011,18 (4):191-206
    31. M. P. Belvin, H. Zhou and J. C. Yin. The Drosophila dCREB2 gene affects the circadian clock. Neuron 1999,22 (4):777-787
    32. D. Gau, T. Lemberger, C. von Gall, et al. Phosphorylation of CREB Serl42 regulates light-induced phase shifts of the circadian clock. Neuron 2002,34 (2):245-253
    33. A. K. Tanenhaus, J. Zhang and J. C. Yin. In vivo circadian oscillation of dCREB2 and NF-kappaB activity in the Drosophila nervous system. PLoS One 2012,7(10):e45130
    34. W. A. Sands and T. M. Palmer. Regulating gene transcription in response to cyclic AMP elevation. Cellular Signalling 2008,20 (3):460-466
    35. M. D. Conkright, E. Guzman, L. Flechner, et al. Genome-wide analysis of CREB target genes reveals a core promoter requirement for cAMP responsiveness. Mol Cell 2003,11 (4):1101-1108
    36. N. Sharma, D. I. Lopez and J. K. Nyborg. DNA binding and phosphorylation induce conformational alterations in the kinase-inducible domain of CREB. Implications for the mechanism of transcription function. J Biol Chem 2007,282 (27):19872-19883
    37. G. A. Gonzalez and M. R. Montminy. Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell 1989,59 (4):675-680
    38. M. M. Loriaux, R. P. Rehfuss, R. G. Brennan, et al. Engineered leueine zippers show that hemiphosphorylated CREB complexes are transcriptionally active. Proc Natl Acad Sci U S A 1993,90 (19):9046-9050
    19. R. P. de Groot and P. Sassone-Corsi. Hormonal control of gene expression:multiplicity and versatility of cyclic adenosine 3',5'-monophosphate-responsive nuclear regulators. Mol Endocrinol 1993,7(2):145-153
    40. G. R. Wiggin, A. Soloaga, J. M. Foster, et al. MSK1 and MSK.2 are required for the mitogen- and stress-induced phosphorylation of CREB and ATF1 in fibroblasts. Mol Cell Biol 2002,22 (8): 2871-2881
    41. S. Verploegen, J. W. Lammers, L. Koenderman, et al. Identification and characterization of CKLiK, a novel granulocyte Ca(++)/calmodulin-dependent kinase. Blood 2000,96 (9):3215-3223
    42. F. L. Watson, H. M. Heerssen, A. Bhattacharyya, et al. Neurotrophins use the Erk5 pathway to mediate a retrograde survival response. Nat Neurosci 2001,4 (10):981-988
    43. K.. Li, S. Zhao, V. Karur, et al. DYRK.3 activation, engagement of protein kinase A/cAMP response element-binding protein, and modulation of progenitor cell survival. J Biol Chem 2002,277 (49):47052-47060
    44. S. Dremier, V. Pohl, C. Poteet-Smith, et al. Activation of cyclic AMP-dependent kinase is required but may not be sufficient to mimic cyclic AMP-dependent DNA synthesis and thyroglobulin expression in dog thyroid cells. Mol Cell Biol 1997,17 (11):6717-6726
    45. X. Wu and C. T. McMurray. Calmodulin kinase Ⅱ attenuation of gene transcription by preventing cAMP response element-binding protein (CREB) dimerization and binding of the CREB-binding protein. J Biol Chem 2001,276 (3):1735-1741
    46..1. M. Komhauser, C. W. Cowan, A. J. Shaywitz, et al. CREB transcriptional activity in neurons is regulated by multiple, calcium-specific phosphorylation events. Neuron 2002,34 (2):221-233
    47. C. C Chen, J. K. Wu, H. W. Lin, et al. Visualizing long-term memory formation in two neurons of the Drosophila brain. Science 2012,335 (6069):678-685
    48. A..1. Shaywitz and M. E. Greenberg. CREB:a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem 1999,68821-861
    49. B. Liu, II. Barbosa-Sampaio, P. M. Jones, et al. The CaMK4/CREB/IRS-2 cascade stimulates proliferation and inhibits apoptosis of beta-cells. PLoSOne 2012.7 (9):c45711
    50. C..1. Fiol, J. S. Williams, C. H. Chou, et al. A secondary phosphorylation of CREB341 at Serl29 is required for the cAMP-mediated control of gene expression. A role for glycogen synthase kinase-3 in the control of gene expression. J Biol Chem 1994,269 (51):32187-32193
    51. M. Johanncssen, M. P. Uclghandi, O. M. Seternes, et al. Synergistic activation of CREB-mediated transcription by forskolin and phorbol ester requires PK.C and depends on the glutamine-rich Q2 transactivation domain. Cellular Signalling 2004,16(10):1187-1199
    52. U. R. Tyson, J. T. Swarthout, S. C. Jefcoat, et al. PTH induction of transcriptional activity of the cAMP response clement-binding protein requires the serine 129 site and glycogen synthase kinase-3 activity, but not casein kinase Ⅱ sites. Endocrinology 2002,143 (2):674-682
    53. K. Saeki, A. Yuo and F. Takaku. Cell-cycle-regulaled phosphorylation of cAMP response element-binding protein:identification of novel phosphorylation sites. Biochem J 1999,338 (Pt 1) 49-54
    54. J. Gao, B. Siddoway, Q. Huang, et al. Inactivation of CREB mediated gene transcription by HDAC8 bound protein phosphatase. Biochemical and Biophysical Research Communications 2009, 379(1):1-5
    55. B. E. Wadzinski, W. H. Wheat, S. Jaspers, et al. Nuclear protein phosphatase 2A dephosphorylates protein kinase A-phosphorylated CREB and regulates CREB transcriptional stimulation. Mol Cell Biol 1993,13 (5):2822-2834
    56. C. T. Taylor, G. T. Furuta, K. Synnestvedt, et al. Phosphorylation-dependent targeting of cAMP response element binding protein to the ubiquitin/proteasome pathway in hypoxia. Proc Natl Acad Sci USA 2000,97 (22):12091-12096
    57. D. Cougot, E. Allemand, L. Riviere, et al. Inhibition of PP1 Phosphatase Activity by HBx:A Mechanism for the Activation of Hepatitis B Virus Transcription. Sci. Signal.2012,5 (205):ral-
    58. N. P. Shanware, L. Zhan, J. A. Hutchinson, et al. Conserved and Distinct Modes of CREB/ATF Transcription Factor Regulation by PP2A/B56y and Genotoxic Stress. PLoS One 2010,5 (8):e 12173
    59. I.-S. Cho, M. Jung, K.-S. Kwon, et al. Deregulation of CREB Signaling Pathway Induced by Chronic Hyperglycemia Downregulates NeuroD Transcription. PLoS One 2012,7 (4):e34860
    60. C. Grossmann, M. Wuttke, S. Ruhs, et al. Mineralocorticoid receptor inhibits CREB signaling by calcineurin activation. The FASEB Journal 2010,24 (6):2010-2019
    61. A. Seiferth, S. Ruhs, S. Mildenberger, et al. The phosphatase calcineurin PP2BAP mediates part of mineralocorticoid receptor transcriptional activity. The FASEB Journal 2012,26 (6):2327-2337
    62. H. Huang, J. C. Cheville, Y. Pan, et al. PTEN induces chemosensitivity in PTEN-mutated prostate cancer cells by suppression of Bcl-2 expression. J Biol Chem 2001,276 (42):38830-38836
    63. T. Gu, Z. Zhang, J. Wang, et al. CREB Is a Novel Nuclear Target of PTEN Phosphatase. Cancer Research 2011,71 (8):2821-2825
    64. R. J. Gum, L. L. Gaede, M. A. Heindel, et al. Antisense protein tyrosine phosphatase 1B reverses activation of p38 mitogen-activated protein kinase in liver of ob/ob mice. Mol Endocrinol 2003,17 (6): 1131-1143
    65. P. G. Mermelstein, K. Deisseroth, N. Dasgupta, et al. Calmodulin priming:nuclear translocation of a calmodulin complex and the memory of prior neuronal activity. Proc Natl Acad Sci USA 2001,98 (26):15342-15347
    66. G. Y. Wu, K. Deisseroth and R. W. Tsien. Activity-dependent CREB phosphorylation: convergence of a fast, sensitive calmodulin kinase pathway and a slow, less sensitive mitogen-activated protein kinase pathway. Proc Natl Acad Sci U S A 2001,98 (5):2808-2813
    67. X. D. Hu, Q. Huang, X. Yang, et al. Differential regulation of AMPA receptor trafficking by neurabin-targeted synaptic protein phosphatase-1 in synaptic transmission and long-term depression in hippocampus. JNeurosci 2007,27 (17):4674-4686
    68. L. Trinkle-Mulcahy, P. Ajuh, A. Prescott, et al. Nuclear organisation of NIPP1, a regulatory subunit of protein phosphatase 1 that associates with pre-mRNA splicing factors. J Cell Sci 1999,112 (Pt 2) 157-168
    69. G. Canettieri, I. Morantte, E. Guzman, et al. Attenuation of a phosphorylation-dependent activator by an HDAC-PP1 complex. Nat Struct Biol 2003,10 (3):175-181
    70. B. Lesage, M. Beullens, M. Nuytten, et al. Interactor-mediated nuclear translocation and retention of protein phosphatase-1. J Biol Chem 2004,279 (53):55978-55984
    71. Q. Lu, A. E. Hutchins, C. M. Doyle, et al. Acetylation of cAMP-responsive element-binding protein (CREB) by CREB-binding protein enhances CREB-dependent transcription. J Biol Client 2003, 278(18):15727-15734
    72. K. M. Comerford, M. O. Leonard, J. Karhausen, et al. Small ubiquitin-related modifier-1 modification mediates resolution of CREB-dependent responses to hypoxia. Proc Natl Acad Set U S A 2003,100 (3):986-991
    73. N. Lamarre-Vincent and L. C. Hsieh-Wilson. Dynamic glycosylation of the transcription factor CREB:a potential role in gene regulation. J Am Chem Soc 2003,125 (22):6612-6613
    74. J. E. Rexach, P. M. Clark, D. E. Mason, et al. Dynamic O-GlcNAc modification regulates CREB-mediated gene expression and memory formation. Nat Chem Biol 2012,8 (3):253-261
    75. J. de Rooij, F. J. Zwartkruis, M. H. Verheijen, et al. Epac is a Rapl guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 1998,396 (6710):474-477
    76. G. X. Shi, H. Rehmann and D. A. Andres. A novel cyclic AMP-dependent Epac-Rit signaling pathway contributes to PACAP38-mediated neuronal differentiation. Mol Cell Biol 2006,26 (23): 9136-9147
    77. J. Sawada, N. Simizu, F. Suzuki, et al. Synergistic transcriptional activation by hGABP and select members of the activation transcription factor/cAMP response element-binding protein family. J Bio/ Chem 1999,274 (50):35475-35482
    78. R. Chalterjee, J. Zhao, X. He, et al. Overlapping ETS and CRE Motifs (G/CCGGAAGTGACGTCA) Preferentially Bound by GABPa and CREB Proteins. G3: Genes|Genomes|Genelics 2012,2 (10):1243-1256
    79. M. R. Elliott, M. Tolnay, G. C. Tsokos, et al. Protein kinase A regulatory subunit type Ⅱ beta directly interacts with and suppresses CREB transcriptional activity in activated T cells. J Immunol 2003,171 (7):3636-3644
    80. C. F. Vogel, E. Sciullo, S. Park, et al. Dioxin increases C/EBPbeta transcription by activating cAMP/protcin kinase A. J Biol Chem 2004,279 (10):8886-8894
    81. S. Boulon, J. C. Dantonel, V. Binet, et al. Oct-1 potentiates CREB-drivcn cyclin D1 promoter activation via a phospho-CREB-and CREB binding protein-independent mechanism. Mol Cell Biol 2002,22 (22):7769-7779
    82. F. Bex and R. B. Gaynor. Regulation of gene expression by HTLV-I Tax protein. Methods 1998, 16 (I):83-94
    83..1. K. Nyborg, D. Egan and N. Sharma. The HTLV-1 Tax protein:revealing mechanisms of transcriptional activation through histone acetylation and nucleosome disassembly. Biochim Biophys Acta 2010,1799 (3-4):266-274
    84. P. R. Manna, D. W. Eubank, E. Lalli, et al. Transcriptional regulation of the mouse steroidogenic acute regulatory protein gene by the cAMP response-element binding protein and steroidogenic factor 1. J Mol Endocrinol 2003,30 (3):381-397
    85. H. A. Giebler, I. Lemasson and J. K. Nyborg. p53 recruitment of CREB binding protein mediated through phosphorylated CREB:a novel pathway of tumor suppressor regulation. Mol Cell Biol 2000, 20 (13):4849-4858
    86. M. C. Biicheuall-Roberts, F. W. Ruscelti, J. J. Kasper, et al. Nuclear localization of v-Abl leads to complex formation with cyclic AMP response element (CRE)-binding protein and transactivation through CRE motifs. Mol Cell Biol 1995,15 (11):6088-6099
    87. M. D. Conkrighl, G. Canettieri, R. Screaton. et al. TORCs:transducers of regulated CREB activity. Mol Cell 2003.12 (2):413-423
    88. R. A. Screaton, M. D. Conkright, Y. Katoh, et al. The CREB coactivator TORC2 functions as a calcium-and cAMP-sensitive coincidence detector. Cell 2004,119 (1):61-74
    89. Y. Wang, G. Li, J. Goode, et al. lnositol-1,4,5-trisphosphate receptor regulates hepatic gluconeogenesis in fasting and diabetes. Nature 2012,485 (7396):128-132
    90. M. Matsumoto. InsP3R-Ca2+ signaling takes center stage in the hormonal regulation of hepatic gluconeogenesis. Cell Res 2012,22 (11):1530-1532
    91. Q. Luo, K. Viste, J. C. Urday-Zaa, et al. Mechanism of CREB recognition and coactivation by the CREB-regulated transcriptional coactivator CRTC2. Proceedings of the National Academy of Sciences 2012,109 (51):20865-20870
    92. T. Abel, R. Bhatt and T. Maniatis. A Drosophila CREB/ATF transcriptional activator binds to both fat body-and liver-specific regulatory elements. Genes & Development 1992,6 (3):466-480
    93. S. M. Smolik, R. E. Rose and R. H. Goodman. A cyclic AMP-responsive element-binding transcriptional activator in Drosophila melanogaster, dCREB-A, is a member of the leucine zipper family. Molecular and Cellular Biology 1992,12 (9):4123-4131
    94. R. E. Rose, N. M. Gallaher, D. J. Andrew, et al. The CRE-binding protein dCREB-A is required for Drosophila embryonic development. Genetics 1997,146 (2):595-606
    95. T. Usui, S. M. Smolik and R. H. Goodman. Isolation of Drosophila CREB-B:a novel CRE-binding protein. DNA Cell Biol 1993,12 (7):589-595
    96. S. Eresh, J. Riese, D. B. Jackson, et al. A CREB-binding site as a target for decapentaplegic signalling during Drosophila endoderm induction. EMBO J 1997,16 (8):2014-2022
    97. T. Sakai and Y. Kidokoro. Overexpression of a CREB repressor isoform enhances the female sexual receptivity in Drosophila. Behav Genet 2002,32 (6):413-422
    98. S. Sanyal, D. J. Sandstrom, C. A. Hoeffer, et al. AP-1 functions upstream of CREB to control synaptic plasticity in Drosophila. Nature 2002,416 (6883):870-874
    99. C. Lim, J. Lee, C. Choi, et al. Functional role of CREB-binding protein in the circadian clock system of Drosophila melanogaster. Mol Cell Biol 2007,27 (13):4876-4890
    100. J. Horiuchi, W. Jiang, H. Zhou, et al. Phosphorylation of Conserved Casein Kinase Sites Regulates cAMP-response Element-binding Protein DNA Binding in Drosophila. Journal of Biological Chemistry 2004,279 (13):12117-12125
    101. D. Eisenhardt, A. Friedrich, N. Stollhoff, et al. The AmCREB gene is an ortholog of the mammalian CREB/CREM family of transcription factors and encodes several splice variants in the honeybee brain. Insect Mol Biol 2003,12 (4):373-382
    102. D. Eisenhardt, C. Kuhn and G. Leboulle. The PKA-CREB system encoded by the honeybee genome. Insect Mol Biol'2006,15 (5):551-561
    103. N. T. Dittmer, G. Sun, S. F. Wang, et al. CREB isoform represses yolk protein gene expression in the mosquito fat body. Mol Cell Endocrinol 2003,210 (1-2):39-49
    104. H. Song, Y. Sun, Y. Zhang, et al. Molecular cloning and characterization of Bombyx mori CREB gene. Archives of Insect Biochemistry and Physiology 2009,71 (1):31-44
    105. J. Y. Zhang, M. H. Pan, Z. Y. Sun, et al. The genomic underpinnings of apoptosis in the silkworm, Bombyx mori. BMC Genomics 2010,11611
    106. V. V. Gurevich, S. M. Hanson, X. Song, et al. The functional cycle of visual arrestins in photoreceptor cells. Prog Retin Eye Res 2011,30(6):405-430
    107. E. Reiter, S. Ahn, A. K. Shukla, et al. Molecular mechanism of beta-arrestin-biased agonism at seven-transmembrane receptors. Annu Rev Pharmacol Toxicol 2012,52 179-197
    108. S. M. DeWire, S. Ahn, R. J. Lefkowitz, et al. β-Arrestins and Cell Signaling. Annual Review of Physiology 2007,69 (1):483-510
    109. I. A. Ibrahim and H. Kurose. beta-Arrestin-Mediated Signaling Improves the Efficacy of Therapeutics. J Pharmacol Sci 2012,
    110. K. A. DeFea. Beta-arrestins as regulators of signal termination and transduction:How do they determine what to scaffold? Cellular Signalling 2011,23 (4):621-629
    111. G. Roman, J. He and R. L. Davis, kurtz, a novel nonvisual arrestin, is an essential neural gene in Drosophila. Genetics 2000,155(3):1281-1295
    112. A. B. Sparks, J. E. Rider, N. G. Hoffman, et al. Distinct ligand preferences of Src homology 3 domains from Src, Yes, Abl, Cortactin, p53bp2, PLCgamma, Crk, and Grb2. Proceedings of the National Academy of Sciences 1996,93 (4):1540-1544
    113. L. M. Luttrell, S. S. Ferguson, Y. Daaka, et al. Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes. Science 1999,283 (5402):655-661
    114. O. B. Goodman, Jr., J. G. Krupnick, F. Santini, et al. Beta-arrestin acts as a clathrin adaptor in endocytosis of the beta2-adrenergic receptor. Nature 1996,383 (6599):447-450
    115. I. Gaidarov, J. G. Krupnick, J. R. Falck, et al. Arrestin function in G protein-coupled receptor endocytosis requires phosphoinositide binding. EMBO J 1999,18 (4):871-881
    116. E. C. Johnson, F. W. Tift, A. McCauley, et al. Functional characterization of kurtz, a Drosophila non-visual arrestin, reveals conservation of GPCR desensitization mechanisms. Insect Biochemistry and Molecular Biology 2008,38 (11):1016-1022
    117. M. Tipping, Y. Kim, P. Kyriakakis, et al. beta-arrestin Kurtz inhibits MAPK and Toll signalling in Drosophila development. EMBO.J 2010,29 (19):3222-3235
    118. A. Mukheijee, A. Veraksa, A. Bauer, et al. Regulation of Notch signalling by non-visual beta-arrestin. Nat Cell Biol 2005,7(12):1191-1201
    119. C. Molnar, A. Ruiz-Gomez, M. Martin, et al. Role of the Drosophila non-visual ss-arrestin kurtz in hedgehog signalling. PLoS Genet 2011,7 (3):e1001335
    120. L. Liu, R. L. Davis and G. Roman. Exploratory activity in Drosophila requires the kurtz nonvisual arrestin. Genetics 2007,175(3):1197-1212
    121. Q. Xia, Z. Zhou, C. Lu, el al. A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science 2004,306 (5703):1937-1940
    122.查笑君,程立生and黄俊生.昆虫神经肽的研究进展及其应用展望.华南热带农业大学学报2002,8(2):17-21
    123.欧阳迎春,唐爽and关雪辰.昆虫神经肽类激素的研究及应用前景.植物保护 2003,29(1):9-11
    124. D. R. Nassel and A. M. Winther. Drosophila neuropeptides in regulation of physiology and behavior. Prog Neumbiol 2010,92 (I):42-104
    125.甘玲,梁九波,刘喜龙,et al.家蚕神经肤基因的筛查及成熟肽的预测.昆虫学报 2010,53(1):9-19
    126. F. Hauser, M. Williamson, G. Cazzamali, et al. Identifying neuropeptide and protein hormone receptors in Drosophila melanogaster by exploiting genomic data. Brief Funct Genomic Proteomic 2006,4 (4):321-330
    127. H. E. Hamm. The many faces of G protein signaling.J Biol Chem 1998,273 (2):669-672
    128.徐卫华.昆虫神经肽研究进展.生物化学与生物物理进展 1997,24(2):116-120
    129. N. Yamanaka, S. Yamamoto, D. Zitnan, et al. Neuropeptide receptor transcriptome reveals unidentified neuroendocrine pathways. PLoS One 2008,3 (8):e3048
    130. Y. Chen, B. Yao, Z. Zhu, et al. A constitutive super-enhancer:homologous region 3 of Bombyx tnori nucieopolyhedrovirus. Biochemical and Biophysical Research Communications 2004,318 (4): 1039-1044
    131. E. H. Schneider and R. Seifert. Sf9 cells:A versatile model system to investigate the pharmacological properties of G protein-coupled receptors. Pharmacology & Therapeutics 2010,128 (3):387-418
    132. Z. Cheng, D. Garvin, A. Paguio, et al. Luciferase Reporter Assay System for Deciphering GPCR Pathways. Curr Chem Genomics 2010,484-91
    133. V. Dolby, A. Lundqvist, T. Froberg, et al. Effects of pH, salt and time on ligand binding properties of overexpressed melanocortin 4 receptor. Journal of Biochemical and Biophysical Methods 2004,58 (3):195-205
    134. R. Seifert and K. Wenzel-Seifert. Constitutive activity of G-protein-coupled receptors:cause of disease and common property of wild-type receptors. Naunyn Schmiedebergs Arch Pharmacol 2002, 366 (5):381-416
    135. H. Suzuki, S. Sato, T. Tsuchiya, et al. Identification and characterization of adipokinetic hormone (Locusta migratoria)-like immunoreactivity in the human cerebrospinal fluid. Biochem Biophys Res Commun 1989,163 (1):534-540
    136. J. Michitsch and J. E. Steele. Carbohydrate and lipid metabolism in cockroach (Periplaneta americana) fat body are both activated by low and similar concentrations of Peram-AKHH. Peptides 2008,29 (2):226-234
    137. M. Lindemans, F. Liu, T. Janssen, et al. Adipokinetic hormone signaling through the gonadotropin-releasing hormone receptor modulates egg-laying in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2009,106(5):1642-1647
    138. F. Staubli, T. J. Jorgensen, G. Cazzamali, et al. Molecular identification of the insect adipokinetic hormone receptors. Proc Natl Acad Sci USA 2002,99 (6):3446-3451
    139. C. Zhu, H. Huang, R. Hua, et al. Molecular and functional characterization of adipokinetic hormone receptor and its peptide ligands in Bombyx mori. FEBSLett 2009,583 (9):1463-1468
    140. M. R. Montminy and L. M. Bilezikjian. Binding of a nuclear protein to the cyclic-AMP response element of the somatostatin gene. Nature 1987,328 (6126):175-178
    141. Y. Li, G. Wang, J. Tian, et al. Transcriptome analysis of the silkworm (Bombyx mori) by high-throughput RNA sequencing. PLoS One 2012,7 (8):e43713
    142. H. Huang, X. Deng, X. He, et al. Identification of distinct c-terminal domains of the Bombyx adipokinetic hormone receptor that are essential for receptor export, phosphorylation and internalization. Cell Signal 2011,23 (9):1455-1465
    143. H. Huang, X. He, X. Deng, et al. Bombyx adipokinetic hormone receptor activates extracellular signal-regulated kinase 1 and 2 via G protein-dependent PKA and PKC but beta-arrestin-independent pathways. Biochemistiy 2010,49 (51):10862-10872
    144. G. Li, Y. Shi, H. Huang, et al. Internalization of the human nicotinic acid receptor GPR109A is regulated by G(i), GRK2, and arrestin3. J Biol Chem 2010,285 (29):22605-22618
    145. J. P. Kukkonen, J. Nasman, P. Ojala, et al. Functional properties of muscarinic receptor subtypes Hml, Hm3 and Hm5 expressed in Sf9 cells using the baculovirus expression system. Journal of Pharmacology and Experimental Therapeutics 1996,279 (2):593-601
    146. N. Muthusamy and J. M. Leiden. A protein kinase C-, Ras-, and RSK2-dependent signal transduction pathway activates the cAMP-responsive element-binding protein transcription factor following T cell receptor engagement.J Biol Chem 1998,273 (35):22841-22847
    147. E. D. Roberson, J. D. English, J. P. Adams, et al. The mitogen-activated protein kinase cascade couples PKA and PKC to cAMP response element binding protein phosphorylation in area CA1 of hippocampus. JNeurosci 1999,19(11):4337-4348
    148. G. R. Crabtree. Generic Signals and Specific Outcomes:Signaling through Ca2+, Calcineurin, and NF-AT. Cell 1999,96 (5):611-614
    149. J. F. Habener, C. P. Miller and M. Vallejo. cAMP-dependent regulation of gene transcription by cAMP response element-binding protein and cAMP response element modulator. Vitam Horm 1995,51 1-57
    150. S. Impey, K. Obrietan, S. T. Wong, et al. Cross Talk between ERK and PKA Is Required for Ca2+ Stimulation of CREB-Dependent Transcription and ERK Nuclear Translocation. Neuron 1998,21 (4): 869-883
    151. E. L. Arrese, M. T. Flowers, J. L. Gazard, et al. Calcium and cAMP are second messengers in the adipokinetic hormone-induced lipolysis of triacylglycerols in Manduca sexta fat body. J Lipid Res 1999, 40 (3):556-564
    152. H. Xie and T. L. Rothstein. Protein kinase C mediates activation of nuclear cAMP response element-binding protein (CREB) in B lymphocytes stimulated through surface Ig. J Immunol 1995,154 (4):1717-1723
    153. M. D. Chao, I. S. Chen and J. T. Cheng. Inhibition of protein kinase C translocation from cytosol to membrane by chelerythrine. Planta Med 1998,64 (7):662-663
    154. V. Sgambato, C. Pages, M. Rogard, et al. Extracellular signal-regulated kinase (ERK) controls immediate early gene induction on corticostriatal stimulation. J Neurosci 1998,18 (21):8814-8825
    155. R. Couijaret, F. Grolleau and B. Lapied. Two distinct calcium-sensitive and-insensitive PKC up-and down-regulale an alpha-bungarotoxin-resistant nAChRl in insect neurosecretory cells (DUM neurons). Eur.J Neurosci 2003,17(10):2023-2034
    156. A. Fonagy, N. Yokoyama, R. Ozawa, et al. Involvement of calcineurin in the signal transduction of PBAN in the silkworm, Bombyx mori (Lepidoptera). Comp Biochem Physiol B Biochem Mol Biol 1999,124(1):51-60
    157. L. Ma and G. Pei. Beta-anestin signaling and regulation of transcription.J Cell Sci 2007,120 (Pt 2):213-218
    158. X. Song, S. Coffa, H. Fu, et al. How Does Arrestin Assemble MAPKs into a Signaling Complex? Journal of Biological Chemistry 2009,284 (1):685-695
    159. M. Vrecl, R. Jorgensen, A. Pogacnik, et al. Development of a BRET2 Screening Assay Using β-Arrestin 2 Mutants. Journal of Biomolecular Screening 2004,9 (4):322-333
    160. S. K. Shenoy, M. T. Drake, C. D. Nelson, et al. β-Arrestin-dependent, G Protein-independent ERK1/2 Activation by the β2 Adrenergic Receptor. Journal of Biological Chemistry 2006,281 (2): 1261-1273

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700