用户名: 密码: 验证码:
褪黑素对体内体外高脂诱导胰岛素抵抗的预防作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2型糖尿病的发病主要是在遗传基础上综合多种环境因素的结果,其中高糖高脂饮食是一种重要的环境因素。2型糖尿病的主要临床特征是胰岛素抵抗及胰岛β细胞分泌功能异常,其中胰岛素抵抗是致病的主要因素,贯穿于其发生、发展的整个过程。已知肥胖所致的血浆游离肪酸浓度(FFA)增高是引起胰岛素抵抗和的重要危险因素之一。流行病学调查和实验室研究表明,饮食中脂肪摄入过多或脂肪过量储存(肥胖)均可导致胰岛素抵抗,血浆游离脂肪酸(FFA)浓度与肥胖、2型糖尿病等多种胰岛素抵抗状态相关,血浆升高的FFA是导致胰岛素抵抗的决定性因素,也是胰岛素抵抗脂毒学说的重要内容。
     肝脏是机体调节葡萄糖代谢和脂代谢的重要器官,有研究发现FFA能促进肝脏葡萄糖输出,降低肝脏对胰岛素的敏感性,诱导肝脏胰岛素抵抗。肝脏是胰岛素作用的一个重要靶器官,肝脏中胰岛素信号转导途径的缺陷,会直接关系到全身胰岛素抵抗的发生和2型糖尿病的发病,因此对肝脏胰岛素抵抗发生机理和预防的研究已越来越受到人们的重视,随着研究不断的深入,将有利于我们进一步了解2型糖尿病的发病机理,并探寻早期预防方法。
     营养过剩和体力活动减少导致细胞内葡萄糖和游离脂肪酸升高,线粒体的能量转换加快,自由基(ROS)的生成增加导致细胞氧化还原状态失衡,使细胞产生氧化应激。许多证据显示,氧化应激参与了胰岛素抵抗的形成,氧化应激也是糖尿病各种慢性并发症的共同基础,是2型糖尿病的重要致病因素。提高机体的抗氧化能力应该可以对抗高血糖和高游离脂肪酸的这种作用。
     L02细胞源于人胚胎肝细胞,保留了原代肝细胞的许多基本表型和功能,包括细胞膜成分、代谢通路、生理浓度的各种酶以及活性基因表达,是很好的研究肝脏代谢和胰岛素信号传导的体外实验模型。
     本课题体外实验以L02细胞为研究对象,用饱和脂肪酸软脂酸(palmitate,PA)和多不饱和脂肪酸亚油酸(Linoleic acid,LA)孵育L02细胞,诱导L02细胞胰岛素抵抗。为观察FFA对胞内胰岛素信号通路的影响,对胰岛素信号传递的主要蛋白如胰岛素受体(IR)、胰岛素受体底物IRS1/2、蛋白激酶B(PKB)、糖原合酶激酶3β(GSK-3β)、S6K、FOXO1等的活性变化进行检测;为观察FFA对细胞内抗氧化防御体系的影响,对细胞内活性氧ROS水平以及ROS活化的氧化应激敏感激酶c-Jun氨基末端激酶(c-jun N-terminal kinase)JNK活性进行测定;在PA孵育同时加入褪黑素(melatonin),一种体内最强抗氧化作用的自由基清除剂,测定以上同样指标,观察褪黑素是否能影响胰岛素信号的传递而改善胰岛素抵抗;并分析褪黑素对LO2细胞形成胰岛素抵抗的预防作用及其机制。在体内动物实验以SD大鼠为研究对象,高脂饮食诱导形成大鼠胰岛素抵抗模型,同时每天腹腔注射给予褪黑素,通过检测血脂、血糖、血胰岛素、血和肝脏中氧化及抗氧化指标,以及鼠肝中以上多种信号蛋白、激酶的活性变化,观察分析高脂饮食诱导大鼠氧化应激和全身胰岛素抵抗的关系以及褪黑素的预防作用和机制,为临床上有效的预防和治疗胰岛素抵抗和2型糖尿病奠定理论基础和提供实验依据。
Type 2 diabetes is characterized by insulin resistance as well as pancreaticβ-celldysfunction, and is a multifactorial event, which is linked with genetic and enviromentalfactors, including hyperglycemia and high-fat diet. Insulin resistance is a cardial feature oftype 2 diabetes and often precedes the onset of type 2 diabetes by many years. Increasedplasma concentration of free fatty acids (FFA) is associated with many insulin resistancestates,including obesity and type 2 diabetes,and have been proposed to play a pathogenicrole in both peripheral and hepatic insulin resistance. FFA cause lipotoxicity to cells, whichfurther increase insulin resistance in muscle and liver and decrease insulin secretion bydamaging pancreatic beta-cells, leading to more severe diabetes.
     The liver plays a major role in glucose homeostasis, based on its capacity for net glucoseuptake from the blood during hyperglycaemia, and net glucose release duringpostabsorptive and fasting periods. The lives is also an insulin sensitive organ that play akey role in the regulation of the whole body energy homeostasis.Insulin resistance inmetaboliccally very active hepatocytes is expected to have important systemicconsequences. Insulin resistance, particularly in the liver, is a critical feature of type 2diabetes mellitus. Although insulin resistance is a multifactorial disorder involving multiplemechanisms, a suspected cause of insulin resistance in the liver is the increased delivery offatty acids to this tissue and the hepatocellular deposition of excess lipid. A number ofstudies have indicated excessive supply of fatty acids to the liver might be a contributing factor to hepatic insulin resistance. The elevated plasma FFA can increase postabsorptivehepatic glucose production, reduce the ability of insulin to suppress hepatic glucose output,and attenuates insulin signal transduction.Thus, insight into the pathogenesis of hepaticinsulin resistance will pave the way to new therapeutic modalities for type 2 diabetes.Less physical activity and ovemutrition cause high glucose and elevated FFA in cells. Highglucose results in oxidative stress due to increased production of mitochondrial ROS andglucose autoxidation. Elevated FFA can cause oxidative stress due to increasedmitochondrial uncoupling andβ-oxidation, leading to the increased production of ROS.There is considerable evidence that hyperglycemia and FFA-induced oxidative stress playsa key role in causing late complications in type 1 and type 2 diabetes, along with insulinresistance. Studies with antioxidants suggest that new strategies may become available totreat these conditions
     Human L02 liver cell line is an appropriate in vitro experimental model for study ofhepatic insulin signaling and glucose metabolism, which derived from healthy human liver,retaining the primary hepatocyte phenotype and function including plasma membranecomponents, metabolic pathways, physiological enzyme levels, and active gene expression.
     In the present in vitro study, we investigated direct effects of saturated fatty acid palmiticacid (PA) and polyunsaturated fatty acid Linoleic acid (LA)on intracellular redox states andkey components of intracellular insulin signaling cascades as well as stress-sensitivepathway including insulin receptor (IR), insulin receptor substrate1/2(IRS1/2), PKB,GSK3β, FOXO, S6K and c-jun N-terminal kinase (JNK), in L02 cells with or withouttreatment of melatonin, a kind of potent antioxidant.
     In the present in vivo study, after the rats were fed for 10 weeks, we investigated thealtered endogenous antioxidant defenses of the rats injected with melatoninintraperitoneally daily. We also measured fasting blood glucose (FPG) , fasting insulin(FINS) , triglyceride (TG), total cholesterin (TC), free fatty acids(FFA), high densitylipoprotein- cholesterin (HDL-C) in rat plasma. The focus was on key components of intracellular insulin signaling cascades as well as stress-sensitive pathway , including IR,IRS1/2, PKB, GSK3β, FOXO, and JNK in rat liver. Our study demonstrated melatonin canprotect L02 cells treated with FFA and rats fed with high fat diet against high-lipid-inducedinsulin resistance in vitro and in vivo.
引文
1 Nordlie RC, Foster JD, and Lange AJ.Regulation of glucose production by the liver. Annu Rev Nutr. 2006;19: 379-406,
    2. Hong EG, Jung DY, Ko HJ et al. Nonobese, insulin-deficient Ins2Akita mice develop type 2 diabetes phenotypes including insulin resistance and cardiac remodeling. Am J Physiol Endocrinol Metab. 2007 ;293(6):E1687-96
    3. Pankov IuA. Achievements in molecular genetics studies of diabetes mellitus. Biomed Khim. 2005;51(2):107-17
    4 Michael MD, Kulkarni RN, Postic C et al.Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol Cell. 2008 Jul;6(1):87-97
    5.Reaven GM. Banting Lecture 2006. Role of insulin resistance in human disease. 2006.Nutrition, 2006; 13(1): 65.
    6. McGarry JD. Banting lecture 2001:dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes, 2002, 51(1): 7-18.
    7. Marshall JA, Bessesen DH, Hamman RF. High saturated fat and low starch and fibre are associated with hyperinsulinaemia in a non-diabetic population: the San Luis Valley Diabetes Study. Diabetologia, 2008, 40(4): 430-8.
    8 Fukuchi S, Hamaguchi K, Seike M, et al. Role of fatty acid composition in the development of metabolic disorders in sucrose-induced obese rats. Exp Biol Med (Maywood), 2007, 229(6): 486-93.
    9.Saltiel AR. New perspectives into the molecular pathogenesis and treatment of type 2 diabetes. Cell 2006; 104: 517-529,
    10 Michael MD, Kulkarni RN, Postic C, et al. Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol Cell 2008;6: 87-97,
    11.Biochemistry and molecular cell biology of diabetic complications.Brownlee M.Nature.2007;D13;414(6865):813-20
    12. Bloch-Damti A, Bashan N Proposed mechanisms for the induction of insulin resistance by oxidative stress. Antioxid Redox Signal. 2005 Nov-Dec;7(11-12): 1553-67
    13. Fridlyand LE, Philipson LH Reactive species and early manifestation of insulin resistance in type 2 diabetes. Diabetes Obes Metab. 2006;8(2):136-45.
    14. Robertson RP Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes..J Biol Chem. 2004 Oct 8;279(41):42351-4.
    15. Evans JL, Maddux BA, Goldfme ID.et al.The molecular basis for oxidative stress-induced insulin resistance..Antioxid Redox Signal. 2005 7(7-8): 1040-52.
    16. Houstis N, Rosen ED, Lander ES. Reactive oxygen species havea causal role in multiple forms of insulin resistance. Nature 2006;440:9
    17. Pharmacological actions of melatonin in oxygen radical pathophysiology Reiter R,Tang L, Garcia JJ, Mu(?)oz-Hoyos A. Life Sci. 1997;60(25):2255-71
    18 Daniela Melchiorri, Ewa Sewerynek et al.A review of the evidence supporting melatonin's role as an antioxidant J Pineal Res. 2007;18(1):1-11.
    19 Reiter RJ, Carneiro RC, Oh CS,et al.Melatonin in relation to cellular antioxidative defense mechanisms. Horm Metab Res. 2006 29(8):363-72
    20. Reiter RJ, Guerrero JM, Garcia JJ,et al Reactive oxygen intermediates, molecular damage, and aging. Relation to melatonin. Ann N Y Acad Sci. 2008 ;20;854:410-24
    21. Reiter RJ, Tan DX, Osuna C, Gitto E et al. Actions of melatonin in the reduction of oxidative stress. A review J Biomed Sci,2007;7(6):444-58
    22. Tan DX, Manchester LC. Melatonin: detoxification of oxygen and nitrogen-based toxic reactants Reiter RJ,. Adv Exp Med Biol. 2008;527:539-48
    23. Frankie B. Stentz, Abbas E. Kitabchi et al. Palmitic acid-induced activation of human T-lymphocytes andaortic endothelial cells with production of insulin receptors,reactive oxygen species, cytokines, and lipid peroxidation Biochemical and Biophysical Research Communications 2006;346:721-726
    24. Carine Duvala, Yolanda Camaraa, Elayne Hondares et al.Overexpression of mitochondrial uncoupling protein-3 does not decrease production of the reactive oxygen species, elevated bypalmitate in skeletal muscle cells FEBS Letters 2007;581 955-96
    25. Saltiel AR and Kahn CR.et al Insulin signalling and the regula-tion of glucose and lipid metabolism. Nature 2001;414: 799-806,
    26. Klover PJ, Mooney RA. Hepatocytes: critical for glucose homeostasis. Int J Biochem Cell Biol. 2004 May;36(5):753-8
    27. Feldstein AE, Werneburg NW,CanbayA,et al.. Free fatty acids promote hepatic lipotoxicity by stimulating TNF-alpha expression via a lysosomal pathway. Hepatology.2008;40(l): 185-94
    28. Yun MR, Lee JY, Park HS, Heo HJ, Park JY, Bae SS, Hong KW, Sung SM, Kim CD.Oleic acid enhances vascular smooth muscle cell proliferation via phosphatidylinositol 3-kinase/Akt signaling pathway. Pharmacol Res. 2006 Aug;54(2):97-102
    29. Wang XL, Zhang L, Youker K, Zhang MX, Wang J, LeMaire SA, Coselli JS, Shen YH.Free fatty acids inhibit insulin signaling-stimulated endothelial nitric oxide synthase activation through upregulating PTEN or inhibiting Akt kinase. Diabetes.2006;55(8):2301-10.
    30. Rother KI,Imai Y, Caruso M, Beguinot F, Formisano P,and Accili D. Evidence that IRS-2 phosphorylation is required for insulin action in hepatocytes. J Biol Chem 2008;273: 17491-17497,.,
    31. Taha C and Klip A. The insulin signaling pathway. J Membr Biol 2007,169:1-12,
    32. Saltiel AR. New perspectives into the molecular pathogenesis and treatment of type 2 diabetes. Cell 2001;104: 517-529,.
    33. Bevilacqua S, Bonadonna R, Buzzigoliet al.. Acuteelevation of free fatty acid levels leads to hepatic insulin resis-tance in obese subjects. Metabolism .2007.36: 502-506,
    34. Boden G, Chen X, Capulong E, and Mozzoli M. Effects of free fatty acids on gluconeogenesis and autoregulation of glucose production in type 2 diabetes. Diabetes 2006;50:810-816,.
    35. Kubota N, Tobe K, Terauchi Y, Eto K,et al. Disruption of insulin receptor substrate 2 causes type 2 diabetes because of liver insulin resistance and lack of compensatory beta-cell hyperplasia. Diabetes 2000,49: 1880-1889,
    36. Withers DJ, Gutierrez JS, Towery H, Burks DJ, Ren JM Previs S, Zhang Y, Bernal D,Pons S, Shulman GI,Bonner-Weir S, and White MF. Disruption of IRS-2 causes type 2 diabetes in mice. Nature 1998;391: 900-904,
    37. Coffer PJ, Jin J, Woodgett JR Protein kinase B (c-Akt): a multifunctional mediator of phosphatidylinositol 3-kinase activation.. Biochem J. 1998 Oct 1;335 ( Pt 1):1-13. Review.
    38. Vanhaesebroeck B ,Alessi D R. The PI3K -PDK 1 connection : more than just a road to PK B Biochem J ,2000 ,346 :561-576
    39. Welch H, Eguinoa A, Stephens LR, et al. Protein kinase B and rac are activated in parallel within a phosphatidylinositide 3OH-kinase-controlled signaling pathway. J Biol Chem, 2008, 273(18): 11248-11256.
    40. Takata M, Ogawa W, Kitamura T, et al. Requirement for Akt (protein kinase B) in insulin-induced activation of glycogen synthase and phosphorylation of 4E-BP1 (PHAS-1).J Biol Chem,2006, 274(29): 20611-8.
    41. Peak M, Rochford JJ, Borthwick AC, et al. Signalling pathways involved in the stimulation of glycogen synthesis by insulin in rat hepatocytes. Diabetologia, 2005, 41(1): 16-25.
    42. Daitoku H, Yamagata K, Matsuzaki H, et al. Regulation of PGC-1 promoter activity by protein kinase B and the forkhead transcription factor FKHR. Diabetes, 2003, 52(3): 642-9.
    43. Schmoll D, Walker KS, Alessi DR, et al. Regulation of glucose-6-phosphatase gene expression by protein kinase Balpha and the forkhead transcription factor FKHR. Evidence for insulin response unit-dependent and -independent effects of insulin on promoter activity.J Biol Chem, 2000, 275(46): 36324-33.
    44. Eldar-Finkelman H, Krebs EG. Phosphorylation of insulin receptor substrate 1 by glycogen synthase kinase 3 impairs insulin action. Proc Natl Acad Sci USA, 1997, 94(18):9660-4.
    45. Lochhead PA, Coghlan M, Rice SQ, et al. Inhibition of GSK-3 selectively reduces glucose-6-phosphatase and phosphatase and phosphoenolypyruvate carboxykinase gene expression. Diabetes, 2007, 50(5): 937-46.
    46. Nikoulina SE, Ciaraldi TP, Mudaliar S, et al. Potential role of glycogen synthase
    kinase-3 in skeletal muscle insulin resistance of type 2 diabetes. Diabetes, 2000, 49(2):263-271.
    47. Ring DB, Johnson KW, Henriksen EJ, et al. Selective glycogen synthase kinase-3 inhibitors potentiate insulin activation of glucose transport and utilization in vitro and in vivo. Diabetes, 2003, 52(3): 588-595.
    48. JeBailey L, Wanono O, Niu W, Roessler J, Rudich A, Klip A.Ceramide- and oxidant-induced insulin resistance involve loss of insulin-dependent Rac-activation and actin remodeling in muscle cells. Diabetes 2007;56: 394-403,.
    49. Rudich A, Tirosh A, Potashnik R, Khamaisi M, Bashan N. Lipoic acid protects against oxidative stress induced imapirment in insulin stimulation of protein kinase B and glucose transport in 3T3-L1 adipocytes. Diabetologia 2006;42: 949-957,.
    50. Brunet A, Bonni A, Zigmond MJ, Lin MZ. et al. Akt promotes cell survival by phosphorylatin and inhibiting a forkhead transcription factor. Cell 1999;96, 857-868
    51. Nakae J, Park BC, Accili D.. et al. Insulin stimulates phosphorylation of the forkhead transcription factor FKHR on serine 253 through Wortmannin-sensitive pathway. J. Biol. Chem. 1999;274, 15982-15985
    52. Kops GJ, de Ruiter ND, De Vries-Smits AM. et al. Direct control of the Forkhead transcriptio factor AFX by protein kinase B. Nature 1999;398, 630-634
    53. Zhao X, Gan L, Pan H, Kan D. et al. Multiple elements regulate nuclear/cyto-plasmic shuttling of FOXO1: characterization of phosphorylation and 14-3-3-dependent and-independent mechanisms. Biochem. J. 2004 15;378(Pt3):839-49
    54. Barthel A, Schmoll D, Unterman TG, et al. FoxO proteins in insulin action and metabolism. Trends Endocrinol Metab. 2005;16(4):183-9
    55. Wolfram C, Asilmaz E, Luca E, Friedman JM, Stoffel M. Foxa2 regulates lipid metabolism and ketogenesis in the liver during fasting and in diabetes. Nature 2004;432: 1027-1032
    56. Lantz KA, Vatamaniuk MZ, Brestelli JE, Friedman JR, Matschinsky FM, Kaestner KH. Foxa2 regulates multiple pathways of insulin secretion. J Clin Invest 2004; 114:512-520
    57. Zhang W, Patil S, Chauhan B,et al. FoxOl regulates multiple metabolic pathways in the liver: effects on gluconeogenic, glycolytic, and lipogenic gene expression. J Biol Chem 2006; 281: 10105-10117
    58. Nakae J, Biggs WH 3rd, Kitamura T et al. Regulation of insulin action and pancreaticbeta-cell function by mutated alleles of the gene encoding forkhead transcription factor FoxO1. Nat. Genet. 2007;32, 245-253
    59. Altomonte J, Richter A, Harbaran S et al. Inhibition of FoxOl function is associated with improved fasting glycemia in diabetic mice. Am. J. Physiol.Endocrinol. Metab.2007;285,E718-E728o
    60. Qu S, Al tomonte J , Perdomo G, et al. Aberrant Forkhead box 01 function is associated with impaired hepatic metabolism. Endocrinology 2006; 147: 5641-5652
    61. J. Avruch, K. Hara, Y. Lin, M. Liu, X. Long, S. Ortiz-Vega, K.Yonezawa, Insulin and amino-acid regulation of mTOR signaling and kinase activity through theRhebGTPase,Oncogene 25 (2006) 6361-6372.
    62. Loewith R, Jacinto E, Wullschleger S, et al. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell, 2005,10:457-468
    63. Um SH, Frigerio F, Watanabe M,et al Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature. 2007 Sep 9;431(7005):200-5.
    64. L.Khamzina, A. Veilleux, S. Bergeron, A. Marette, Increased activation of the mammalian target of rapamycin pathway in liver and skeletal muscle of obese rats: possible involvement in obesity-linked insulin resistance, Endocrinology 146 (2005) 1473-1481
    65. D.G. Hardie, AMP-activated protein kinase as a drug target, AnnuRev. Pharmacol.Toxicol. 47 (2007) 185-210.65.
    66. Stapleton D, Mitchelhill KI, Gao G, Widmer J, Michell BJTeh T, House CM, Fernandez CS, Cox T, Witters LA, anKemp BE. Mammalian AMP-activated protein kinase subfamily.J Biol Chem 271: 611-614,1996.78.
    67. Winder WW and Hardie DG. AMP-activated protein kinase, ametabolic master switch:possible roles in type 2 diabetes. Am J Physiol Endocrinol Metab 277: E1-E10, 1999.,
    68. K. Inoki, T. Zhu, K.L. Guan, TSC2 mediates cellular energy responseto control cell growth and survival, Cell 115 (2003) 577-590
    69. P. Gual, T. Gremeaux, T. Gonzalez, Y. Le Marchand-Brustel, J.F.Tanti, MAP kinases and mTOR mediate insulin-induced phosphorylation of insulin receptor substrate-1 on serine residues 307, 612 and632, Diabetologia 2007; 46 1532-1542.
    70. A. Tzatsos, K.V. Kandror, Nutrients suppress phosphatidylinositol 3-kinase/Akt signaling via raptor-dependent mTOR-mediated insulinreceptor substrate 1 phosphorylation,Mol. Cell. Biol. 26 (2006);63-76.
    71. L.S. Harrington, G.M. Findlay, A. Gray, T.,et al. The TSC1-2 tumor suppressorcontrols insulin-PI3K signaling via regulation of IRS proteins, J. Cell Biol. 2004; 166 213-223.
    72 Shah OJ, Hunter T. Turnover of the active fraction of IRS 1 involves raptor-mTOR- and S6K1-dependent serine phospho-rylation in cell culture models of tuberous sclerosis. Mol Cell Biol, 2006,26(17):6425-6434o
    73. Urn SH, D'Alessio D, Thomas G Nutrient overlaod, insulinresistance, and ribosomal protein S6 kinase 1, S6K1. Cell Metab, 2006,3(6):393-402.
    74. L. Khamzina, A. Veilleux, S. Bergeron, A. Marette, Increased activation of the mammalian target of rapamycin pathway in liver and skeletal muscle of obese rats: possible involvement in obesity-linked insulin resistance, Endocrinology 146 (2005) 1473-1481.
    75. Dong, C, R. J. Davis, and R. A. Flavell.. MAP kinases in the immuneresponse. Annu.Rev. Immunol. 2006;20:55-72.
    76. Hirosumi J, Tuncman G, Chang L,et al: A central role for JNK in obesity and insulin resistance.Nature 2002;420:333-336,
    77. Aguirre V, Uchida T, Yenush L, Davis R, White MF: The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307). J Biol Chem 2007;275:9047-9054,
    78. Nguyen MT, Satoh H, Favelyukis S, Babendure JL,et al. JNK and Tumor Necrosis Factor-aMediate Free Fatty Acid-induced Insulin Resistance in 3T3-L1 Adipocytes J Biol Chem. 2007;;280(42):35361-71.
    79. Solinas G, Naugler W, Galimi F.et al Saturated fatty acids inhibit induction of insulin gene transcription by JNK-mediated phosphorylation of insulin-receptor substrates Proc Natl Acad Sci USA, 2006; 103(44): 16454-9.
    80. Kaneto H, Nakatani Y, Miyatsuka T,et al.Possible novel therapy for diabetes with cell-permeable JNK-inhibitory peptide., Nat Med. 2004 Oct;10(10):1128-32.
    81. Bennett BL, Satoh Y, Lewis AJ,et al. JNK: a new therapeutic target for diabetes.Curr Opin Pharmacol 2008;3:420-425,
    82. Nakatani Y, Kaneto H, Kawamori D, et al. Modulation of the JNK pathway in liver affects insulin resistance status. J Biol Chem 279:45803-45809, 2004
    83. Ozcan U, Cao Q, Yilmaz E, Lee AH,et al.Endoplasmic reticulum stress links obesity,insulin action, and type 2 diabetes. Science. 2004 306(5695):457-61
    84. Ozawa K, Miyazaki M, Matsuhisa M, Takano K,et al.The endoplasmic reticulum chaperone improves insulin resistance in type 2 diabetes Diabetes. 2005;54(3):657-63
    1. Zhang Y, Guo K, LeBlanc Re et al. Increasing dietary leucine intake reduces diet-induced obesity and improves glucose and cholesterol metabolism in mice via multimechanisms.. Diabetes. 2007 Jun;56(6): 1647-54
    2. Surampudi PN, John-Kalarickal J, Fonseca VA. Emerging concepts in the pathophysiology of type 2 diabetes mellitus Mt Sinai J Med. 2009;76(3):216-26
    3. O'Rourke RW. Inflammation in obesity-related diseases. Surgery.2009;Mar;145(3):255-9.
    4. Kahn BB, Flier JS. Obesity and insulin resistance J Clin Invest.2000;106(4):473-81.
    5. Marinou K,Tousoulis D, Antonopoulos AS et al. Obesity and cardiovascular disease: From pathophysiology to risk stratification ,Int J Cardiol. 2009 ;25. Epub ahead of print.
    6. Vessby B Dietary fat and insulin action in human BR JNutr. 2000; 83 Suppl 1:S91-S95.
    7. Riccardi G, Giacco R, Rivellese AA.Dietary fat, insulin sensitivity and the metabolic syndrome. Clin Nutr. 2004;23(4):447-56
    8. Lewis GF, Carpentier A, Adeli K, and Giacca A. Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type2 diabetes. Endocr Rev 2002;23:201-229,.
    9. Zeyda M, Stulnig TM. Obesity, Inflammation, and Insulin Resistance - A Mini-Review. Gerontology. 2009 ; 8. [Epub ahead of print].
    10. Hotamisligil GS, Spiegelman BM.Tumor necrosis factor: a key component of the obesity-diabetes link. Diabetes 1994;43:1271-1278
    11. Moller DE. Potential role of TNF-a in the pathogenesis of, insulin resistance and type 2 diabetes. Trends Endocrinol Metab 2000; 11:212-217
    12. Winkler G, Cseh K. Molecular mechanisms of insulin resistance in obesity and type 2 diabetes mellitus. Orv Hetil. 2009; 150 (17):771-80.
    13. Cohen B, Novick D, Rubinstein M . Modulation of insulinactivities by leptin.Science 1996;274:1185-1188
    14. Muller G, Ertl J, Gerl M, Preibisch G Leptin impairs metabolic actions of insulin in isolated rat adipocytes. J Biol Chem 1997;15:10585-10593
    15. Steppan CM, Bailey ST, Bhat S, Brown EJ,et al.The hormone resistin links obesity to diabetes. Nature 2001;409:307-312
    16. Donnelly, R., and Qu, X.. Mechanisms of insulin resistance and new pharmacological approaches to metabolism and diabetic complications. Clin. Exp.Pharmacol. Physiol. 1998;25:79-87.
    17. Frayne K.N.Insulin resistance and lipid metabolism. Curr Opin Lipidol 2000;4:197-204.
    18. Ghatta S, Srinivasan K, Kaul CL, Ramarao P.A study on alpha-adrenoceptor mediated contractile responses of high fat diet fed rat thoracic aorta. Pharmazie.2005;60(2):142-6.
    19. Srinivasan K, Patole PS, Kaul CL et al.Reversal of glucose intolerance by by pioglitazone in high fat diet-fed rats. Methods Find Exp Clin Pharmacol 2004;26(5):327-33
    20. Viswanad B, Srinivasan K, Kaul CL, Ramarao P.Effect of tempol on altered angiotensin Ⅱ and acetylcholine-mediated vascular responses in thoracic aorta isolated from rats with insulin resistance Pharmacol Res. 2006;53(3):209-15.
    21. Holvoet P.. Relations between metabolic syndrome, oxidative stress and inflammation and cardiovascular disease. Verh K Acad Geneeskd Belg.2008;70(3):193-219
    22. Ando K, Fujita T. Metabolic Syndrome and Oxidative Stress. Free Radic Biol Med.2009 Apr 29. [Epub ahead of print]
    23. Capel ID , Dorrell H M. Abnormal antioxidant defence in sometissues of congenially obese mice. Biochem J ,1984;219 :412-491
    24. Watson A M,Poloyac S M,Howard G, et al. Effect of leptin on cytochrome P2450 conjugation and antioxidant enzymes in the ob/ob mouse. Drug Metab Dispos,1999;27:695-701
    25. Vincent HK, Powers SK, Stewart DJ et al. Obesity is associated with increased myocardial oxidative stress. Int J Obes Relat Metab Disord .1999;23(1):67-74
    26. Bluher M . Adipose Tissue Dysfunction in Obesity.._Exp Clin Endocrinol Diabetes.2009 ;8. [Epub ahead of print]
    27. Shah A, Mehta N, Reilly MP et al.Adipose inflammation, insulin resistance, and cardiovascular disease. JPEN J Parenter Enteral Nutr. 2008;32(6):638-44
    28. Montilla PL,Vargas JF,Tunez IF,et al.Oxidative stress in diabetes rats in duced by streptozotocin: protective effects of melatonin. J Pineal Res, 1998:25(2):94-100
    29. Abdel-Wahab MH ,Abd-Allah AR. Possible protective effect of melatonin and/or desferrioxamine against streptozotocin-induced hyper-glycemia in mice. Pharmacol Res.2000;41(5):53353-53357
    30. Sailaja Devi MM, Suresh Y, Das. Preservation of the antioxidant status in chemically-induced diabetes mellitus by melatonin.J Pineal Res.2000;29(2):108-15
    31. Kedziora-Kornatowska K, Szewczyk-Golec K, Kozakiewicz M.et al. Melatonin improves oxidative stress parameters measured in the blood of elderly type 2 diabetic patients.. J Pineal Res,2009 ;46(3):333-7.
    32. Prunet-Marcassus B, Desbazeille M, Bros A.et al. Melatonin reduces body weight gain in Sprague Dawley rats with diet-induced obesity.Endocrinology,2003;144(12):5347-51
    33. Wolden-Hanson T, Mitton DR, McCants RL et al.Daily melatonin administration to middle-aged male rats suppresses body weight, intraabdominal adiposity, and plasma leptin and insulin independent of food intake and total body fat. Endocrinology. 2007;141(2):487-97.
    34. Ziotopoulou M, Mantzoros CS, Hileman SM, Flier JS. Differential expression of hypothalamic neuropeptides in the early phase of diet-induced obesity in mice.Am J Physiol Endocrinol Metab. 2000;279(4):E838-45.
    35. Montilla PL, Vargas JF, T(?)nez IF.et al.Oxidative stress in diabetic rats induced by streptozotocin: protective effects of melatonin. J Pineal Res. 1998;25(2):94-100
    36. Nishida S, Segawa T, Murai I, Nakagawa S.et al. Long-term melatonin administration reduces hyperinsulinemia and improves the altered fatty-acid compositions in type 2 diabetic rats via the restoration of Delta-5 desaturase activity. J Pineal Res. 2002;32(1):26-33
    37.杨文英,卜石,萧建中等.罗格列酮和二甲双胍对高脂饲养造成的胰岛素抵抗的影响中华内科杂志2004;43(4):280-283.
    38. Bitar MS, Al-Saleh E, Al-Mulla F.et al. Oxidative stress-mediated alterations in glucose dynamics in a genetic animal model of type Ⅱ diabetes. Life Sci. 2005;77(20):2552-73.
    39. Baydas G, Canatan H, Turkoglu A et al.. Comparative analysis of the protective effects of melatonin and vitamin E on streptozocin-induced diabetes mellitus (?) Pineal Res. 2002;32(4):225-30
    40. Fabio BI, Ubiratan FM, Lone Bet al.Pinealectomy cause glucose intolerance and decreases adipose cell responsivenes to insulin in rats. Am J Physiol Endocrinol Metab, 1998;275(6):E934-E939
    41. Roden M. Hepatic glucose production and insulin resistance. Wien Med Wochenschr. 2008;158(19-20):558-61
    42. Stiffin RM, Sullivan SM, Carlson GM.et al. Differential inhibition of cytosolic PEPCK by substrate analogues. Kinetic and structural characterization of inhibitor recognition. Biochemistry. 2008;47(7):2099-109
    43. Gomez-Valades AG, Mendez-Lucas A, Vidal-Alabro A et al.Pck1 gene silencing in the liver improves glycemia control, insulin sensitivity, and dyslipidemia in db/db mice. Diabetes. 2008 Aug;57(8):2199-210..
    44. Zhao X, Gan L, Pan H, Kan D. et al. Multiple elements regulate nuclear/cyto-plasmic shuttling of FOXO1: characterization of phosphorylation and 14-3-3-dependent and -independent mechanisms. Biochem. J. 2004 15;378(Pt 3):839-49.
    45. Beale EG, Harvey BJ, Forest C.et al. PCK1 and PCK2 as candidate diabetes and obesity genes. Cell Biochem Biophys 2007; 48: 89-95
    46. Gomez-Valades AG, Mendez-Lucas A, Vidal-Alabro A, Blasco FX, Chillon M,Bartrons R, Bermudez J, Perales JC. Pckl gene silencing in the liver improves glycemia control, insulin sensitivity, and dyslipidemia in db/db mice.Diabetes .2008; 57: 2199-2210
    47. Franckhauser S, Munoz S, Elias I, et al..Adipose overexpression of phosphoenolpyruvate carboxykinase leads to high susceptibility to diet-induced insulin resistance and obesity.Diabetes. 2006 Feb;55(2):273-80.
    48. Valera A, Pujol A, Pelegrin M, Bosch F.et al. Transgenic mice overexpressing phosphoenolpyruvate carboxykinase develop non-insulin-dependent diabetes mellitus. Proc Natl Acad Sci U S A.1994;91(19):9151-4.
    1. Gupta S, Barrett T, Whitmarsh AJ et al. Selective interaction of JNKprote in kinase isforms w ith transcription factors. EMBOJ, 1996,15:2760-2770.
    2. Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell, 2000,103:239-252.
    3. Claire R, Roger J. The JNK signaling transduction pathway.Current Opinion inGenetics & Development, 2002,12:14-21.
    4. Lan, K. P., C. J. Wang, J. D. Hsu, K. M. Chen, S. C. Lai, and H. H. Lee Inducedeosinophilia and proliferation in Angiostrongylus cantonensis-infected mouse brain areassociated with the induction of JAK/STAT1IAP/NF-kappaB and MEKK1/JNK signals.J.Helminthol. 2004. ;78:311-317.
    5. Chaussepied, M., D. Lallemand, M. F. Moreau, R. Adamson, R. Hall, andG. Langsley.Upregulation of Jun and Fos family members andpermanent JNK activity lead toconstitutive AP-1 activation in Theileria-transformed leukocytes. Mol. Biochem. Parasitol.1998.; 94:215-226.
    6. Behrens, A.,M. Sibilia, and E. F. Wagner.. Amino-terminal phosphorylation of c-Junregulates stress-induced apoptosis and cellular proliferation. Nat. Genet.1999;21:326-329.78:13132-13138.
    7. Leppa, S., and D. Bohmann.. Diverse functions of JNK signaling and c-Jun in stress response and apoptosis. Oncogene 1999;18:6158-6162.
    8. NGuessan, P. D., B. Schmeck, A. Ayim, A. C. Hocke, B. Brell, S. Hammer-schmidt, S.Rosseau, N. Suttorp, and S. Hippenstiel..Streptococcus pneumoniae R6x induced p38 MAPK and JNK-mediated caspase-dependent apoptosis in human endothelial cells.Thromb. Haemost. 2005; 94:295-303.
    9. Dong, C, R. J. Davis, and R. A. Flavell. 2002. MAP kinases in the immuneresponse.Annu. Rev. Immunol. 20:55-72
    10. Chang HY, Yang X, Baltimore D . Dissecting Fas signaling with an altered-specificity death-domain mutant: requirement of FADD binding for apoptosis but not Jun N-terminal kinase activation. Proc Natl Acad Sci U S A.1999;96(4):1252-6.
    11. Torii S, Egan DA, Evans RA, Reed JC . Human Daxx regulates Fas-induced apoptosis from nuclear PML oncogenic domains (PODs). EMBO J , 1999; 18: 6037-49
    12. Peffus L, Ma V, Tempest P, et al.Novel benzoxazepinone inhibitors of c-Jun N-terminal kinase 3 (JNK3) and utility as stroke therapeutics: SAR and ligand co-crystallization studies. Abstr Pap Am Chem Soc 2005; 227: U12-U13.
    13. Borsello T, Clarke P, Hirt L, et al. A peptide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia. Nat Med 2003; 9: 1180-1186.
    14. Uehara T, Xi Peng X, Bennett B, et al. c-Jun N-terminal kinase mediates hepatic injury after rat liver transplant ation. Transplantation 2004; 78: 324-332
    15. Liu Y, Bishop A, Witucki L, et al. Structural basis for selective inhibition of Src family kinases by PP1. Chem Biol 1999; 6: 671-678.,
    16. Bennett BL, Sasaki DT, Murray BW, et al. SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc Natl Acad Sci USA 2001; 98: 13681-13686.
    17. Bain J, McLauchlan H, Elliot M, Cohen P. The specificities of protein kinase inhibitors:an update. Bioch J 2003; 371:199-204..
    18. Bennett BL, Satoh Y, Lewis AJ. JNK: a new therapeutic target for diabetes.Curr Opin Pharmacol 2003;3:420-5.
    19. Szczepankiewicz BG, Kosogof C, Nelson LT, Liu G, Liu B, Zhao H, et al.Aminopyridine-based c-Jun N-terminal kinase inhibitors with cellular activity and minimal cross-kinase activity. J Med Chem 2006;49:3563-80.
    20. M.A. Bogoyevitch, R.K. Barr, A.J. Ketterman, Peptide inhibitors of protein kinases-discovery, characterisation and use, Biochim. Biophys.Acta 1754 (2005) 79-99.
    21. D. Holzberg, C.G. Knight, O. Dittrich-Breiholz, H. Schneider, A. Dorrie,E. Hoffmann,K. Resch, M. Kracht, Disruption of the c-JUN-JNK complex by a cell-permeable peptide containing the c-JUN domain induces apoptosis and affects a distinct set of IL-1-induced inflammatory genes, J. Biol. Chem. 278 (2003) 40213-40223..
    22. M. Dickens, J.S. Rogers, J. Cavanagh, A. Raitano, Z. Xia, J.R. Halpern,M.E. Greenberg,C.L. Sawyers, R.J. Davis, A cytoplasmic inhibitor of theJNK signal transduction pathway,Science 277 (1997) 693-696.
    23. R.K. Barr, T.S. Kendrick, M.A. Bogoyevitch, Identification of the criticafeatures of a small peptide inhibitor of JNKactivity, J. Biol. Chem. 277 (2002)10987-10997.
    24. C. Bonny, A. Oberson, S. Negri, C. Sauser, D.F. Schorderet, Cell-permeable inhibitors of JNK: novel blockers of b-cell death, Diabetes 50 2001) 77-82.
    25. T. Borsello, P.G. Clarke, L. Hirt, A. Vercelli, M. Repici, D.F. Schorderet, J.Bogousslavsky, C. Bonny, A peptide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia, Nat. Med. 9 (2003) 1180-1186.
    26. T.S. Kendrick, R.J. Lipscombe, O. Rausch, S.E. Nicholson, J.E. Layton, L.C.Goldie-Cregan, M.A. Bogoyevitch, Contribution of the membrane-distal tyrosine in intracellular signaling by the granulocyte colony-stimulating factor receptor, J. Biol. Chem.279(2004)326-340.
    27. R.K. Barr, I. Boehm, P.V. Attwood, P.M. Watt, M.A. Bogoyevitch, The critical features and the mechanism of inhibition of a kinase interaction motif-based peptide inhibitor of JNK, J. Biol. Chem. 279 (2004) 36327-38338
    28. R.K. Barr, R.M. Hopkins, P.M. Watt, M.A. Bogoyevitch, Reverse two hybrid screening identifies residues of JNK required for interaction with the kinase interaction motif of JNK-interacting Protein-1, J. Biol. Chem. 279 (2004) 43178-43189.
    29. Y.S. Heo, S.K. Kim, C.I. Seo, Y.K. Kim, B.J. Sung, H.S. Lee, J.I. Lee, S.Y. Park, J.H.Kim, K.Y. Hwang, Y.L. Hyun, Y.H. Jeon, S. Ro, J.M. Cho, T.G Lee, C.H.Yang, Structural basis for the selective inhibition of JNK1 by the scaffolding protein JIP1 and SP600125,EMBO J. 23 (2004) 2185-2195.
    30. L. Niu, K.C. Chang, S. Wilson, P. Tran, F. Zuo, D.C. Swinney, Kinetic characterization of human JNK2alpha2 reaction mechanism using substrate competitive inhibitors,Biochemistry 46 (2007) 4775-4784.
    31. L. Hirt, J. Badaut, J. Thevenet, C. et al. D-JNKI1, a cell-penetrating c-Jun-N-terminal kinase inhibitor, protects against cell death in severe cerebral ischemia, Stroke 35 (2004)1738-1743.
    32. J. Wang, T.R. Van De Water, C. Bonny, F. de Ribaupierre, J.L. Puel, A. Zine, A peptide inhibitor of c-Jun N-terminal kinase protects against both aminoglycoside and acoustic trauma-induced auditory hair cell death and hearing loss, J. Neurosci. 23 (2003)8596-8607.
    33. A.A. Eshraghi, J.Wang, E. Adil, et al, Blocking c-Jun-N-terminal kinase signaling can prevent hearing loss induced by both electrode insertion trauma and neomycin ototoxicity,Hear. Res. 226 (2007) 168-177.
    34. J. Wang, J. Ruel, S. Ladrech, C. Bonny, T.R. van de Water, J.L. Puel, Inhibition of the c-Jun N-terminal kinase-mediated mitochondrial cell death pathway restores auditory function in sound-exposed animals,Mol. Pharmacol. 71 (2007) 654-666.
    35. Kaneto H, Nakatani Y, Miyatsuka T, Kawamori D, Matsuoka TA, Matsuhisa M, et al.Possible novel therapy for diabetes with cell-permeable JNK-inhibitory peptide. Nat Med 2004; 10:1128-32.
    36. Hirosumi J, Tuncman G, Chang L, Gorgun CZ, Uysal KT, Maeda K, Karin M,Hotamisligil GS: A central role for JNK in obesity and insulin resistance.Nature 420:333-336, 2002
    37. Aguirre V, Uchida T, Yenush L, Davis R, White MF: The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307). J Biol Chem 275:9047-9054, 2000
    38. Sabapathy K, Hochedlinger K, Nam SY, Bauer A, Karin M, Wagner EF:Distinct roles for JNK1 and JNK2 in regulating JNK activity and c-Jun-dependent cell proliferation. Mol Cell 15:713-725, 2004
    39. Tuncman G,Hirosumi J, Solinas G,Chang L, KarinM,Hotamisligil GS. Functional in vivo interactions between JNK1 and JNK2 isoforms in obesityand insulin resistance. Proc Natl Acad Sci USA 2006; 103:107416.
    40. Waeber G, Delplanque J, Bonny C, Mooser V, Steinmann M, Widmann C,Maillard A,Miklossy J, Dina C, Hani EH, Vionnet N, Nicod P, Boutin P,Froguel P: The gene MAPK8IP1, encoding islet-brain-1, is a candidate for type 2 diabetes. Nat Genet 2000,24:291-295,41. Nakatani Y, Kaneto H, Kawamori D, Hatazaki M, Miyatsuka T, Matsuoka TA, Kajimoto Y, Matsuhisa M, Yamasaki Y, Hori M: Modulation of the JNK pathway in liver affects insulin resistance status. J Biol Chem 2004;279:45803-45809,
    42. Bennett BL, Satoh Y, Lewis AJ: JNK: a new therapeutic target for diabetes.Curr Opin Pharmacol 2003;3:420-425,
    43. Kaneto H, Nakatani Y, Miyatsuka T, Kawamori D, Matsuoka TA, Matsuhisa M,Kajimoto Y, Ichijo H, Yamasaki Y, Hori M: Possible novel therapy for diabetes with cell-permeable JNK-inhibitory peptide. Nat Med 2004; 10:1128-1132,
    44. Ammendrup A, Maillard A, Nielsen K, Aabenhus Andersen N, Serup P, Dragsbaek Madsen O, Mandrup-Poulsen T, Bonny C: The c-Jun amino-terminal kinase pathway is preferentially activated by interleukin-1 and controls apoptosis in differentiating pancreatic beta-cells. Diabetes 2000;49:1468-1476,
    45. Abdelli S, Ansite J, Roduit R, Borsello T, Matsumoto I, Sawada T, Allaman-Pillet N, Henry H, Beckmann JS, Hering BJ, Bonny C: Intracellular stress signaling pathways activated during human islet preparation and following acute cytokine exposure. Diabetes 53:2815-2823,2004
    46. Kaneto H, Xu G, Fujii N, Kim S, Bonner-Weir S, Weir GC: Involvement of c-Jun N-terminal kinase in oxidative stress-mediated suppression of insulin gene expression. J Biol Chem 277:30010-30018, 2002
    47. Jaeschke A, Rincon M, Doran B, Reilly J, Neuberg D, Greiner DL, Shultz LD, Rossini AA, Flavell RA, Davis RJ: Disruption of the Jnk2 (Mapk9) gene reduces destructive insulitis and diabetes in a mouse model of type I diabetes. Proc Natl Acad SciUSA 102:6931-6935,2005.
    48. Yang R, Wilcox DM, Haasch DL, et al. Liver-specific knockdown of JNK1 up-regulates proliferator-activated receptor gamma coactivator 1 beta and increases plasma triglyceride
    49. Lin J, Yang R, Tarr PT,Wu PH,Handschin C, Li S, et al.Hyperlipidemic effects of dietary saturated fats mediated through PGC-1beta coactivation of SREBP. Cell 2005;120:261-73.
    50. Drosatos K, Sanoudou D, Kypreos KE, Kardassis D, Zannis Ⅳ.A dominant negative form of the transcription factor c-Jun affects genes that have opposing effects on lipid homeostasis in mice. J Biol Chem 2007;282:19556-64.
    51. Izumi Y, Kim S, Namba M, et al. Gene transfer of dominant-negative mutants of extracellular signal-regulated kinase and c-Jun NH2-terminal kinase prevents neointimal formation in balloon-injured rat artery Circ. Res. 2001,88(11) 1120-1126
    52. Ricci R, Sumara G, Sumara I,, et al. Requirement of JNK2 for scavenger receptorA-mediated foam cell formationin atherogenesis. Science 2004;306(5701):1558-1561
    53. Manning AM, Davis RJ.. Targeting JNK for therapeutic benefit: from junk to gold? Nat Rev Drug Discov 2003;2:554-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700