用户名: 密码: 验证码:
FRP约束混凝土柱的受压性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
FRP约束混凝土柱的受压性能作为基本的力学性能,是FRP加固混凝土柱技术应用的关键基础问题。本文对FRP约束混凝土柱受压性能的三个热点问题:FRP约束混凝土柱的轴压性能、FRP约束钢筋混凝土柱的偏压性能和FRP-混凝土-钢混合双管柱的轴压性能进行了较为深入的研究。本文的主要研究工作和成果如下:
     (1)通过理论分析和回归分析,提出了轴压下FRP约束圆形和矩形截面混凝土应力-应变关系的统一计算模型。统一模型计算曲线与试验曲线吻合较好。建议先判别试件的强弱约束,再选取相应的混凝土本构关系模型,对FRP采用分层壳体模拟,建立了用于模拟FRP约束混凝土柱轴压过程的数值计算模型。数值模型计算结果与试验结果吻合良好。
     (2)对已有的FRP约束混凝土柱强度和极限应变模型进行了收集和评估。评估结果表明,已有模型对强度的预测要好于对极限应变的预测。已有模型中,Campione模型对圆形截面强约束试件和矩形截面弱约束试件强度的预测较准确;De Lorenzis模型对圆形截面试件极限应变的预测较准确。在保持Campione强度模型和De Lorenzis极限应变模型准确性的基础上,考虑截面有效约束影响,提出了预测更为准确且计算简便的强度和极限应变模型。
     (3)针对FRP约束钢筋混凝土柱的特点,对通常的钢筋整体式法进行了改进,建立了用于模拟FRP约束钢筋混凝土柱偏压过程的数值计算模型。数值模型计算结果与试验结果吻合较好。基于数值计算模型的数值试验的结果表明,柱中部受压区混凝土的最大应力和最大应变都与混凝土的强度和FRP的约束作用有关,此外最大应变还与试件的偏心率和长细比成反比。在数值模拟研究的基础上,提出了承载力的计算模型,包括分析模型和设计模型。分析模型和设计模型计算结果与数值计算结果以及试验结果均吻合良好。在设计模型的基础上,提出了承载力-弯矩关系简化计算模型。
     (4)在平面应变条件下,建立了轴压下FRP与钢双管约束混凝土应力-应变关系的理论分析模型。理论模型计算曲线与试验曲线吻合较好。针对FRP管不同的制作方式建议选取不同的单元模拟FRP管,提出了用于模拟FRP-混凝土-钢混合双管柱轴压过程的数值计算模型。数值模型计算结果与试验结果吻合良好。对数值计算结果的分析表明,FRP-混凝土-钢混合双管短柱存在三种破坏类型。最后对不同加载方式下FRP-混凝土-钢混合双管柱的轴压性能进行了理论分析。
Fiber reinforced polymer/plastic (FRP) composite materials have been widely used for structural rehabilitation and strengthening, especially in the aspect of upgrading concrete columns. As a basic mechanical performance, compressive behavior of FRP-confined concrete columns is of crucial importance. In this thesis, the compressive behavior of three major concrete columns confined with FRP is investigated in detail, which includes behavior of FRP-confined concrete columns under axial compression, behavior of FRP-confined reinforced concrete (RC) columns under eccentric compression and behavior of FRP-concrete-steel hybrid double-skin tubular columns under axial compression.
     The major contributions of the work presented in this thesis are listed as follows:
     (1) A unified model for stress-strain relationship of circular and rectangular concrete confined with FRP under axial compression is proposed based on theoretical analysis and regression analysis. The theoretical curves are in good agreement with the experimental curves. A finite element model (FEM) for simulating the behavior of FRP-confined concrete columns under axial compression is proposed based on selecting different concrete constitutive model according to different confinement level and using layered shell to simulate FRP. The numerical results are in good agreement with the experimental results.
     (2) Extensive collection and evaluation of existing strength and ultimate strain models for concrete columns confined with FRP are presented. The results show that the prediction for strength is more accurate than the prediction for ultimate strain. Among these existing models, the prediction of Campione’s strength model for circular specimens with strain-hardening and rectangular specimens with strain-softening are more accurate, and the prediction of De Lorenzis’s ultimate strain model for circular specimens are more accurate. Based on maintaining the accuracy of Campione’s strength model and De Lorenzis’s ultimate strain model and considering the effectiveness of confinement caused by cross-section, improved models for predicting strength and ultimate strain are proposed. The comparison with experimental results and existing models shows that the proposed models are more accurate, simpler and more convenient.
     (3) A FEM is proposed to simulate the behavior of eccentrically loaded FRP-confined RC columns based on the modified integrated model for steel reinforcement. The numerical results are in good agreement with experimental results. The results of numerical test based on the proposed numerical model show that the maximum stress and strain of concrete in compressive side of mid-section are related to concrete strength and confinement caused by FRP, and additionally, the maximum strain is inversely proportional to eccentricity-to-section height ratios and length-to-section height ratios. Based on numerical simulation study, an analytical model and a design model are proposed to predict the axial force. Comparisons between predicted and numerical results, predicted and experimental results demonstrate the accuracy and validity of the proposed analytical and design models. A simplified model for axial force-bending moment relationship is proposed based on the design model.
     (4) In plane strain conditions, a theoretical model for stress-strain relationship of concrete confined with FRP and steel double-skin tubes under axial compression is proposed. The theoretical curves are in good agreement with the experimental curves. A FEM for simulating the behavior of FRP-concrete-steel hybrid double-skin tubular columns under axial compression is proposed based on selecting different element type to simulate FRP tube with different production process. The numerical results are in good agreement with the experimental results. The numerical results show that there are three damage types with FRP-concrete-steel double-skin tubular short columns. Finally, the mechanical analysis for FRP-concrete-steel double-skin tubular columns under different loading methods is presented.
引文
[1] Tastani S P, Pantazopoulou S J. Experimental evaluation of FRP jackets in upgrading RC corroded columns with substandard detailing [J]. Engineering Structures, 2004, 26(6): 817-829.
    [2] Saenz N, Pantelides C P. Short and medium term durability evaluation of FRP-confinedcircular concrete [J]. Journal of Composites for Construction, ASCE, 2006, 10(3): 244-253.
    [3] Green M F, Bisby L A, Fam A Z, et al. FRP confined concrete columns: behavior underextreme conditions [J]. Cement and Concrete Composites, 2006, 28(10): 928-937.
    [4] Belarbi A, Bae S. An experimental study on the effect of environmental exposures andcorrosion on RC columns with FRP composite jackets [J]. Composites: Part B, 2007, 38(5/6):674-684.
    [5] Tao Z, Han L H. Behavior of fire-exposed concrete-filled steel tubular beam columns repairedwith CFRP wraps [J]. Thin-walled Structures, 2007, 45(1): 63-76.
    [6] Tao Z, Han L H, Wang L L. Compressive and flexural behavior of CFRP-repairedconcrete-filled steel tubes after exposure to fire [J]. Journal of Constructional Steel Research,2007,63(8): 1116-1126.
    [7] El Maaddawy T. Behavior of corrosion-damaged RC columns wrapped with FRP undercombined flexural and axial loading [J]. Cement and Concrete Composites, 2008, 30(6):524-534.
    [8] Tao Z, Han L H, Zhuang J P. Cyclic performance of fire-damaged concrete-filled steel tubularbeam-columns repaired with CFRP wraps [J]. Journal of Constructional Steel Research, 2008,64(1): 37-50.
    [9] Ji G F, Li G Q, Li X G, et al. Experimental study of FRP tube encased concrete cylindersexposed to fire [J]. Composite Structures, 2008, 85(2): 149-154.
    [10] Xiao Y, Ma R. Seismic retrofit of RC circular columns using prefabricated compositejacketing [J]. Journal of Structural Engineering, ASCE, 1997, 123(10): 1357-1364.
    [11] Mortazavi A A, Pilakoutas K, Son K S. RC column strengthening by lateral pre-tensioning of FRP [J]. Construction and Building Materials, 2003, 17(6/7): 491-497.
    [12] Xiao Y, Wu H. Retrofit of reinforced concrete columns using partially stiffened steel jackets[J]. Journal of Structural Engineering, ASCE, 2003, 129(6): 725-732.
    [13] Al-Salloum Y A. Influence of edge sharpness on the strength of square concrete columnsconfined with FRP composite laminates [J]. Composites: Part B, 2007, 38(5/6): 640-650.
    [14] Wu Y F, Liu T, Wang L. Experimental investigation on seismic retrofitting of square RCcolumns by carbon FRP sheet confinement combined with transverse short glass FRP bars inbored holes [J]. Journal of Composites for Construction, ASCE, 2008, 12(1): 53-60.
    [15] Yan Z, Pantelides C P, Reaveley L D. Post-tensioned FRP composite shells for concreteconfinement [J]. Journal of Composites for Construction, ASCE, 2007, 11(1): 81-90.
    [16] Mirmiran A. Concrete composite construction for durability and strength [C]//Proceedings ofthe Symposium on Extending Lifespan of Structures. San Francisco, 1995: 1155-1160.
    [17] Harries K A, Kharel G. Experimental investigation of the behavior of variably confinedconcrete [J]. Cement and Concrete Research, 2003, 33(6): 873-880.
    [18] Lam L, Teng J G. Ultimate condition of fiber reinforced polymer-confined concrete [J].Journal of Composites for Construction, ASCE, 2004, 8(6): 539-548.
    [19] Au C., Buyukozturk O. Effect of fiber orientation and ply mix on fiber reinforcedpolymer-confined concrete [J]. Journal of Composites for Construction, ASCE, 2005, 9(5):397-407.
    [20] Berthet J F, Ferrier E, Hamelin P. Compressive behavior of concrete externally confined bycomposite jackets. Part A: experimental study [J]. Construction and Building Materials, 2005,19(3): 223-232.
    [21] Chaallal O, Hassan M, Leblanc M. Circular columns confined with FRP: experimental versuspredictions of models and guidelines [J]. Journal of Composites for Construction, ASCE,2006, 10(1): 4-12.
    [22] Silva MAG. Rodrigues C C. Size and relative stiffness effects on compressive failure ofconcrete columns wrapped with glass FRP [J]. Journal of Materials in Civil Engineering,ASCE, 2006, 18(3): 334-342.
    [23] Lam L, Teng J G, Cheng C H, et al. FRP-confined concrete under axial cyclic compression [J].Cement and Concrete composites, 2006, 28(10): 949-958.
    [24] Shao Y, Zhu Z, Mirmiran A. Cyclic modeling of FRP-confined concrete with improvedductility [J]. Cement and Concrete Composite, 2006, 28(10): 959-968.
    [25] Li G Q, Maricherla D, Singh K, et al. Effect of fiber orientation on the structural behavior ofFRP wrapped concrete cylinders [J]. Composites Structures, 2006, 74(4): 475-483.
    [26] Eid R, Roy N, Paultre P. Normal- and High-strength concrete circular elements wrapped withFRP composites [J]. Journal of Composites for Construction, ASCE, 2009, 13(2): 113-124.
    [27] Issa C A, Chami P, Saad G Compressive strength of concrete cylinders with variable widthsCFRP wraps: experimental study and numerical modeling [J]. Construction and BuildingMaterials, 2009, 23(6): 2306-2318.
    [28] Rochette P, Labossiere P. Axial testing of rectangular column models confined withcomposites [J]. Journal of Composites for Construction, ASCE, 2000, 4(3): 129-136.
    [29] Harries K A, Carey S A. Shape and "gap" effect on the behavior of variably confined concrete[J]. Cement and Concrete Research, 2003, 33(6): 881-890.
    [30] Mukherjee A, Boothby T E, Bakis C E, et al. Mechanical behavior of fiber-reinforcedpolymer-wrapped concrete columns—complicating effects [J]. Journal of Composites forConstruction, ASCE, 2004, 8(2): 97-103.
    [31] Tastani S P, Pantazopoulou S J, Zdoumba D, et al. Limitations of FRP jacketing in confiningold-type reinforced concrete members in axial compression [J]. Journal of Composites forConstruction, ASCE, 2006, 10(1): 13-25.
    [32] Campione G. Influence of FRP wrapping techniques on the compressive behavior of concreteprisms [J]. Cement and Concrete Composites, 2006, 28(5): 497-505.
    [33] Rousakis T C, Karabinis A I, Kiousis P D. FRP-confined concrete members: axialcompression experiments and plasticity modeling [J]. Engineering Structures, 2007, 29(7):1343-1353.
    [34] Kumutha R, Vaidyanathan R, Palanichamy M S. Behavior of reinforced concrete rectangularcolumns strengthened using GFRP [J]. Cement and Concrete Composite, 2007, 29(8):609-615.
    [35] Ilki A, Peker O, Karamuk E, et al. FRP retrofit of low and medium strength circular andrectangular reinforced concrete columns [J]. Journal of Materials in Civil Engineering, ASCE,2008,20(2): 169-188.
    [36] Wang L M, Wu Y F. Effect of corner radius on the performance of CFRP-confined squareconcrete columns: Test [J]. Engineering Structures, 2008, 30(2): 493-505.
    [37] Turgay T, Polat Z, Koksal H O, et al. Compressive behavior of large-scale square reinforcedconcrete columns confined with carbon fiber reinforced polymer jackets [J]. Materials andDesign, 2010, 31(1): 357-364.
    [38] Teng J G, Lam L. Compressive behavior of carbon fiber reinforced ploymer-confined concretein elliptical columns [J]. Journal of Structural Engineering, ASCE, 2002, 128(12): 1535-1543. [39] Karantzikis M, Papanicolaou C G, Antonopoulos C P, et al. Experimental investigation ofnonconventional confinement for concrete using FRP [J]. Journal of Composites forConstruction, ASCE, 2005, 9(6): 480-487.
    [40] Prota A, Manfredi G, Cosenza E. Ultimate behavior of axially loaded RC wall-like columnsconfined with GFRP [J]. Composites: Part B, 2006, 37(7/8): 670-678.
    [41] Matthys S, Toutanji H, Taerwe L. Stress-strain behavior of large-scale circular columnsconfined with FRP composites [J]. Journal of Structural Engineering, ASCE, 2006, 132(1):123-133.
    [42] Pan J L, Xu T, Hu Z J. Experimental investigation of load carrying capacity of the slender
    reinforced concrete columns wrapped with FRP [J]. Construction and Building Materials,2007,21(11): 1991-1996.
    [43] Zhu Z, Ahmad I, Mirmiran A. Effect of column parameters on axial compression behavior ofconcrete-filled FRP tubes [J]. Advanced Structural Engineering, 2005, 8(4): 443-449.
    [44] Mandal S, Hoskin A, Fam A. Influence of concrete strength on confinement effectiveness offiber-reinforced polymer circular jackets [J]. ACI Structural Journal, 2005, 102(3): 383-392.
    [45] Li G Q. Experimental study of FRP confined concrete cylinders [J]. Engineering Structures,2006,28(7): 1001-1008.
    [46] Hong W K, Kim H C. Behavior of concrete columns confined by carbon composite tubes [J].Canadian Journal of Civil Engineering, 2004, 31(2): 178-188.
    [47] Fam A, Schnerch D, Rizkalla S. Rectangular filament-wound glass fiber reinforced polymertubes filled with concrete under flexural and axial loading: experimental investigation [J].Journal of Composites for Construction, ASCE, 2005, 9(1): 25-33.
    [48] El Chabib H, Nehdi M, El Naggar M H. Behavior of SCC confined in short GFRP tubes [J].Cement and Concrete Composites, 2005, 27(1): 55-64.
    [49] Ozbakkaloglu T, Oehlers D J. Concrete-filled square and rectangular FRP tubes under axialcompression [J]. Journal of Composites for Construction, ASCE, 2008, 12(4): 469-477.
    [50] Wong Y L, Yu T, Teng J G, et al. Behavior of FRP-confined concrete in annular sectioncolumns [J]. Composites: Part B, 2008, 39(3): 451-466.
    [51] Saadatmanesh H, Ehsani M R, Li M W. Strength and ductility of concrete columns externallyreinforced with fiber composite straps [J]. ACI Structural Journal, 1994, 91(4): 434-447.
    [52] Seible F, Burgueno R, Abdallah M G, et al. Advanced composite carbon shell system forbridge columns under seismic loads [C]//Proceedings of the National Seismic Conference onBridges and Highways. San Diego, 1995: 10-13.
    [53] Mander J B, Priestley M J N, Park R. Theoretical stress-strain model for confined concrete [J].Journal of Structural Engineering, ASCE, 1988, 114(8): 1804-1826.
    [54] Mirmiran A, Shahawy M, Samaan M, et al. Effect of column parameters on FRP-confinedconcrete [J]. Journal of Composites for Construction, ASCE, 1998, 2(4): 175-185.
    [55] Samaan M, Mirmiran A, Shahawy M. Model of concrete confined by fiber composites [J].Journal of Structural Engineering, ASCE, 1998, 124(9): 1025-1031.
    [56] Spoelstra M R, Monti G FRP-confined concrete model [J]. Journal of Composites forConstruction, ASCE, 1999,3(3): 143-150.
    [57] Toutanji H A. Stress-strain characteristics of concrete column externally confined withadvanced fiber composite sheets [J]. ACI Materials Journal, 1999, 96(3): 397-404.
    [58] Xiao Y, Wu H. Compressive behavior of concrete confined by carbon fiber composite jackets[J]. Journal of Materials in Civil Engineering, ASCE, 2000, 12(2): 139-146.
    [59] Shehata L A E M, Carneiro LAV, Shehata LCD. Strength of short concrete columnsconfined with CFRP sheets [J]. Materials and Structures, 2002, 35(1): 50-58.
    [60] De Lorenzis L, Tepfers R. Comparative study of models on confinement of concret cylinderswith fiber-reinforced polymer composites [J]. Journal of Composites for Construction, ASCE,2003, 7(3): 219-237.
    [61] Lam L, Teng J G. Design-oriented stress-strain model for FRP-confined concrete [J].Construction and Building Materials, 2003, 17(6/7): 471-489.
    [62] Lam L, Teng J G. Design-oriented stress-strain model for FRP-confined concrete inrectangular columns [J]. Journal of Reinforced Plastics and Composites, 2003, 22(13):1149-1186.
    [63] Campione G, Miraglia N. Strength and strain capacities of concrete compression membersreinforced with FRP [J]. Cement and Concrete Composites, 2003, 25(1): 31-41.
    [64] Ilki A, Kumbasar N, Koc V. Low strength concrete members externally confined with FRPsheets [J]. Structural Engineering and Mechanics, 2004, 18(2):167-194.
    [65] Teng J G, Lam L. Behavior and modeling of fiber reinforced polymer- confined concrete [J].Journal of Structural Engineering, ASCE, 2004, 130(11): 1713-1723.
    [66]敬登虎,曹双寅.方形截面混凝土柱FRP约束下的轴向应力-应变曲线计算模型[J].土木工程学报, 2005, 38(12): 32-37.
    [67] Wu G, Lii Z T, Wu Z S. Strength and ductility of concrete cylinders confined with FRPcomposites [J]. Construction and Building Materials, 2006, 20(3): 134-148.
    [68] Berthet J F, Ferrier E, Hamelin P. Compressive behavior of concrete externally confined bycomposite jackets. Part B: modeling [J]. Construction and Building Materials, 2006, 20(5):338-347.
    [69] Harajli M H. Axial stress-strain relationship for FRP confined circular and rectangularconcrete columns [J]. Cement and Concrete Composites, 2006, 28(10): 938-948.
    [70]刘明学,钱稼茹. FRP约束圆柱混凝土受压应力-应变关系模型[J].土木工程学报, 2006,39(11): 1-6.
    [71]吴刚,吴智深,吕志涛. FRP约束混凝土圆柱有软化段时的应力-应变关系研究[J].土木工程学报, 2006, 39(11): 7-14.
    [72] Wu G, Wu Z S, Lu Z T. Design-oriented stress-strain model for concrete prisms confined withFRP composites [J]. Construction and Building Materials, 2007, 21(5): 1107-1121.
    [73] Sheikh S A, Li Y. Design of FRP confinement for square concrete columns [J]. EngineeringStructures, 2007, 29(6): 1074-1083.
    [74] Youssef M N, Feng M Q, Mosallam A S. Stress-strain model for concrete confined by FRPcomposites [J]. Composites: Part B, 2007, 38(5/6): 614-628.
    [75] Pantelides C P, Yan Z. Confinement model of concrete with externally bonded FRP jackets orpost-tensioned FRP shells [J]. Journal of Structural Engineering, ASCE, 2007, 133(9):1288-1296.
    [76] Rocca S, Galati N, Nanni A. Review of design guidelines for FRP confinement of reinforcedconcrete columns of noncircular cross sections [J]. Journal of Composites for Construction,ASCE, 2008, 12(1): 80-92.
    [77] Vintzileou E, Panagiotidou E. An empirical model for predicting the mechanical properties ofFRP-confined concrete [J]. Construction and Building Materials, 2008, 22(5): 841-854.
    [78]魏洋,吴刚,吴智深,等. FRP约束混凝土矩形柱有软化段时的应力-应变关系研究[J].土木工程学报, 2008, 41(3): 21-28.
    [79] Wang Y C, Hsu K. Design of FRP-wrapped reinforced concrete columns for enhancing axialload carrying capacity [J]. Composites Structures, 2008, 82(1): 132-139.
    [80] Teng J G, Jiang T, Lam L, et al. Refinement of a design-oriented stress-strain model forFRP-confined concrete [J]. Journal of Composites for Construction, ASCE, 2009, 13(4):269-278.
    [81] Wu Y F, Wang L M. Unified strength model for square and circular concrete columnsconfined by external jacket [J]. Journal of Structural Engineering, ASCE, 2009, 135(3):253-261.
    [82] Fujikake K, Mindess S, Xu H. Analytical model for concrete confined with fiber reinforcedpolymer composite [J]. Journal of Composites for Construction, ASCE, 2004, 8(4): 341-351.
    [83]陶忠,高献,于清,等. FRP约束混凝土的应力-应变关系[J].工程力学, 2005, 22(4):187-195.
    [84] Binici B. An analytical model for stress-strain behavior of confined concrete [J]. EngineeringStructures, 2005, 27(7): 1040-1051.
    [85] Luccioni B M, Rougier V C. A plastic damage approach for confined concrete [J]. Computersand Structures, 2005, 83(27): 2238-2256.
    [86] Braga F, Gigliotti R, Laterza M. Analytical stress-strain relationship for concrete confined bysteel stirrups and/or FRP jackets [J]. Journal of Structural Engineering, ASCE, 2006, 132(9):1402-1416.
    [87] Teng J G, Huang Y L, Lam L, et al. Theoretical model for fiber-reinforced polymer-confinedconcrete [J]. Journal of Composites for Construction, ASCE, 2007, 11(2): 201-210. [88] Jiang T, Teng J G Analysis-oriented stress-strain models for FRP-confined concrete [J].Engineering Structures, 2007, 29(11): 2968-2986.
    [89] Binici B, Mosalam K M. Analysis of reinforced concrete columns retrofitted with fiberreinforced polymer lamina [J]. Composites: Part B, 2007, 38(2): 265-276.
    [90] Saenz N, Pantelides C P. Strain-based confinement model for FRP-confined concrete [J].Journal of Structural Engineering, ASCE, 2007, 133(6): 825-833.
    [91] Eid R, Paultre P. Analytical model for FRP-confined circular reinforced concrete columns [J].Journal of Composites for Construction, ASCE, 2008, 12(5): 541-552.
    [92] Rousakis T C, Karabinis A I, Kiousis P D, et al. Analytical modeling of plastic behavior ofuniformly FRP confined concrete members [J]. Composites: Part B, 2008, 39(7/8):1104-1113.
    [93] Lee C S, Hegemier G A. Model of FRP-confined concrete cylinders in axial compression [J].Journal of Composites for Construction, ASCE, 2009, 13(5): 442-454.
    [94] Turgay T, Koksal H O, Polat Z, et al. Stress-strain model for concrete confined with CFRPjackets [J]. Materials and Design, 2009, 30(8): 3243-3251.
    [95] Becque J, Patnaik A K, Rizkalla S H. Analytical model for concrete confined with FRP tubes[J]. Journal of Composites for Construction, ASCE, 2003, 7(1): 31-38.
    [96]鲁国昌,叶列平,杨才千,等. FRP管约束混凝土的轴压应力-应变关系研究[J].工程力学, 2006, 23(9): 98-103.
    [97] Albanesi T, Nuti C, Vanzi I. Closed form constitutive relationship for concrete filled FRPtubes under compression [J]. Construction and Building Materials, 2007, 21(2): 409-427.
    [98] Nanni A, Norris M S. FRP jacketed concrete under flexure and combined flexure-compression[J]. Construction and Building Materials, 1995, 9(5): 273-281.
    [99] Mirmiran A, Shahawy M, Samaan M. Strength and ductility of hybrid FRP-concretebeam-columns [J]. Journal of Structural Engineering, ASCE, 1999, 125(10): 1085-1093.
    [100] Chaallal O, Shahawy M. Performance of fiber-reinforced polymer-wrapped reinforcedconcrete column under combined axial-flexural loading [J]. ACI Structural Journal, 2000,97(4): 659-668.
    [101] Parvin A, Wang W. Behavior of FRP jacketed concrete columns under eccentric loading [J].Journal of Composites for Construction, ASCE, 2001, 5(3): 146-152.
    [102] Li J, Hadi M N S. Behavior of externally confined high-strength concrete columns undereccentric loading [J]. Composite Structures, 2003, 62(2): 145-153.
    [103]周长东,黄承逵.玻璃纤维聚合物加固砼偏心受压柱力学性能研究[J].工程力学, 2004, 21(5): 87-93.
    [104]陶忠,于清,韩林海,等. FRP约束钢筋混凝土圆柱力学性能的试验研究[J].建筑结构学报, 2004, 25(6): 75-82.
    [105]陶忠,于清,滕锦光. FRP约束方形截面钢筋混凝土偏压长柱的试验研究[J].工业建筑, 2005, 35(9): 5-7.
    [106]潘景龙,王威,金熙男,等.偏心荷载作用下FRP约束钢筋混凝土短柱的特性研究[J].土木工程学报, 2005, 38(2): 46-50.
    [107]曹双寅,敬登虎,孙宁.碳纤维布约束加固混凝土偏压柱的试验研究与分析[J].土木工程学报, 2006, 39(8): 26-32.
    [108] Hadi M N S. Behavior of FRP wrapped normal strength concrete columns under eccentricloading [J]. Composite Structures, 2006, 72(4): 503-511.
    [109] Hadi M N S. Comparative study of eccentrically loaded FRP wrapped columns [J]. CompositeStructures, 2006, 74(2): 127-135.
    [110] Lignola G P, Prota A, Manfredi G, et al. Experimental performance of RC hollow columnsconfined with CFRP [J]. Journal of Composites for Construction, ASCE, 2007, 11(1): 42-49.
    [111] Hadi M N S. Behavior of FRP strengthened concrete columns under eccentric compressionloading [J]. Composite Structures, 2007, 77(1): 92-96.
    [112] Hadi M N S. The behavior of FRP wrapped HSC columns under different eccentric loads [J].Composite Structures, 2007, 78(4): 560-566.
    [113] El Maaddawy T. Post-repair performance of eccentrically loaded RC columns wrapped withCFRP composites [J]. Cement and Concrete Composites, 2008, 30(9): 822-830.
    [114] El Maaddawy T. Strengthening of eccentrically loaded reinforced concrete columns withfiber-reinforced polymer wrapping system: experimental investigation and analyticalmodeling [J]. Journal of Composites for Construction, ASCE, 2009, 13(1): 13-24.
    [115] Yazici V, Hadi M N S. Axial load-bending moment diagrams of carbon FRP wrapped hollowcore reinforced concrete columns [J]. Journal of Composites for Construction, ASCE, 2009,13(4): 262-268. [116] Hadi M N S. Behavior of eccentric loading of FRP confined fiber steel reinforced concretecolumns [J]. Construction and Building Materials, 2009, 23(2): 1102-1108.
    [117] Rocca S, Galati N, Nanni A. Interaction diagram methodology for design of FRP-confinedreinforced concrete columns [J]. Construction and Building Materials, 2009, 23(4):1508-1520.
    [118]陆新征,冯鹏,叶列平. FRP布约束混凝土方柱轴心受压性能的有限元分析[J].土木工程学报, 2003, 36(2): 46-51.
    [119] Malvar L J, Morrill K B, Crawford J E. Numerical modeling of concrete confined byfiber-reinforced composites [J]. Journal of Composites for Construction, ASCE, 2004, 8(4):315-322.
    [120] Montoya E, Vecchio F J, Sheikh S A. Numerical evaluation of the behavior of steel- andFRP-confined concrete columns using compression field modeling [J]. Engineering Structures, 2004, 26(11): 1535-1545.
    [121] Parvin A, Jamwal A S. Effect of wrap thickness and ply configuration on composites-confinedconcrete cylinders [J]. Composites Structures, 2005, 67(4): 437-442.
    [122] Parvin A, Jamwal A S. Performance of externally FRP reinforced columns for changes inangle and thickness of the wrap and concrete strength [J]. Composites Structures, 2006, 73(4):451-457.
    [123] Karabinis A I, Rousakis T C, Manolitsi G E. 3D finite-element analysis of substandard RCcolumns strengthened by fiber-reinforced polymer sheets [J]. Journal of Composites forConstruction, ASCE, 2008, 12(5): 531-540.
    [124]黄艳,亓路宽. FRP布约束混凝土圆柱轴心受压性能非线性有限元分析[J]中国铁路科学, 2008, 29(1): 46-50.
    [125] Doran B. Numerical simulation of conventional RC columns under concentric loading [J].Materials and Design, 2009, 30(6): 2158-2166.
    [126] Doran B, Koksal H O, Turgay T. Nonlinear finite element modeling of rectangular or squareconcrete columns confined with FRP [J]. Materials and Design, 2009, 30(8): 3066-3075.
    [127] Varma R K, Barros J A O, Sena-Cruz J M. Numerical model for CFRP confined concreteelements subject to monotonic and cyclic loadings [J]. Composites: Part B, 2009, 40(8):766-775.
    [128]王庆利,张永丹,谢广鹏,等.圆截面CFRP-钢管混凝土柱的偏压试验[J].沈阳建筑大学学报(自然科学版), 2005, 21(5): 425-428.
    [129]陶忠,庄金平,于清. FRP约束钢管混凝土轴压构件力学性能研究[J].工业建筑, 2005, 35(9): 20-23.
    [130] Li G Q. Experimental study of hybrid composite cylinders [J]. Composite Structures, 2007, 78(2): 170-181.
    [131]周乐,王连广,李绥. FRP约束SRHC压弯构件正截面承载力计算[J].东北大学学报(自然科学版), 2008, 29(3): 408-411.
    [132] Teng J G, Ko J M, Chan T H T, et al. Third-generation structures: intelligent high-performancestructures for sustainable urban systems [C]. Proceedings of the International Symposium onDiagnosis, Treatment and Regeneration for Sustainable Urban Systems. Japan, 2003: 41-55.
    [133] Teng J G, Yu T, Wong Y L. Behavior of hybrid FRP-concrete-steel double-skin tubularcolumns [C]. Proceedings of the 2nd International Conference on FRP Composites in CivilEngineering. Adelaide, Australia, 2004: 811-818.
    [134] Teng J G, Yu T, Wong Y L, et al. Hybrid FRP-concrete-steel tubular columns: concept andbehavior [J]. Construction and Building Materials, 2007, 21(4): 846-854.
    [135]钱稼茹,刘明学. FRP-混凝土-钢双壁空心管长柱轴心受压试验[J].混凝土, 2006(9): 31-34.
    [136]钱稼茹,刘明学. FRP-混凝土-钢双壁空心管短柱轴心抗压试验研究[J].建筑结构学报, 2008,29(2): 104-113.
    [137] Wong Y L, Yu T, Teng J G, et al. Behavior of FRP-confined concrete in annular sectioncolumns [J]. Composites: Part B, 2008, 39(3): 451-466.
    [138] Ahmad S H, Shah S P. Stress-strain curves of concrete confined by spiral reinforcement [J].ACI Journal, 1982, 79(6): 484-490.
    [139] ACI Committee 318. Building code requirements for structural concrete (ACI 318-02) andcommentary (ACI 318R-02) [S]. American Concrete Institute, Michigan, 2002.
    [140] Ottosen N S. Constitutive model for short-time loading of concrete [J]. Journal of theEngineering Mechanics Divison, ASCE, 1979, 105(EMl): 127-141.
    [141] Popovics S. A numerical approach to the complete stress-strain curve of concrete [J]. Cementand Concrete Research, 1973, 3(5): 583-599.
    [142] ANSYS Inc. ANSYS user's manual, revision 10.0.
    [143]中华人民共和国国家标准.混凝土结构设计规范(GB50010-2002)[S]2002,4.
    [144] Candappa D C, Sanjayan J G, Setunge S. Complete triaxial stress-strain curves ofhigh-strength concrete [J]. Journal of Materials in Civil Engineering, ASCE, 2001, 13(3):209-215.
    [145]赵渠森.复合材料[M].北京:国防工业出版社, 1979.
    [146] Tsai S W, Wu E M. A general theory of strength for anisotropic materials [J]. Journal ofComposite Materials, 1971, 5(1): 58-80.
    [147]胡波,王建国.钢管与混凝土粘结-滑移相互作用的数值模拟[J].中国公路学报, 2009,22(4): 84-91.
    [148]胡波,王建国.FRP约束混凝土柱的研究现状与展望[J].建筑科学与工程学报, 2009,26(3): 96-104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700