用户名: 密码: 验证码:
细胞周期素依赖性蛋白激酶调控细胞死亡的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分
     CDK1与细胞凋亡
     目的:探讨CDK1在细胞凋亡中的重要作用及其机制研究。
     材料和方法:先后构建了表达CDK1的质粒、突变了CDK1主要磷酸化位点(包括Thr161和Tyr15)的质粒和能有效沉默CDK1表达的RNAi,以肝癌细胞Hela为研究对象,以紫外打击为凋亡的主要诱导方式,采用MTT法、流式细胞学分析、流式细胞学分选技术、免疫荧光分析、蛋白质免疫共沉淀技术、Western blot分析等技术分析细胞在遭受外界打击的条件下,CDK1蛋白与凋亡相关蛋白的相互作用关系。
     结果:
     1)我们成功构建了能够表达CDK1蛋白的真核表达质粒,能够有效沉默CDK1表达的RNAi和突变了Thr161位蛋白和Tyr15位蛋白的表达CDK1质粒;高表达CDK1的细胞在紫外线打击下凋亡率显著增加;沉默CDK1表达的细胞在紫外线打击下凋亡率显著下降;进而发现,当细胞引入突变了Tyr15位蛋白的CDK1质粒时,紫外诱导的G1期特异性细胞凋亡是增加的;当细胞引入突变了Thr161位蛋白的CDK1质粒时,紫外打击导致的细胞的G1期凋亡相对有所减少,免疫共沉淀显示带有Flag尾Tyr15突变体其Thr161位点可以被磷酸化。
     2)在低血清培养诱导的细胞G1期阻滞模型中,当紫外打击后根据不同的时间点我们对细胞进行了分选,与对照组相比,紫外打击组细胞内Phospho-cdc2(Tyr15)的表达是逐渐下降,而同时出现了Phospho-cdc2(Thr161)表达的上升;对照组和紫外打击组内CDK2处于低水平表达,没有出现显著性改变;凋亡相关蛋白检测发现抗凋亡蛋白Bc12的表达上调。
     3)对细胞紫外线打击后分别提取胞核蛋白和胞浆蛋白,结果显示紫外打击组胞核中Phospho-cdc2(Tyr15)表达与对照组无明显差异,而胞浆中出现了显著下降。
     4)免疫荧光分析显示,细胞在紫外打击后少量的Phospho-cdc2(Tyr15)出现了聚集于凋亡小体处的现象,Phospho-cdc2(Thr161)浓聚在胞浆中。
     结论:
     1)CDK1表达过多可以促使凋亡的发生,抑制CDK1的表达可以减少细胞的凋亡。
     2)通过向细胞引入外源性表达的CDK1相关磷酸化位点突变体后其Thr161蛋白可以被磷酸化,而磷酸化的后果是促发了凋亡。而引入Thr161突变的CDK1并没有显著抑制凋亡的发生。
     3)从时间的观点看来,CDK1在G1期如果出现了异常激活则可能直接导致凋亡的发生;从空间的角度理解,CDK1 Thr161磷酸化后若异常停留在胞浆中,和(或)CDK1Tyr15以磷酸化的方式入核或在胞浆中去磷酸化也是凋亡发生的必然条件之一。
     第二部分
     CDK1与细胞自噬
     目的:
     探讨CDK1在细胞自噬中的重要作用。
     材料和方法:
     先后构建了高表达CDK1的质粒和能有效沉默CDK1表达的RNAi,以肝癌细胞Hela为研究对象,通过DHanks液饥饿为主要诱导方式,采用流式细胞学分析、免疫荧光分析、电镜和Western blot分析等技术分析细胞在饥饿所诱导的自噬中,CDK1蛋白在其中的作用。
     结果:
     当细胞导入高表达CDK1后,我们可以见到相对于对照组,其自噬相关蛋白表达增加,自噬泡更多且更大;相反,当我们沉默CDK1的表达后,细胞自噬的现象明显受到抑制。
     结论:
     CDK1表达过多可以促使细胞自噬的发生,抑制CDK1的表达可以减少细胞的自噬。
PartⅠ
     CDK1 and Apoptosis
     Object:Investigate the role of the CDK1 in apoptosis.Materials and Methods:We constructed expressed CDK1 vector,CDK1 siRNA,expressed CDK1-p15-mut vector and expressed CDK1-p161-mut vector.Livercancer cell line Hela for this study,transfecting the Hela cell line withthese plasmids and RNAi,analysising the effect of CDK1 on the cell cycle andcell apoptosis after ultraviolet strike by MTT reduction assay,flow cytometry,immunoprecipitation,immunofluorescence,Western blot analysis andpostsorting immunoprecipitation and western analysis.
     Result:
     1) We succesfully constructed the high expressed CDK1 vector,high expressedCDK1-p15-mut vector,high expressed CDK1-p161-mut vector and CDK1 siRNA.Transfecting these plasmids in cells,we could find that high expressedCDK1 and CDK1-p15-mut would enhance the ratio of apoptosis after UVradiation;high expressed CDK1-p161-mut and RNAi CDK1 would decrease theratio of apoptosis after UV radiation;the result of IP present that thedeficient of CDK1 cannot be phosphorylated at Tyr 15 but can at Thr161.
     2) Hela cell delay in G1 phase under the culture of low serum DMEM.AfterUVradiation,wepostsorted the G1 phase cells to do Western Blot.We findthe expression of Phospho-cdc2 (Tyr15) was in a low level,and theexpression of Phospho-cdc2 (Thr161) was high.There is no significientchange in the expression of CDK2.The expression of apoptotic-relatedprotein of Bc12 was upregulation.
     3) In apoptotic cells,the expression of Phospho-cdc2 (Tyr15) had no significiant change in nucleus,but downregulation in cytoplasm comparewith control group.
     4) The result of IF appeared that a small bit of Phospho-cdc2 (Tyr15) puttogether in apoptosis body.A great deal of Phospho-cdc2 (Thr161)gathered in cytoplasm.
     Conclusion:
     1) CDK1 acts an important role in cell apoptosis.
     2) The phosphorylation of cdc2 (Thr161) is the centre key in G1 apoptosis.
     3) The expression of CDK1 in different time and space result in thedifferent function.
     PartsⅡ
     CDK1 and Autophagy
     Object:Investigate the role of the CDK1 in Autophagy.Materials and Methods:We constructed high expressed CDK1 vector and CDK1 siRNA.Transfecting the Hela cell line with the plasmid and RNAi,analysising theeffect of CDK1 on autophagy after starvation by flow cytometry,immunofluorescence,electronmicroscope and Western blot analysis.
     Result:With the high expression of CDK1,cells after starvation would producemuch more autophagic protein to against deficiency of energy and DNA damagesubsequent.
     Conclusion:CDK1 act an important role in cell autophagy.
引文
1. Hatakeyama, S., et al., Targeted destruction of c-Myc by an engineered ubiquitin ligase suppresses cell transformation and tumor formation. 2005,AACR. p. 7874-7879.
    2. Shachaf, C.M. and D. W. Felsher, Tumor dormancy and MYC inactivation: pushing cancer to the brink of normalcy. Cancer Research, 2005. 65(11): p. 4471-4474.
    3. Hoffman, B., et al., The proto-oncogene c-myc in hematopoietic development and leukemogenesis. Oncogene, 2002. 21: p. 3414-3421.
    4. Wyllie, A. H., et al., Adrenocortical cell deletion: the role of ACTH. The Journal of Pathology, 1973. 111(2).
    5. King, K.L. and J.A. Cidlowski, CELL CYCLE REGULATION AND APOPTOSIS 1. Annual Review of Physiology, 1998. 60(1): p. 601-617.
    6. Evan, G. and T. Littlewood, A matter of life and cell death. Science, 1998. 281(5381): p. 1317.
    7. Loewer, A. and G. Lahav, Cellular conference call: external feedback affects cell-fate decisions. Cell, 2006. 124(6): p. 1128-1130.
    8. Shmueli, A. and M. Oren, Life, death, and ubiquitin: taming the mule. Cell, 2005. 121(7): p. 963-965.
    9. Vermeulen, K., D. R. Bockstaele, and Z. N. Berneman, Apoptosis: mechanisms and relevance in cancer. Annals of Hematology, 2005. 84(10): p. 627-639.
    10. Wu, S., et al., hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with Salvador and warts. Cell, 2003. 114(4): p. 445-456.
    11. Adams, J. M. and S. Cory, Life-or-death decisions by the Bc1-2 protein family. Trends in Biochemical Sciences, 2001. 26(1): p. 61-66.
    12. Harvey, K. F., C.M. Pfleger, and I. K. Hariharan, The Drosophila Mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis. Cell,2003. 114(4): p. 457-467.
    13. Wu, J., et al., Unscheduled CDK1 activity in Gl phase of the cell cycle triggers apoptosis in X-irradiated lymphocytic leukemia cells. Cellular and Molecular Life Sciences (CMLS), 2006. 63(21): p. 2538-2545.
    14. Bartek, J. and J. Lukas, DNA damage checkpoints: from initiation to recovery or adaptation. Current opinion in cell biology, 2007. 19(2): p. 238-245.
    15. Esashi, F., et al., CDK-dependent phosphorylation of BRCA2 as a regulatory mechanism for recombinational repair. Nature, 2005. 434: p. 598-604.
    16. Huang, H., et al., CDK2-dependent phosphorylation of FOXO1 as an apoptotic response to DNA damage. 2006, American Association for the Advancement of Science, p. 294-297.
    17. Yuan, Z., et al., Activation of FOXO1 by Cdkl in cycling cells and postmitotic neurons. Science, 2008. 319(5870): p. 1665.
    1. Hatakeyama, S., et al., Targeted destruction of c-Myc by an engineered ubiquitin ligase suppresses cell transformation and tumor formation. 2005, AACR. p. 7874-7879.
    2. Shachaf, C.M. and D. W. Felsher, Tumor dormancy and MYC inactivation: pushing cancer to the brink of normalcy. Cancer Research, 2005. 65(11):p. 4471-4474.
    3. Hoffman, B., et al., The proto-oncogene c-myc in hematopoietic development and leukemogenesis. Oncogene, 2002. 21: p. 3414-3421.
    4. Wu, J., et al., Unscheduled CDK1 activity in Gl phase of the cell cycle triggers apoptosis in X-irradiated lymphocytic leukemia cells. Cellular and Molecular Life Sciences (CMLS), 2006. 63(21): p. 2538-2545.
    5. Esashi, F., et al., CDK-dependent phosphorylation of BRCA2 as a regulatory mechanism for recombinational repair. Nature, 2005. 434: p. 598-604.
    6. Huang, H., et al., CDK2-dependent phosphorylation of FOXOl as an apoptotic response to DNA damage. 2006, American Association for the Advancement of Science, p. 294-297.
    7. Yuan, Z., et al., Activation of FOXO1 by Cdkl in cycling cells and postmitotic neurons. Science, 2008. 319(5870): p. 1665.
    1.Arstila, A.U. and B.F. Trump, Studies on cellular autophagocytosis. The formation of autophagic vacuoles in the liver after glucagon administration. The American Journal of Pathology, 1968. 53(5): p. 687.
    2.Wang, C.W. and D.J. Klionsky, The molecular mechanism of autophagy. Molecular Medicine, 2003. 9(3-4): p. 65.
    3.Yang, Z., et al., Atg22 recycles amino acids to link the degradative and recycling functions of autophagy. Molecular biology of the cell, 2006. 17(12): p. 5094.
    4.Shintani, T. and D.J. Klionsky, Autophagy in health and disease: a double-edged sword. Science, 2004. 306(5698): p. 990-995.
    5.Kondo, Y., et al., The role of autophagy in cancer development and response to therapy. Nature Reviews Cancer, 2005. 5(9): p. 726-734.
    6.Qu, X., et al., Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. Journal of Clinical Investigation, 2003. 112(12): p. 1809-1820.
    7.Liang, X.H., et al., Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature, 1999. 402(6762): p. 672.
    8.Scarlatti, F., et al., Ceramide-mediated macroautophagy involves inhibition of protein kinase B and up-regulation of beclin 1. Journal of Biological Chemistry, 2004. 279(18): p. 18384.
    9.Akao, Y., Y. Nakagawa, and K. Akiyama, Arsenic trioxide induces apoptosis in neuroblastoma cell lines through the activation of caspase 3 in vitro. FEBS letters, 1999. 455(1-2): p. 59-62.
    10.Komatsu, M., et al., Loss of autophagy in the central nervous system causes neurodegeneration in mice. NATURE-LONDON-, 2006. 441(7095): p. 880.
    11.Hara, T., et al., Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. NATURE-LONDON-, 2006. 441(7095): p. 885.
    12. Yamamoto, A., M.L. Cremona, and J.E. Rothman, Autophagy-mediated clearance of huntingtin aggregates triggered by the insulin-signaling pathway. The Journal of cell biology, 2006. 172(5): p. 719.
    1. Burnett, G. and E.P. Kennedy, The enzymatic phosphorylation of proteins. Journal of Biological Chemistry, 1954. 211(2): p. 969-980.
    2. Hubbard, M.J. and P. Cohen, On target with a new mechanism for the regulation of protein phosphorylation. Trends in biochemical sciences, 1993.18(5): p. 172.
    3. Fischer, E.H. and E.G. Krebs, Conversion of phosphorylase b to phosphorylase a in muscle extracts. Journal of Biological Chemistry, 1955. 216(1): p. 121-132.
    4. Sutherland, E.W. and W.D. Wosilait, Inactivation and activation of liver phosphorylase. Nature, 1955.175(4447): p. 169-170.
    5. Krebs, E.G., D.J. Graves, and E.H. Fischer, Factors affecting the activity of muscle phosphorylase b kinase. Journal of Biological Chemistry, 1959. 234(11): p. 2867-2873.
    6. Mazzarello, P., A unifying concept: the history of cell theory. Nature Cell Biology, 1999.1: p. E13-E15.
    7. Manning, G, et al., The protein kinase complement of the human genome. Science, 2002. 298(5600): p. 1912-1934.
    8. Duli, V., et al., p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1arrest. Cell, 1994. 76(6): p. 1013.
    9. Jeffrey, P.D., et al., Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature, 1995. 376(6538): p. 313-320.
    10. Serrano, M., G.J. Harnnon, and D. Beach, A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature, 1993. 366(6456): p. 704-707.
    11. Nurse, P., Genetic control of cell size at cell division in yeast. Nature, 1975. 256(5518): p. 547-551.
    12. Masui, Y. and C.L. Markert, Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes. The Journal of experimental zoology, 1971. 177(2): p.129.
    13. Smith, L.D. and R.E. Ecker, The interaction of steroids with Rana pipiens Oocytes in the induction of maturation. Dev Biol, 1971. 25(2): p. 232-47.
    14. Gautier, J., et al., Purified maturation-promoting factor contains the product of a Xenopus homolog of the fission yeast cell cycle control gene cdc 2 ?+ ?, Cell(Cambridge), 1988. 54(3): p. 433-439.
    15. Arion, D., et al., cdc2 is a component of the M phase-specific histone H1 kinase: evidence for identity with MPF. Cell, 1988. 55(2): p. 371-378.
    16. Dunphy, W.G., et al., The Xenopus cdc2 protein is a component of MPF, a cytoplasmic regulator of mitosis. Cell, 1988. 54(3): p. 423-431.
    17. Labbe, J.C., et al., Activation at M-phase of a protein kinase encoded by a starfish homologue of the cell cycle control gene cdc2. Nature, 1988. 335: p. 251-254.
    18. Labbe, J.C., et al., MPF from starfish oocytes at first meiotic metaphase is a heterodimer containing one molecule of cdc2 and one molecule of cyclin B. The EMBO Journal, 1989. 8(10): p. 3053.
    19. Draetta, G, et al., Cdc2 protein kinase is complexed with both cyclin A and B: evidence for proteolytic inactivation of MPF. Cell, 1989. 56(5): p. 829-838.
    20. Booher, R. and D. Beach, Involvement of cdc13+ in mitotic control in Schizosaccharomyces pombe: possible interaction of the gene product with microtubules. The EMBO Journal, 1988. 7(8): p. 2321.
    21. Oberhammer, F.A. and K.F. Hochegger, G. Tiefenbacher, R. & Pavelka, M. Chromatin condensation during apoptosis is accompanied by degradation of lamin A+ B, without enhanced activation of cdc2 kinase. J. Cell Biol, 1994. 126: p. 827-837.
    22. Norbury, C., et al., CDC 2 ACTIVATION IS NOT REQUIRED FOR THYMOCYTE APOPTOSIS. Biochemical and biophysical research communications(Print), 1994. 202(3): p. 1400-1406.
    23. Nigg, E.A., Mitotic kinases as regulators of cell division and its checkpoints. Nature Reviews Molecular Cell Biology, 2001. 2(1): p. 21-32.
    24. Yun, J., et al., p53 negatively regulates cdc2 transcription via the CCAAT-binding NF-Y transcription factor. Journal of Biological Chemistry, 1999. 274(42): p. 29677-29682.
    25. Taylor, W.R., et al., Mechanisms of G2 arrest in response to overexpression of p53. Molecular biology of the cell, 1999.10(11): p. 3607.
    26. Smits, V.A.J. and R.H. Medema, Checking out the G2/M transition. BBA-Gene Structure and Expression, 2001.1519(1-2): p. 1-12.
    27. LeBlanc, A., et al., Caspase-6 role in apoptosis of human neurons, amyloidogenesis, and Alzheimer's disease. Journal of Biological Chemistry, 1999. 274(33): p.23426-23436.
    28. Carr, A.M. DNA structure checkpoints in fission yeast. 1995: Elsevier.
    29. Sherr, C.J. and J.M. Roberts, Living with or without cyclins and cyclin-dependent kinases. Genes & development, 2004.18(22): p. 2699-2711.
    30. Ongkeko, W., Inactivation of Cdc2 increases the level of apoptosis induced by DNA damage. 1995. p. 2897-2904.
    31. Itzhaki, J.E., C.S. Gilbert, and A.C.G. Porter, Construction by gene targeting in human cells of a'conditional'CDC2 mutant that rereplicates its DNA. Nature genetics, 1997.15(3): p. 258-265.
    32. O'Connor, D.S., et al., Regulation of apoptosis at cell division by p34cdc2 phosphorylation of survivin. Proceedings of the National Academy of Sciences, 2000: p.240390697.
    33. Altieri, D.C., Survivin, cancer networks and pathway-directed drug discovery. 2008.
    34. Zhou, B.B., et al., Caspase-dependent activation of cyclin-dependent kinases during Fas-induced apoptosis in Jurkat cells. 1998, National Acad Sciences. p. 6785-6790.
    35. Yu, D., et al., Overexpression of ErbB2 blocks Taxol-induced apoptosis by upregulation of p21Cip1, which inhibits p34Cdc2 kinase. Molecular Cell, 1998. 2(5): p. 581-591.
    36. Konishi, Y., et al., Cdc2 phosphorylation of BAD links the cell cycle to the cell death machinery. Molecular Cell, 2002. 9(5): p. 1005-1016.
    37. Debatin, K.M., D. Poncet, and G. Kroemer, Chemotherapy: targeting the mitochondrial cell death pathway. Oncogene, 2002. 21: p. 8786-8803.
    38. Vincent, ?., et al., Constitutive Cdc25B tyrosine phosphatase activity in adult brain neurons with M phase-type alterations in Alzheimer's disease. Neuroscience, 2001. 105(3): p. 639-650.
    39. Mackey, M.A., Uncoupling of M-phase kinase activation from the completion of S-phase by heat shock. Cancer Research, 1996. 56(8): p. 1770-1774.
    40. Heald, R., M. McLoughlin, and F. McKeon, Human weel maintains mitotic timing by protecting the nucleus from cytoplasmically activated Cdc2 kinase. CELL-CAMBRIDGE MA-, 1993. 74: p. 463-463.
    41. Chang, B.D., et al., p21 Waf1/Cip1/Sdi1-induced growth arrest is associated with depletion of mitosis-control proteins and leads to abnormal mitosis and endoreduplication in recovering cells. Space, 2000.19(17): p. 2165-2170.
    42. Graves, P.R., et al., The Chkl protein kinase and the Cdc25C regulatory pathways are targets of the anticancer agent UCN-01. Journal of Biological Chemistry, 2000. 275(8): p. 5600-5605.
    43. Curman, D., et al., Inhibition of the G2 DNA damage checkpoint and of protein kinases Chk1 and Chk2 by the marine sponge alkaloid debromohymenialdisine. Journal of Biological Chemistry, 2001. 276(21): p. 17914-17919.
    44. Hu, B., et al., The radioresistance to killing of A1-5 cells derives from activation of the Chkl pathway. Journal of Biological Chemistry, 2001. 276(21): p. 17693-17698.
    45. Tsihlias, M.F.J., M.F.L. Kapusta, and M.D.F.P.J. Slingerland, The prognostic significance of altered cyclin-dependent kinase inhibitors in human cancer. Annual review of medicine, 1999. 50(1): p. 401-423.
    46. Obaya, A.J., et al., The proto-oncogene c-myc acts through the cyclin-dependent kinase (Cdk) inhibitor p27Kipl to facilitate the activation of Cdk4/6 and early G1 phase progression. Journal of Biological Chemistry, 2002. 277(34): p. 31263-31269.
    47. Meijer, L. and P. Pondaven, Cyclic activation of histone H1 kinase during sea urchin egg mitotic divisions. Experimental cell research, 1988.174(1): p. 116.
    48. Rialet, V. and L. Meijer, A new screening test for antimitotic compounds using the universal M phase-specific protein kinase, p 34 □cdc 2 □/cyclin B□cdc 13 □, affinity-immobilized on p 13 □suc 1 □ -coated microtitration plates. Anticancer research, 1991.11(4): p. 1581-1590.
    49. Schulze-Gahmen, U., et al., Multiple modes of ligand recognition: crystal structures of cyclin-dependent protein kinase 2 in complex with ATP and two inhibitors, olomoucine and isopentenyladenine. Proteins: Structure, Function, and Genetics, 1995.22(4).
    50. Richon, V.M., et al., Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. 2000, National Acad Sciences, p. 10014-10019.
    51. Chuang, L.S.H., et al., Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1. Science, 1997. 277(5334): p. 1996.
    52. Stromblad, S., et al., Suppression of p53 activity and p21WAF1/CIP1 expression by vascular cell integrin αvβ3 during angiogenesis. Journal of Clinical Investigation, 1996. 98(2): p. 426-433.
    53. Serrano, M., et al., Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell, 1997. 88(5): p. 593-602.
    54. Klaes, R., et al., Overexpression of p16INK4A as a specific marker for dysplastic and neoplastic epithelial cells of the cervix uteri. International Journal of Cancer, 2001.92(2).
    55. Jy, F, 5-aza-2'-deoxycitydine induces demethylation and up-regulates transcription of p16INK4A gene in human gastric cancer cell lines. Chinese medical journal, 2004.117(1): p. 99-103.
    56. Sherr, C.J. and J.M. Roberts, CDK inhibitors: positive and negative regulators of G1-phase progression. 1999, Cold Spring Harbor Laboratory Press, p. 1501-1512.
    57. Masaki Inagaki, J.G.D. and J.P. Moulinoux, Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur. J. Biochem, 1997. 243: p. 527-536.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700