用户名: 密码: 验证码:
14-3-3gamma对神经元缺氧缺血损伤的保护作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[背景]在脑组织中14-3-3蛋白十分丰富。14-3-3gamma主要在神经元表达。我们曾报道14-3-3gamma在体外缺血培养的星形胶质细胞中表达上调,并且通过结合磷酸化Bad减少缺血诱导的胶质细胞死亡。[目的]研究14-3-3蛋白在缺血损伤的神经元中的表达,保护作用和机制。[方法和结果]通过Western blot,免疫荧光染色,免疫共沉淀以及原代神经元核转染等方法,我们发现原代培养的小鼠大脑皮层神经元缺血处理后14-3-3gamma表达明显增加。而14-3-3beta,epsilon,eta和zeta在相同处理下没有明显的变化。过度表达14-3-3特异结合蛋白(Diforpein)导致小鼠神经瘤母细胞(N2a)和原代神经元死亡增加。而过度表达14-3-3gamma显著减少缺血诱导的N2a和原代神经元的死亡。除此之外,我们在培养的N2a和原代神经元中加入特异降解14-3-3gamma的siRNA也增加缺血诱导的细胞死亡。为了明确14-3-3gamma在缺血性损伤中的保护机制,通过免疫共沉淀方法,我们发现在原代培养的小鼠大脑皮层神经元经缺血处理后,14-3-3gamma上调并特异结合同时上调的丝氨酸37位点磷酸化beta-catenin,而它与Ask-1没有明显的相互作用。另外,我们还发现在过度表达14-3-3gamma的N2a细胞中,Bax的表达明显下调;而过度表达降解内源性14-3-3gamma-siRNA,Bax的表达增加。在氯化钴诱导的缺氧预适应动物模型中,动物耐受缺氧存活时间明显延长,14-3-3gamma的表达上调,而其它14-3-3亚型发生不同的变化,Bax和p53的表达没有明显影响。[结论]上述结果表明,在缺血神经元14-3-3gamma表达上调并结合磷酸化beta-catenin,降低Bax的表达发挥减轻缺血神经元损伤的重要内源性保护机制,缺氧预适应导致内源性14-3-3gamma上调增加动物耐受缺氧。
14-3-3 proteins are abundant in brain tissues and the gamma isoform is mainly expressed in neurons. We have previously reported that 14-3-3gamma could be up-regulated in astrocytes by in vitro ischemia and attenuated ischemia-induced astrocytic death by binding to phosphorylated Bad. In this study, we studied the expression, function and underlying mechanism of 14-3-3gamma in ischemic neurons. The selective up-regulation of 14-3-3gamma in primary cultures of mouse cerebral cortical neurons exposed to oxygen-glucose deprivation (OGD) was demonstrated by Western blot analysis, immunostaining and co-immunoprecipitation methods. Other 14-3-3 isoforms (β,ε,ηandζwere not altered significantly by OGD treatment. Blocking the interaction of 14-3-3 proteins with their ligands by over-expression diforpein (DFP) exacerbated cell death in primary mouse cortical neurons and N2a neuroblastoma cells. Over-expression of 14-3-3gamma enhanced cell survival in OGD-treated neurons and N2a cells significantly while other 14-3-3 isoforms were less effective. Moreover, suppressing 14-3-3gamma expression by siRNA technique facilitated cell death in neurons and N2a cells upon OGD treatment. To study the underlying protective mechanism of 14-3-3gamma, we investigated the interaction of 14-3-3gamma with beta-catenin, Bad, p53 and Ask-1. We found that 14-3-3gamma bound more phospho-s37-beta-catenin in neurons upon OGD incubation while the binding of 14-3-3gamma with Bad, p53 and Ask-1 did not altered evidently. In addition, the expression of Bax was reduced in N2a cells overexpressed 14-3-3gamma while 14-3-3gamma-siRNA increased the Bax level in N2a cells. Finally, in the model of anoxia preconditioning induced by cobalt chloride, we found that the expression of 14-3-3 gamma but not other 14-3-3 isoform was increased in cerebral cortex compared with control. Taken together, these data suggested that 14-3-3gamma-beta-catenin-Bax pathway was an important part of endogenous protective machinery in ischemic neurons. The induction of 14-3-3 gamma may be a protective mechanism of preconditioning.
引文
1. Stoll G, Kleinschnitz C, Nieswandt B. Molecular mechanisms of thrombus formation in ischemic stroke: novel insights and targets for treatment. Blood. 2008,112(9):3555-62.
    2. Shiga Y, Wakabayashi H, Miyazawa K, Kido H, Itoyama Y. 14-3-3 protein levels and isoform patterns in the cerebrospinal fluid of Creutzfeldt-Jakob disease patients in the progressive and terminal stages. J Clin Neurosci. 2006,13(6):661-5.
    3. Umahara T, Uchihara T, Tsuchiya K, Nakamura A, Iwamoto T, Ikeda K, Takasaki M.14-3-3 proteins and zeta isoform containing neurofibrillary tangles in patients with Alzheimer's disease. Acta Neuropathol. 2004 ,108(4):279-86.
    4. Santpere G, Puig B, Ferrer I. Oxidative damage of 14-3-3 zeta and gamma isoforms in Alzheimer's disease and cerebral amyloid angiopathy. Neuroscience. 2007,146(4): 1640-51.
    5. Sato S, Chiba T, Sakata E, Kato K, Mizuno Y, Hattori N, Tanaka K. 14-3-3eta is a novel regulator of parkin ubiquitin ligase. EMBO J. 2006, 25(1):211-21.
    6. Beal, 2000 M.F. Beal, Energetics in the pathogenesis of neurodegenerative diseases,Trends Neurosci 23 (7) (2000), pp. 298-304.
    7. Dong Zhao, Jing Liu, Wei Wang. Epidemiological Transition of Stroke in China. Stroke.2008;39:1668-1674
    8. Ming Liu, Bo Wu, Wen-Zhi Wang. The Lancet Neurology. 2007, 6(5): 456-464.
    9. Downey JM, Cohen MV. Signal transduction in ischemic preconditioning. Adv Exp Med Biol. 1997,430:39.
    10. Downey JM, Liu GS, Thornton JD. Adenosine and the anti-infarct effects of preconditioning. Cardiovasc Res, 1993, 27:3.
    11. Mabanta L, Valane P, Borne J, et al. Initiation of remote microvascular preconditioning requires K(ATP) channel activity. Am J Physiol Heart Circ Physiol 2006, 290:H264.
    12. Jiang Z, Zhang Y, Chen XQ, Lam PY, Yang H, Xu Q, Yu AC. Activation of Erk1/2 and Akt in astrocytes under ischemia. Biochem Biophys Res Commun. 2002,294(3):726-33.
    13. Moore, B.W. and Perez, V.J. Specific Acid Proteins in theNervous System. Prentice-Hall, 1967.
    14. Aitken, A. 14-3-3 proteins: a historic overview. Semin. Cancer Biol. 2006, 16, 162-172.
    15. Aitken A, Ellis CA, Harris A, Sellers LA, Toker A. Kinase and neurotransmitters.Nature (London) 1990;344:594.
    16. Fantl WJ, Muslin AJ, Kikuchi A, Martin JA, MacNicol AM, Gross RW, et al. Activation of Raf-1 by 14-3-3 proteins. Nature 1994;371:612-4.
    17. Fu H, Xia K, Pallas DC, Cui C, Conroy K, Narsimhan RP, et al. Interaction of the protein kinase Raf-1 with 14-3-3 proteins. Science 1994;266:126-9.
    18. Yuan Z, Becker EB, Merlo P, Yamada T, DiBacco S, Konishi Y, Schaefer EM, Bonni A.Activation of FOXOl by Cdkl in cycling cells and postmitotic neurons. Science. 2008,319(5870):1665-8.
    19. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999;96:857-68.
    20. Conklin DS, Galaktionov K, Beach D. 14-3-3 proteins associate with cdc25 phosphatases. Proc Natl Acad Sci USA. 1995 ;92:7892-6.
    21. Obsil T, Ghirlando R, Klein DC, Ganguly S, Dyda F. Crystal structure of the 14-3-3zeta:serotonin N-acetyltransferase complex, a role for scaffolding in enzyme regulation..Cell.2001, 105(2):257-67.
    22. Wang AH, Kruhlak MJ, Wu J, Bertos NR, Vezmar M, Posner BI, Bazett-Jones DP, Yang XJ. Regulation of histone deacetylase 4 by binding of 14-3-3 proteins. Mol Cell Biol.2000,20(18):6904-12.
    23. Nurmi SM, Gahmberg CG, Fagerholm SC. 14-3-3 proteins bind both filamin and alphaLbeta2 integrin in activated T cells. Ann N Y Acad Sci. 2006,1090:318-25.
    24. Dai JG, Murakami K. Constitutively and autonomously active protein kinase C associated with 14-3-3 zeta in the rodent brain. J Neurochem. 2003, 84(1):23-34.
    25. Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L).Cell. 1996, 87:619-28.
    26. Samuel T, Weber HO, Rauch P, Verdoodt B, Eppel JT, McShea A, Hermeking H, Funk JO. The G2/M regulator 14-3-3sigma prevents apoptosis through sequestration of Bax. J Biol Chem. 2001, 276(48):45201-6.
    27. Nomura M, Shimizu S, Sugiyama T, Narita M, Ito T, Matsuda H, Tsujimoto Y. 14-3-3 Interacts directly with and negatively regulates pro-apoptotic Bax. J Biol Chem. 2003,278(3):2058-65.
    28. Tsuruta F, Sunayama J, Mori Y, Hattori S, Shimizu S, Tsujimoto Y, Yoshioka K,Masuyama N, Gotoh Y. JNK promotes Bax translocation to mitochondria through phosphorylation of 14-3-3 proteins. EMBO J. 2004,23(8): 1889-99.
    29. Siman R, Roberts VL, McNeil E. Biomarker evidence for mild central nervous system injury after surgically-induced circulation arrest. Brain Res. 2008, 1213:1-11.
    30. Siman R, McIntosh TK, Soltesz KM. Proteins released from degenerating neurons are surrogate markers for acute brain damage. Neurobiol Dis. 2004, 16(2):311-20.
    31. Yu F, Narasimhan P, Chan PH. Increased expression of a proline-rich Akt substrate (PRAS40) in human copper/zinc-superoxide dismutase transgenic rats protects motor neurons from death after spinal cord injury. J Cereb Blood Flow Metab. 2008,28(1):44-52.
    32. Kamada H, Nito C, Endo H, Chan PH. Bad as a converging signaling molecule between survival PI3-K/Akt and death JNK in neurons after transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab. 2007, 27(3):521-33
    33. Saito A, Hayashi T, Okuno S, Nishi T, Chan PH. Modulation of proline-rich akt substrate survival signaling pathways by oxidative stress in mouse brains after transient focal cerebral ischemia. Stroke. 2006, 37(2):513-7.
    34. Wang XT, Pei DS, Xu J, Guan QH, Sun YF, Liu XM, Zhang GY. Opposing effects of Bad phosphorylation at two distinct sites by Aktl and JNK1/2 on ischemic brain injury.Cell Signal. 2007, 19(9): 1844-56.
    35. Koh PO. Melatonin prevents the injury-induced decline of Akt/forkhead transcription factors phosphorylation. J Pineal Res. 2008,45(2):199-203.
    36. Koh PO. Melatonin attenuates the focal cerebral ischemic injury by inhibiting the dissociation of pBad from 14-3-3. J Pineal Res. 2008,44(1):101-6.
    37. Chen XQ, Fung YW, Yu AC. Association of 14-3-3gamma and phosphorylated bad attenuates injury in ischemic astrocytes. J Cereb Blood Flow Metab. 2005,25(3):338-47.
    38. Chen XQ, Chen JG, Zhang Y, Hsiao WW, Yu AC. 14-3-3gamma is upregulated by in vitro ischemia and binds to protein kinase Raf in primary cultures of astrocytes. Glia.2003,42(4):315-24.
    39. Chen XQ, Liu S, Qin LY, Wang CR, Fung YW, Yu AC. Selective regulation of 14-3-3eta in primary culture of cerebral cortical neurons and astrocytes during development. J Neurosci Res. 2005, 79(1-2):114-8.
    40. Chen XQ, Yu AC. The association of 14-3-3gamma and actin plays a role in cell division and apoptosis in astrocytes. Biochem Biophys Res Commun. 2002,296(3):657-63.
    41. Deborah K. M. The 14-3-3 proteins: integrators of diverse signaling cues that impact cell fate and cancer development. Trends in Cell Biology. 2008, 19(1): 16-23
    42. Kawamoto Y, Akiguchi I, Tomimoto H.Upregulated expression of 14-3-3 proteins in astrocytes from human cerebrovascular ischemic lesions. Stroke. 2006, 37(3):830-5.
    43. Satoh J, Tabunoki H, Nanri Y, Arima K, Yamamura T. Human astrocytes express 14-3-3 sigma in response to oxidative and DNA-damaging stresses. Neurosci Res. 2006, 56(1):61-72.
    44. Wu JS, Cheung WM, Tsai YS, Chen YT, Fong WH, Tsai HD, Chen YC, Liou JY, Shyue SK, Chen JJ, Chen YE, Maeda N, Wu KK, Lin TN. Ligand-activated peroxisome proliferator-activated receptor-gamma protects against ischemic cerebral infarction and neuronal apoptosis by 14-3-3 epsilon upregulation. Circulation. 2009, 119(8): 1124-34.
    45. Kamada H, Nito C, Endo H, Chan PH. Bad as a converging signaling molecule between survival PI3-K/Akt and death JNK in neurons after transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab. 2007,27(3):521-33.
    46. Pei DS, Wang XT, Liu Y, Sun YF, Guan QH, Wang W, Yan JZ, Zong YY, Xu TL, Zhang GY. Neuroprotection against ischaemic brain injury by a GluR6-9c peptide containing the TAT protein transduction sequence. Brain. 2006,129(Pt 2):465-79.
    47. Tian Q, Feetham MC, Tao WA, He XC, Li L, Aebersold R, Hood L. Proteomic analysis identifies that 14-3-3zeta interacts with beta-catenin and facilitates its activation by Akt.Proc NatlAcad Sci U S A. 2004, 101(43):15370-5.
    48. Li FQ, Mofunanya A, Harris K, Takemaru K. Chibby cooperates with 14-3-3 to regulate beta-catenin subcellular distribution and signaling activity. J Cell Biol. 2008,
    49. Sottocornola B, Visconti S, Orsi S, Gazzarrini S, Giacometti S, Olivari C, Camoni L,Aducci P, Marra M, Abenavoli A, Thiel G, Moroni A. The potassium channel KAT1 is activated by plant and animal 14-3-3 proteins. J Biol Chem. 2006, 81(47):35735-41.
    50. Heusser K, Yuan H, Neagoe I, Tarasov AI, Ashcroft FM, Schwappach B. Scavenging of 14-3-3 proteins reveals their involvement in the cell-surface transport of ATP-sensitive K+ channels. J Cell Sci. 2006, 119(Pt 20):4353-63.
    51. Li Y, Wu Y, Li R, Zhou Y. The role of 14-3-3 dimerization in its modulation of the CaV2.2 channel. Channels (Austin). 2007, 1(1): 1-2.
    52. Liang X, Butterworth MB, Peters KW, Walker WH, Frizzell RA. An obligatory heterodimer of 14-3-3beta and 14-3-3epsilon is required for aldosterone regulation of the epithelial sodium channel. J Biol Chem. 2008,283(41):27418-25.
    53. Nielsen MD, Luo X, Biteau B, Syverson K, Jasper H. 14-3-3 Epsilon antagonizes FoxO to control growth, apoptosis and longevity in Drosophila. Aging Cell. 2008,7(5):688-99.
    54. Komiya Y, Kurabe N, Katagiri K, Ogawa M, Sugiyama A, Kawasaki Y, Tashiro F. A novel binding factor of 14-3-3beta functions as a transcriptional repressor and promotes anchorage-independent growth, tumorigenicity, and metastasis. J Biol Chem. 2008,283(27): 18753-64.
    55. Liu HM, Li JX, Chen LB. Ischemic preconditioning relieves ischemia/reperfusion injury of hippocampus neurons in rat by inhibiting p53 and bax expressions. Chin Med Sci J. 2007, 22(2): 123-7.
    56. QG Zhang, et al. Ischemic preconditioning negatively regulates plenty of SH3s-mixed lineage kinase 3-Rac1 complex and c-Jun N-terminal kinase 3 signaling via activation of Akt. Neuroscience, 2006, 143: 431-444.
    57. CW Yang, et al. Ischemic preconditioning suppresses apoptosis of rabbit spinal neurocytes by inhibiting ASK1-14-3-3 dissociation. Neuroscience Letters, 2008, 441:267-271.
    1.Dong Zhao,Jing Liu,Wei Wang.Epidemiological Transition of Stroke in China.Stroke.2008;39:1668-1674
    2.Ming Liu,Bo Wu,Wen-Zhi Wang.The Lancet Neurology.2007,6(5):456-464.
    3.Stoll G,Kleinschnitz C,Nieswandt B.Molecular mechanisms of thrombus formation in ischemic stroke:novel insights and targets for treatment.Blood.2008,112(9):3555-62.
    4.Moore,B.W.and Perez,V.J.Specific Acid Proteins in theNervous System.Prentice-Hall,1967.
    5.Aitken,A.14-3-3 proteins:a historic overview.Semin.Cancer Biol.2006,16,162-172
    6.Aitken A,Ellis CA,Harris A,Sellers LA,Toker A.Kinase and neurotransmitters.Nature(London)1990;344:594.
    7.Fantl W J,Muslin A J,Kikuchi A,Martin JA,MacNicol AM,Gross RW,et al.Activation of Raf-1 by 14-3-3 proteins.Nature 1994;371:612-4.
    8.Fu H,Xia K,Pallas DC,Cui C,Conroy K,Narsimhan RP,et al.Interaction of the protein kinase Raf-1 with 14-3-3 proteins. Science 1994;266:126-9.
    9. Yuan Z, Becker EB, Merlo P, Yamada T, Schaefer EM, Bonni A. Activation of FOXO1 by Cdkl in cycling cells and postmitotic neurons. Science. 2008, 319(5870): 1665-8.
    10. Brunet A, Bonni A, Juo P, Hu LS, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999;96:857-68.
    11. Conklin DS, Galaktionov K, Beach D. 14-3-3 proteins associate with cdc25 phosphatases. Proc Natl Acad Sci USA. 1995;92:7892-6.
    12. Obsil T, Ghirlando R, Klein DC, Ganguly S, Dyda F. Crystal structure of the 14-3-3zeta:serotonin N-acetyltransferase complex, a role for scaffolding in enzyme regulation..Cell.2001, 105(2):257-67.
    13. Wang AH, Kruhlak MJ, Wu J, Bertos NR, Vezmar M, Posner BI, Bazett-Jones DP, Yang XJ. Regulation of histone deacetylase 4 by binding of 14-3-3 proteins. Mol Cell Biol.2000,20(18):6904-12.
    14. Nurmi SM, Gahmberg CG, Fagerholm SC. 14-3-3 proteins bind both filamin and alphaLbeta2 integrin in activated T cells. Ann N Y Acad Sci. 2006; 1090:318-25.
    15. Dai JG, Murakami K. Constitutively and autonomously active protein kinase C associated with 14-3-3 zeta in the rodent brain. J Neurochem. 2003, 84(1):23-34.
    16. Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L).Cell. 1996, 87:619-28.
    17. Samuel T, Weber HO, Rauch P, Verdoodt B, Eppel JT, McShea A, Hermeking H, Funk JO. The G2/M regulator 14-3-3sigma prevents apoptosis through sequestration of Bax. J Biol Chem. 2001, 276(48):45201-6.
    18. Nomura M, Shimizu S, Sugiyama T, Narita M, Ito T, Matsuda H, Tsujimoto Y. 14-3-3 Interacts directly with and negatively regulates pro-apoptotic Bax. J Biol Chem. 2003,278(3):2058-65.
    19. Tsuruta F, Sunayama J, Mori Y, Hattori S, Shimizu S, Tsujimoto Y, Yoshioka K, Masuyama N, Gotoh Y. JNK promotes Bax translocation to mitochondria through phosphorylation of 14-3-3 proteins. EMBO J. 2004, 23(8): 1889-99.
    20. Gardino, A.K. et al. Structural determinants of 14-3-3 binding specificities and regulation of subcellular localization of 14-3-3-ligand complexes: a comparison of the X-ray crystal structures of all human 14-3-3 isoforms. Semin Cancer Biol. 2006, 16,173-182.
    21. Siman R, Roberts VL, McNeil E. Biomarker evidence for mild central nervous system injury after surgically-induced circulation arrest. Brain Res. 2008,1213:1-11.
    22. Siman R, Mclntosh TK, Soltesz KM. Proteins released from degenerating neurons are surrogate markers for acute brain damage. Neurobiol Dis. 2004, 16(2):311-20.
    23. Yu F, Narasimhan P, Chan PH. Increased expression of a proline-rich Akt substrate (PRAS40) in human copper/zinc-superoxide dismutase transgenic rats protects motor neurons from death after spinal cord injury. J Cereb Blood Flow Metab. 2008,28(1):44-52.
    24. Kamada H, Nito C, Endo H, Chan PH. Bad as a converging signaling molecule between survival PI3-K/Akt and death JNK in neurons after transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab. 2007, 27(3):521-33
    25. Saito A, Hayashi T, Okuno S, Nishi T, Chan PH. Modulation of proline-rich akt substrate survival signaling pathways by oxidative stress in mouse brains after transient focal cerebral ischemia. Stroke. 2006, 37(2):513-7.
    26. Satoh J, Tabunoki H, Nanri Y, Arima K, Yamamura T.Human astrocytes express 14-3-3 sigma in response to oxidative and DNA-damaging stresses. Neurosci Res. 2006,56(1):61-72.
    27. Wang XT, Pei DS, Xu J, Guan QH, Sun YF, Liu XM, Zhang GY. Opposing effects of Bad phosphorylation at two distinct sites by Akt1 and JNK 1/2 on ischemic brain injury.Cell Signal. 2007, 19(9): 1844-56.
    28. Koh PO. Melatonin prevents the injury-induced decline of Akt/forkhead transcription factors phosphorylation. J Pineal Res. 2008,45(2): 199-203.
    29. Koh PO. Melatonin attenuates the focal cerebral ischemic injury by inhibiting the dissociation of pBad from 14-3-3. J Pineal Res. 2008,44(1): 101-6.
    30. Chen XQ, Fung YW, Yu AC. Association of 14-3-3gamma and phosphorylated bad attenuates injury in ischemic astrocytes. J Cereb Blood Flow Metab. 2005,25(3):338-47.
    31. Chen XQ, Chen JG, Zhang Y, Hsiao WW, Yu AC. 14-3-3gamma is upregulated by in vitro ischemia and binds to protein kinase Raf in primary cultures of astrocytes. Glia.2003,42(4):315-24.
    32. Chen XQ, Liu S, Qin LY, Wang CR, Fung YW, Yu AC. Selective regulation of 14-3-3 eta in primary culture of cerebral cortical neurons and astrocytes during development. J Neurosci Res. 2005, 79(1-2): 114-8.
    33. Chen XQ, Yu AC. The association of 14-3-3gamma and actin plays a role in cell division and apoptosis in astrocytes. Biochem Biophys Res Commun. 2002,296(3):657-63.
    34. Kawamoto Y, Akiguchi I, Tomimoto H, Shirakashi Y, Honjo Y, Budka H. Upregulated expression of 14-3-3 proteins in astrocytes from human cerebrovascular ischemic lesions. Stroke. 2006, 37(3):830-5.
    35. Li H, Guo Y, Teng J, Ding M, Yu AC, Chen J. 14-3-3gamma affects dynamics and integrity of glial filaments by binding to phosphorylated GFAP. J Cell Sci. 2006, 119(Pt 21):4452-61.
    36. Ye SQ, Lai XJ, Luo ZZ, Li L, Chen XQ (corresponding author). 14-3-3 protects ischemic neurons from apoptosis by transcriptional down-regulating Bax through beta-catenin. 2009, submitted.
    37. Wu JS, Cheung WM, Lin TN.Ligand-activated peroxisome proliferator activated receptor-gamma protects against ischemic cerebral infarction and neuronal apoptosis by 14-3-3 epsilon upregulation. Circulation. 2009,119(8): 1124-34.
    38. Downey JM, Cohen MV. Signal transduction in ischemic preconditioning. Adv Exp Med Biol. 1997,430:39.
    39. Downey JM, Liu GS, Thornton JD. Adenosine and the anti-infarct effects of preconditioning. Cardiovasc Res, 1993, 27:3.
    40. Mabanta L, Valane P, Borne J, et al. Initiation of remote microvascular preconditioning requires K(ATP) channel activity. Am J Physiol Heart Circ Physiol 2006, 290:H264.
    41. Jiang Z, Zhang Y, Chen XQ, Lam PY, Yang H, Xu Q, Yu AC. Activation of Erk1/2 and Akt in astrocytes under ischemia. Biochem Biophys Res Commun. 2002,294(3):726-33.
    42. QG Zhang, et al. Ischemic preconditioning negatively regulates plenty of SH3s-mixed lineage kinase 3-Racl complex and c-Jun N-terminal kinase 3 signaling via activation of Akt. Neuroscience, 2006, 143: 431-444.
    43. CW Yang, et al. Ischemic preconditioning suppresses apoptosis of rabbit spinal neurocytes by inhibiting ASK1-14-3-3 dissociation. Neuroscience Letters, 2008, 441:267-271.
    44. Shiga Y, Wakabayashi H, Miyazawa K, Kido H, Itoyama Y. 14-3-3 protein levels and isoform patterns in the cerebrospinal fluid of Creutzfeldt-Jakob disease patients in the progressive and terminal stages. J Clin Neurosci. 2006, 13(6):661-5.
    45. Umahara T, Uchihara T, Tsuchiya K, Nakamura A, Iwamoto T, Ikeda K, Takasaki M. 14-3-3 proteins and zeta isoform containing neurofibrillary tangles in patients with Alzheimer's disease. Acta Neuropathol. 2004 , 108(4):279-86.
    46. Santpere G, Puig B, Ferrer I. Oxidative damage of 14-3-3 zeta and gamma isoforms in Alzheimer's disease and cerebral amyloid angiopathy. Neuroscience. 2007,146(4): 1640-51.
    47. Sato S, Chiba T, Sakata E, Kato K, Mizuno Y, Hattori N, Tanaka K. 14-3-3eta is a novel regulator of parkin ubiquitin ligase. EMBO J. 2006, 25(1):211-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700