用户名: 密码: 验证码:
架空输电线路扩展基础承载特性及其裂缝扩展规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
输电线路中的扩展基础是应用较为广泛的一种基础类型,也是应用较早的基础形式之一。常规的扩展基础在设计时一般只考虑基础的极限承载力,而混凝土的开裂不是其设计的控制条件,然而在盐渍土、沿海地区地基土体对钢筋的腐蚀性强,裂缝会对基础的承载性能产生不利影响。然而,目前没有成熟完善的设计理论及计算方法或是比较直观的观测方法来监测裂缝,因此,对扩展基础在上拔与水平组合荷载下的受力与裂缝扩展还需要进一步的深入研究,以满足实际工程的需要。
     本文采用室内试验和数值模拟相结合的方法,分析了扩展基础在上拔水平组合荷载作用下的承载我及裂缝扩展规律的,主要结论如下:
     1.采用智能控制荷载的施加,相对应测量地表位移的方法,研究得出了基础的Q-S曲线。
     2.通过比较同等基础在相同的地质条件下,不同荷载工况下的基础主筋应力应变,基础底板的应力应变。研究得出了基础的荷载传递机理。
     3.根据设计的正交试验运用ANSYS建立有限元模型,分别计算所设计的试验的方法。研究分析其基础的应力云图以及裂缝扩展图,得出影响基础裂缝扩展的关键因素。为实际工程中的应用提供参考。
The expansion foundation used in transmission lines is widely used as a basis for the type, but also form the basis of the earlier application. Expansion of the foundation of conventional design basis generally considered the ultimate bearing capacity, and the cracking of concrete is not designed to control conditions, but in saline soil, coastal foundation soil on the steel corrosion, cracks will be based adversely affect bearing performance. However, there is no mature sound design theory and method of calculation or the more intuitive methods of observation to monitor the crack, therefore, the expansion foundation faced in the combination of uplift and stress under load and the crack needs to be further in-depth study in order to meet the engineering needs.
     In this paper, laboratory experiments and numerical simulation of the combination of methods to analyze the expansion foundation in the combination of uplift bearing loads and crack propagation law of my main conclusions are as follows:
     1.Using intelligent control load system and the corresponding surface displacement measurement method, obtained the foundation’s Q ~ S curve.
     2. By comparing the same foundations in the same geological conditions, the basis of the reinforcement, different load stress and strain, stress and strain of the base. Study obtained the foundation load transfer mechanism.
     3. According to the orthogonal design of experiments using ANSYS finite element model, were calculated by the method of experimental design. Stress analysis of their basic cloud and fissure maps, drawn the key factor of the foundation crack affect. For practical engineering reference.
引文
Nicola, A.D. and Randolph, M.F , Tension and compression shaft capacity of piles in sand,J. Geotech. Engrg., ASCE, Vo1.119, No.12, 1993, pp1952-1973
    Azzouz, A.S. etal., Shaft resistance of pile in clay, J. Geotech. Engrg., ASCE,Vo1.116, No.2, 1990, pp205-221
    Lehane, B.M. etal., Mechanism of shafts friction in sand from instrumented pile tests, J. Geotech. Engrg., ASCE, Vo1.119, No.l, 1993, pp19-35
    Kraft, L.M., Performance of axially loaded pipe piles in sand, J.Geotech. Engrg.,ASCE, Vo1.117, No.2, 1991, pp272-296
    Ahmed Shlash Alawneh etal., Tension tests on smooth and rough model piles in dry sand, Can. Geotech. J., Vo1.36, 1999, pp746-753
    Jardine, R.J., Overy, R.F and Chow, FC., Axial capacity of offshore piles in sense north sea sands, J. Geotech. Engrg., ASCE, Vo1.124, No.2, 1998, pp171一177
    Turner, J.P and Kulhawy, F H., Drained uplift capacity of drilled shafts underrepeated axial loading, J. Geotech. Engrg., ASCE, Vo1.116, No.3, 1990,pp491-510
    O'Nei11,M.W., Side resistance of piles and drilled shafts, J. Geotech. Engrg.,ASCE, Vo1.127, No.l, 2001, pp2-16
    Chattopadhyay, B.C. and Pise, PJ., Uplift capacity of piles in sand, J. Geotech.Engrg., ASCE, Vol. 112, No.9, 1986, pp888-904
    De Nicola, A. and Randolph, M.ft, Centrifuge modeling for pipe pile in sand under axial loads, Geotechinque, 49(3), pp295-318, 1999
    Lutenegger, A.J. and Miller, G.A., Uplift capacity of small-diameter drilled shafts from in situ tests, J. Geotech. Engrg., ASCE, Vol. 120, No.8, 1994, pp1362-1380
    Khadilkar,B.S.,Paradkar,A.K.,and Golait,YS(1971).Study of rup ultimate resistance of anchor foundations[S]. In Proceedings of 4}' tore surface and Conference Soil Mechanics and Asian Regional Foundation Engineering, Bangkok, Thailand, Vol.1:121一127
    Xu Shilang, Reinhardt H W. Crack extension resistance and fracture properties ofquasi-brittle softening materials like concrete based on the complete process of fracture[J]. International Journal of Fracture,1998(92)
    程永锋,邵晓岩,朱全军.我国输电线路基础工程现状及存在的问题.电力建设, 2002
    鲁先龙,程永锋.我国输电线路基础工程现状与展望.电力建设, 2005
    刘祖德,抗拔桩基础(续三),地基处理,第7卷第2期,1996
    沈慧容等,冲吸式钻孔灌注桩抗拔承载力,南京工学院试验研究报告,基8103, 1981年10月
    吴兴序,于志强,庄卫林,岩层中抗拔桩的承载力计算方法探讨,四川,西南交通大学学报,Vol37 No.2 2002
    丁佩民、黄堂松、肖志斌,抗拔桩侧摩阻力发挥规律的探讨,建筑科学,Vol19, No.6 2003
    张尚根,李刻铭,吴步旭,扩展抗拔桩的变形分析,工业建筑,Vo133 No.6 2003
    叶荫,宰金璋,汪中卫,扩展桩的应力与应变机理分析,地基基础,1998
    刘建武.混凝土裂缝产生的成因与控制措施.水运工程,Vo1.384 No.6 2006
    何思明.抗拔桩破坏特性及抗拔承载力.地基处理,Vo1.22 No.3 2001
    沈保汉,桩基础测试、勘察、设计和施工(十四)—桩的抗拔承载力,工业建筑,第11期,1991. pp51-55
    尹双增,断裂·损伤理论及应用,北京:清华大学出版社1992
    姜清梅,断裂力学及断裂力学标准简介,冶金标准化与质量,1996年,第5卷:39~45
    蔡四维,蔡敏,混凝土的损伤断裂,北京:人民交通出版社,1998年
    徐世粮,混凝土强度对基于粘聚力的新K-R阻力曲线的影响,水力发电学报.No.3 2001
    王新敏.ansys工程结构数值分析,北京:人民交通出版社,2007
    姜勇,张波.Ansys7.0实例精解,北京:清华大学出版社,2004
    中华人民共和国国家发展和改革委员会.DL/T 5219-2005.中华人民共和国电力行业标准.北京:中国电力出版社,2005
    鲁先龙.输电线路原状土基础抗拔极限承载力计算,电力建设,2006
    乾增珍.斜坡地形高露头挖孔桩水平承载特性试验研究,辽宁工程技术大学学报(自然科学版),2009
    乾增珍.风积沙地基斜柱基础上拔水平力组合荷载试验,岩土力学,2009
    乾增珍.复杂应力状态下人工冻土蠕变数值模拟,辽宁工程技术大学学报,2005
    张聪智.浅谈扩展基础设计,现代冶金,2009
    张维秀.钢筋混凝土扩展基础配筋计算方法,油气田地面工程,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700