用户名: 密码: 验证码:
大豆品种绥农14遗传基础分析及优异基因鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
绥农14是目前中国推广面积最大的大豆品种之一,该品种经过5轮杂交涉及17个亲本,这些亲本中包含有对全国大豆育种贡献最大的5个祖先亲本和2个国外种质。本研究以绥农14及其血缘亲本为实验材料,在表型、生理和基因组水平方面进行比较,建立绥农14系谱的遗传组成数据库,将表型及分子数据库相结合,通过系谱群体进行in silico mapping QTL定位,检测绥农14及其亲本优良性状在不同年间、不同地点稳定相关的QTL;追踪基因在系谱中的传递来明确绥农14的优良特征及亲本来源。采用连锁不平衡鉴定方法对在分子水平上呈现复杂遗传方式的经济性状进行分析以揭示其遗传规律,为选育高产、优质、广适的大豆品种提供理论依据。
     研究结果如下:
     1构建绥农14系谱亲本的分子数据库。选取均匀分布于大豆公共图谱20个连锁群的550个SSR(simple sequence repeats)位点在绥农14系谱亲本中进行检测,其中多态性位点占全部位点的86.72%,期望杂合度(PIC)大于70%位点占10.18%。
     2构建绥农14系谱包括生长发育性状、产量性状、品质性状、抗病虫性状、根瘤性状、耐盐性状等50个性状在内的表型数据库。随着世代的递增,生长发育性状中株高、底荚高及倒伏度呈明显降低的趋势,产量性状中百粒重和产量呈增加的趋势,绥农14和合丰25的产量与祖先品种相比有显著的提高;品质性状、抗病性状绥农14和合丰25与其祖先品种相比没有显著的改变。
     3用SSR分子标记解析绥农14系谱亲本的遗传关系。根据Neighbour-jioning构建的树状图与实际系谱图相符,表明绥农14系谱材料的选育过程可分为3个阶段,品种聚为不同类别的原因与育种时期和组合方式的变化有关。比较相似系数法(S法)、遗传贡献率法(G法)和共祖先系数法(CP法)对阐明绥农14系谱亲本的遗传关系的特点,结果表明在系谱信息完整的情况下应以亲本贡献率(G法)作为研究亲本遗传关系的指标,在未知系谱或系谱信息缺失的情况下建议以遗传相似系数(S法)作为衡量亲本遗传关系的指标。
     4国外种质对拓宽中国大豆优良品种遗传基础的贡献。利用系谱追踪与SSR标记分析了大豆品种绥农14和合丰25的遗传组成,结果表明,利用日本种质Tokachi nagaha和美国种质Amsoy作亲本育成的、包括绥农14和合丰25在内的中国大豆品种与其系谱中其他品种存在明显差异。两个国外种质特有SSR变异位点中,Tokachi nagaha有14个与产量、抗病性及油分等相关的QTL传递给合丰25和绥农14;Amsoy有12个与百粒重、油分等有关的QTL由绥农8号传递给绥农14,表明国外种质中的优良基因在我国大豆品种改良中发挥了重要作用。
     5连锁不平衡分析表明,在绥农14系谱中存在着连锁不平衡现象,在P<0.01的水平上有0.149‰的位点对存在完全连锁不平衡。其中紧密连锁位点(<1.5cM)1对、松散连锁位点(>1.5cM)3对和非连锁位点13对。合丰25和绥农14共有的116个多态性标记的6728对位点中,7对检测到LD,其中一些SSR连锁位点与农艺性状的呈显著相关。
     6单一环境下in silico mapping-QTL及基因在系谱中的传递。32个农艺性状中除四粒荚、褐斑、盐害指数外的其余29性状均检测到了QTL,共检测到QTL位点141个,平均每个性状4.86个。美国品种Amsoy和日本品种Tokachi nagaha分别有12个和3个QTL传递给了后代。
     7多环境下in silico mapping-QTL及基因在系谱中的传递。在三个生态区内的六个不同环境下对绥农14系谱亲本的8个农艺性状进行了测定,用in silicomapping-QTL进行单性状定位,除节数外检测到与其余7个性状相关QTL位点49个,这些QTL分布在14个连锁群,对这些单性状位点进行分析发现有些位点与多个性状相关,为了验证这些单个性状检测到的QTL,更精确地定位一因多效QTL,剔出环境对性状的影响,提出了用in silico mapping来分析多性状的方法,通过该方法共检测到了10个一因多效位点,研究结果表明单性状定位和多性状定位有较高的吻合度。进一步分析国外种质对拓宽中国大豆遗传基础的QTL贡献,发现连锁群D1a的Sat_036、连锁群L的Satt182及连锁群B2的Satt726等QTL位点能够证明国外种质中的优良基因在我国大豆品种改良中的遗传贡献。
     8超性状in silico mapping-QTL及基因在系谱中的传递。在北方春大豆生态区测定了绥农14系谱亲本的26个表型农艺性状,对这26个农艺性状进行主成分分析,确定了6个主成分,接着计算出了多性状的特征值和特征向量。根据特征值的累积贡献率计算主成分,用特征向量对原始的性状进行加权相加,构成6个超性状。通过In silico mqpping方法在13个连锁群上分别定位了24个与6个超性状相关的QTL,其中14个QTL表现出一因多效。在绥农14系谱中对这些功能基因进行追踪,结果表明一些基因能够解释在品种形成和品质改良过程中国外种质对国内品种的遗传贡献及国内祖先亲本对后代的遗传机制。
Suinong14 was one of the largest-scale grown soybean (Glycine max L.) variety and the typical elite cultivar in China. Tracing its breeding pedigree, it had been found that Suinong14 was derived from five generations of recombination between 17 genotypes which included 5 well-known domestic cultivars and 2 oversea ones. Molecular database and phenotype database on Suinong14 pedigree obtained from different planting areas have been constructed. With in silico mapping method, the QTLs related to agronomic traits were detected in the pedigree of Suinong 14. Trancing of gene transmission in the pedigree elucidates the heredity pattern of exotic genes in typical elite cultivars and explores the utilization of exotic germplasm in soybean breeding program. Some economic traits used to present in a complex inheritance pattern. Association study of these complex traits based on linkage disequilibrium (LD) originally used in human genetics would help to reveal their genetic pattern and offer useful information in soybean breeding.
     1 Construction of soybean Molecular datebase. Based on the public integreted map, a total of 550 SSR markers distributed on 20 linkage groups were chosen and analyzed, of which 477 markers performed polymorphic among 14 inbreeding lines in the pedigree of Suinong14. The Percentage of polymorphic locus was 86.72% and the percent of the locus whose PIC was over 70% was 10.18%.
     2 Construction of soybean agronomic traits datebase. 50 agronomic traits were chosen and analyzed. According to nature of every trait, the 50 agricultural traits were adivided into 6 groups, Growth traits, Yield traits, Quality traits, Resistance traits, Nodule traits and salt tolerance traits. PH, PHB and L of Growth traits decreased with the generation, Y and SW of Suinong14 and Hefeng25 were significantly improved compared with cultivars developed earlier. There were no significant difference in Resistance traits and Quality traits between different generations.
     3 Analysis of Genetic Relationship among Parents of Elite Soybean Cultivars Suinong14 Pedigree Revealed by SSR Markers. 550 SSR loci, distributed on 20 linkage groups were analyzed to explain evolvement and genetic relationship of Suinong 14 and its pedigree. Three methods, including similarity coefficient (SC), genetic contribution (GC) and coefficient (Neighbour-jioning method), were used to reveale genetic relationship in Suinong14 pedigree parents. The accessions clustered result were different because of the different of parental original and mating types. The characteristics of the times and mating types leaded to diversity of genetic structure of Suinong 14 pedigree. GC should be the index in a study of the genetic relationship with known pedigree information, SC should be the index in a study of the genetic relationship with unknown pedigree information.
     4. Genetic contribution of foreign germplasm to elite Chinese soybean cultivars revealed by SSR markers. SSR analysis, combined with pedigree analysis, was used to trace the genetic constitutes of Suinong 14 and Hefeng 25, so as to clarify the contribution of foreign germplasm to those elite cultivars, and to provide instruction for further utilization of foreign germplasm effectively in Chinese soybean breeding. SSR clustering results indicated that the genetic base of elite Chinese soybean cultivars, including Suinong 14 and Hefeng 25, was broaden due to the introduction of Amsoy from America and Shishengchangye from Japan during soybean genetic improvment. Among the special alleles of foreign parents, 12 special loci in Amsoy were transferred to Suinong 14, and 14 loci from Shishengchangye to Suinong 14. Some SSR loci had been proved to be correlated with phenotypes, indicating that the two foreign parents might have important contribution in developing Suinong14 and Hefeng 25.
     5. A total of 477 SSR polymorphic loci consisted of 113764bps had been identified, LD was significant at a comparison-wise 0.01 level in nearly 0.149%o of SSR marker pairs when all cultivars were included. According to linkage distance of SSR loci, all tested loci could be evaluated as tightly linked (<1.5cM), loosely linked(<1.5cM within one LG) and unlinked loci. The number of SSR loci of each LD type was one, three and 13, respectively. Seven of 116 specific SSR loci shared by Suinong14 and Hefeng25 showed LD. Association analysis of 6 SSR loci with LD and agronomic traits showed that significant correlation could be observed between two pair of LD loci and agronomic traits (p<0.01). which indicated the existence of LD in genes related to agronomic traits.
     6 We extended in silico mapping for single trait to mapping peiotropic QTL for multiple traits by defining new statistic to measure the correlation between multiple traits and the markers. Data included phenotypes of 32 agronomic traits extracted from Northern Spring soybean ecotypes area and genotyped 477 polymorphic markers on public integrated genetic map, on 14 inbreeding lines in the pedigree of Suinong14. With in silico mapping, a total of 141 markers distributing on 18 linkage groups were identified as QTL, no QTL are found for SII, N3SP, K. The mean of QTL was 4.86. Tracing the transmission of functional genes in the pedigree, it was found that 15 genes were capable to explain the genetic mechanism for the contribution of exotic germplasm to soybean cultivars in the improvement of the performance and quality.
     7 Gene discovery and transmission of functional genes in the pedigree of an elite soybean cultivar Suinong 14. In this study, we performed in silico mapping for single trait to analyze data from multiple environments by calculating inter-correlations and to mapping peiotropic QTL for multiple traits by defining new statistic to measure the correlation between multiple traits and the marker. Data include phenotypes of 8 agronomic traits obtained from 6 different ecological environments and years, and genotyped 477 polymorphic markers on public integrated genetic map, on 14 inbreeding lines in the pedigree of Suinong14. With in silico mapping, a total of 49 markers distributing on 14 linkage groups were detected separately as QTL responsible for 8 agronomic traits and 10 QTL were precisely identified as pleiotrpic ones. Tracing the transmission of functional genes in the pedigree found that some genes explain the genetic mechanism for the contribution of exotic germplasm and domestic founders in the improvement of the performance and quality of soybean cultivars.
     8 In silico mapping QTL for multiple traits in the pedigree of soybean cultivars. In silico mapping for single trait is performed to analyze many agronomic traits in the pedigree of soybean. Twenty six agronomic traits are measured and 477 polymorphic markers chosen on public genetic map are genotyped on 14 inbreeding lines in the pedigree of Suinong14. We determined 6 principal components from 26 agronomic traits using the principal component analysis and constructed 6 "super traits" by the multiplication of the vector of the standardized original traits by the eigenvectors corresponding to the principle components. With in silico mapping, a total of 24 markers distributing on 13 linkage groups are detected separately as quantitative trait loci (QTL) responsible for 6 "super traits", of which 14 QTL performed pleiotropy. Tracing the transmission of functional genes in the pedigree found that some genes are capable to explain the genetic mechanism for the contribution of exotic germplasm and domestic founders in the improvement of the performance and quality of soybean cultivars.
引文
[1]邱丽娟,常汝镇,袁翠萍,等.国外大豆种质资源的基因挖掘利用现状与展望.植物遗传资源学报.2006,7(1):1-6
    [2]盖钧镒,赵团结,崔章林,等.我国1923~1995年育成的651个大豆品种的遗传基础.中国农业科学.1998,31(5):35-43
    [3]盖钧镒.美国大豆育种的进展和动向.大豆科学.1983,2(3):225-231
    [4]Gizlice Z,Carter T E Jr,Burton J W.Genetic base for North American public soybean cultivars released between 1947~1988.Crop Science.1994,34:1143-1151
    [5]Allen F L,Bhardwaj H L.Genetic relationship and selected pedigree diagrams of North American soybean cultivars.University of Tennessee,Agricultural Experiment Station.Bulletin.1987:652
    [6]Carter T E,Gizlice Z,Burton J W.Coefficient of parentage and genetic similarity estimates for 258 North America soybean cultivars by public agencies during 1945-1988.U.S.Department of Agriculture,Technical Bulletin.1993:1814
    [7]盖钧镒,赵团结.中国大豆育种的核心祖先亲本分析.南京农业大学学报2001,24(2):20-23
    [8]张博,邱丽娟,常汝镇.中国大豆部分获奖品种与其祖先亲本间SSR标记的多态性比较和遗传关系分析.农业生物技术学报,2003,11(4):351-358
    [9]Almanza-Pinzrn M I,Khairallah M,Fox P N,et al.Comparison of molecular markers and coefficients of parentage for the analysis of genetic diversity among spring bread wheat accessions.Euphytica.2003,130:77-86
    [10]Autrique E,Nachit M M,Monneveux P,et al.Genetic diversity in durum wheat based on RFLPs,morphophysiological traits and coefficient of parentage.Crop Science.1996,36:735-742
    [11]贾继增.应用植物基因组学的理论与方法开发我国丰富的作物种质资源.中国农业科技导报,1999,1(2):41-45
    [12]Pestsova E,Roder M.Microsatellite analysis of wheat chromosome 2D allows the reconstruction of chromosomal inheritance in pedigrees of breeding programmes.Theor Appl Genet,2002,106:84-91
    [13]Russell J R,Ellis R P,Thomas W T B,et al.A retospective analysis of spring barley germplasm development from 'foundation genotypes' to currently successful cultivars.Mol Breed.2000,6:553-568
    [14]Moffatt M F,Traherne J A,Abecasis G R,et al.Single nucleotide polymorphisms and linkage disequilibrium within the TCR α/δ locus.Hum.Mol.Genet,2000,9:1011-1019
    [15]Reich D E,Cargill M,Bolk S,et al.Linkage disequilibrium in the haman genome.Nature,2001,411:199-204
    [16]Remington D L,Thomsberry J M,Matsuoka Y,et al.Structure of linkage disequilibrium and phenotypic association in the maize genome.Proc Natl Acad Sci USA,2001,98:11479-11484
    [17]秦君,陈维元,关荣霞,等.国外种质对拓宽中国大豆优良品种遗传基础的SSR标记分析.科学通报,2006,51(6):686-692
    [18]胡喜平.合丰号大豆品种系谱分析.大豆科学,2002,2(21):131-134.
    [19]关荣霞.大豆遗传多样性分析及QTL定位研究.中国农业科学院博士后论文,2003.35-47
    [20]邱丽娟,Nelson R L,Vodkin L O.利用标记RAPD鉴定大豆种质.作物学报,1997,23(4),408-417
    [21]周延清.DNA分子标记技术在植物研究中的应用,北京.化学工业出版社,2005,200-201
    [22]王彪,邱丽娟.大豆SSR技术研究进展.植物学通报,2002,19(1):44-48
    [23]Akkaya M S,Bhagwat A A,Cregan P B.Length polymorphism of simple sequence repeats in soybean.Genetics.1992,132:1131-1139
    [24]Morgante M,Rafalski A,Biddle P,et al.Genetic mapping and variability of seven simple sequences repeat loci in soybean.Genome.1994,37:763-769
    [25]Maughan P J,Shagai M M A,Buss G R.Microsatellite and amplified sequence length polymorphisms in cultivated and wild soybean.Genome,1995,38:715-723
    [26]许占友,邱丽娟,常汝镇,等.利用SSR标记鉴定大豆种质.中国农业科学.1999,32(增刊):40-48
    [27]Diwan N,Cregan P B.Automated sizing of fluorescent-labeled simple sequence repeat(SSR)markers to assay genetic variation in soybean.Theor Appl Genet,1997,95:723-733
    [28]Narvel J M,Fehr W R,Chu W C,et al.Simple sequence repeat diversity among soybean plant introductions and elite genotypes.Crop Sci,2000,40:1452-1458
    [29]Brown-Guedira G L,Thompson J A,Nelson R L,et al.Evaluation of genetic diversity of soybean introductions and North American ancestors using RAPD and SSR markers.Crop Sci,2000,40:815-823
    [30]Abe J,Xu D H,Suzuki Y,et al.Soybean germplasm pools in Asia revealed by nuclear SSRs.Theor Appl Genet,2003,106:445-453
    [31]崔艳华,邱丽娟,常汝镇,等.黄淮夏大豆(G.max)初选核心种质代表性检测.作物学报,2004,30(3)284-288
    [32]Lixia Wang,Rongxia Guan,Liu Zhangxiong,et al.Genetic Diversity of Chinese Cultivated Soybean Revealed by SSR Markers.Crop Sci,2006,46:1032-1038
    [33]王彪,常汝镇,陶莉,等.分析中国栽培大豆遗传多样性所需SSR引物的数目.分子植物育种,2003,1(1):82-88
    [34]谢华,常汝镇,曹永生,等.利用秋大豆(Glycine max(L.)Merr)筛选核心位点的研究.中国农业科学,2003,36(4):306-366
    [35]王丽霞.中国栽培大豆遗传多样性分析与核心种质构建.中国农业科学院博士论文,2005
    [36]陈维元,吕德昌,姜成喜,等.绥农号大豆血缘关系分析.黑龙江农业科学,2004,(4):9-12
    [37]胡喜平.合丰号大豆品种系谱分析.大豆科学,2002,2(21):131-134
    [38]中国农业科学院作物品种资源研究所主编.中国大豆品种资源目录(续编一、二).北京:中国农业出社社,1990,1996.
    [39]崔章林,盖钧镒,Thomase E,等.中国大豆育成品种及其系谱分析(1923-1995).北京:中国农业出版社,1998,23-39.
    [40]盖钧镒,崔章林.中国大豆育成品种的亲本分析.南京农业大学学报,1994,17(3):19-23
    [41]王金陵,杨庆凯,吴宗璞.中国东北大豆.哈尔滨:黑龙江科学技术出版社,1999,263-266.
    [42]Song Q J,Marek L F,Shoemaker R C,etal.A new integrated genetic linkage map of the soybean.Theoretical and Applied Genetics,2004,109(1):122-128
    [43]关荣霞,常汝镇,邱丽娟.用于分析的大豆的快速提取.大豆科学,2003,21(1):73-74.
    [44]Rohlf F J.NTSYS:Numerical taxonomy and multivariate analysis system,Version 2.1,New York:State University of New York,2000
    [45]Yeh F C,Yang R C.POPGENE Version 1.31,available at http://www.ualberta.ca/-fyeh/fyeh,1999
    [46]Jiang C,Zeng Z B.Mapping quantitative trait loci with dominant and missing markers in various crosses from two inbred lines.Genetic 1997,101:47-58
    [47]Rao S,Xu S.Mapping quantitative trait loci for ordered categorical traits in four-way crosses.Heredity,1998,81:214-224
    [48]崔艳华,邱丽娟,常汝镇,等.黄淮夏大豆(G.max)初选核心种质代表性检测.作物学报,2004,30(3):284-288
    [49]崔艳华,邱丽娟,常汝镇,等.黄淮夏大豆遗传多样性分析.中国农业科学,2004,37(1):15-22
    [50]宋启建.用于大豆品种鉴定的已套标准三核苷酸重复系位点的筛选.第七届全国大豆学术讨论会论文摘要集,2001:47-48
    [51]Cui Z L,Carter T E,Burton J W,et al.Phenotypic diversity of modem Chinese and North American soybean cultivers.Crop Science,2001,41:1954-1961
    [52]崔永实,安仁善,曲刚,等.吉林省大豆品种系谱分析.农业与技术,2004,24(6):101-107.
    [53]Bernard R L,Gai A J,Edgear E H,et al.Origins and pedigree of public soybean varieties in the united states and Canada USDA.Technical Bulletion,1988:1746.
    [54]盖钧镒,邱家训,赵团结.大豆品种南农49321和南农113822与其衍生新品种的亲缘关系及其育种价值分析.南京农业大学学报,1997,20(1):1-8.
    [55]赵团结,崔章林,盖钧镒.中国大豆育成品种中江苏种质58—161的遗传贡献.大豆科学,1998,17(2):120-128.
    [56]邱家训,赵团结,盖钧镒.中国大豆育成品种中苏沪地区种质的遗传贡献,南京农业大学学报,1997,20(4):1-8.
    [57]Dreisigacker S,Zhang P,Warburton M L,et al.SSR and Pedigree Analysis of Genetic Diversity among CIMMYT Wheat Lines Targeted to Different Megaenvironments.Crop Science,2004,44:381-388
    [58]Fernandez M E,Figueiras A M,Benito C.The use of ISSR and RAPD markers for detecting DNA polymorphism genotype identification and genetic diversity among barley cultivars with known origin.Theoretical and Applied Genetics,2002,104:845-851
    [59]Smith J S C,Chin E C L,Shu H,et al.An evaluation of the utility of SSR loci as molecular markers in maize(Zea mays L)comparisons with data from RFLPS and pedigree.Theoretical and Applied Genetics,1997,95:163-173
    [60]翟虎渠,王健康.应用数量遗传学.北京:中国农业科学技术出版社:2007,42-43
    [61]张学书.绥农14号大豆的选育及栽培技术研究.农业系统科学与综合研究,1997,13(4):319-320.
    [62]付亚书.大豆品种绥农14的选育及体会分析.黑龙江农业科学,2002,3:47-48
    [63]Nei M,Li W H.Mathematical model for studying genetic variation in terms of restriction endonucleases.Proc.Natl.Acad.Sci.USA,1979.76:5269-5273
    [64]Rohlf F J.NTSYS-pc numerical taxonomy and multivariate analysis system.New York:State University 13 of New York.1992
    [65]Van P Y,De W R.TREECON for windows:a software package for the construction and drawing of evolutionary trees for the Microsoft windows environment.Computer Apple Biosci,1994,10(5):569-570
    [66]Bernard R L.Origins and pedigrees of public soybean varieties in the United States and Canada.U.S.Department of Agriculture.Technical Bulletin,1988,13-33
    [67]木屋武彦,伊藤武,白井和荣.大豆保存品种系谱的来历及其特性.北海道立十胜农业试验场资料,1947,15.
    [68]杨庆文,陈成斌,张万霞,等.SSR等位变异数对普通野生稻居群遗传结构分析的影响.中国水稻科学,2005,19(4):297-302.
    [69]You G X,Zhang X Y,Wang L F.An estimation of the minimum number of SSR loci needed to reveal genetic relationships in wheat varieties:Information from 96 randomaccessions with maximized genetic diversity.Molecular Breeding,2004,14:397-406.
    [70]Mantel N A.The detection of disease clustering and a generalized regression approach.Cancer Research,1967,27:209-220.
    [71]张国栋.黑龙江省大豆品种系谱分析.大豆科学,1983,2(3):184-193
    [72]胡国华.从加拿大大豆系谱分析谈大豆产量育种.大豆科学,1990,9(2):168-176
    [73]徐冉,王彩洁,王金龙,等.国外种质在山东大豆育种中的遗传贡献分析.山东农业科学,2003,第1期,11-12
    [74]Tischner T,Allphin L,Chase K,et al.Genetics of Seed Abortion and Reproductive Traits in Soybean.Crop Sci,2003,43(2):464-473
    [75]Palmer,Kilen T C.Qualitative genetics and eytogenetics Agronomy,1987,16:135-209
    [76]Specht J E,Chase K,Macrander M,et al.Soybean response to water:.A QTL analysis of drought tolerance.Crop Sci,2001(41):493-509
    [77]Rector B G,All J N,Parrott W A,et al.Quantitative trait loci for antibiosis resistance to corn earworm in soybean.Crop Sci,2000,40(1):233-238
    [78]Kabelka E A,Diets B W,Fehr W R,et al.Putative Alleles for Increased Yield from Soybean Plant Introduction.Crop Sci,2004,44:784-791
    [79] Li Y D, Wang Y J, Tong Y P, et al. QTL mapping of phosphorus deficiency tolerance in soybean (Glycine max L Merr.). Theor Appl Genet, 2005,142:137-142
    [80] Tamulonis J P, Luzzi B M, Hussey R S, et al. RFLP mapping of resistance to southern root-knot nematode in soybean. Crop Sci, 1997, 37(6): 1903-1909
    [81] Orf J H, Chase K, Jarvik T, et al. Genetics of soybean agronomic traits: I. comparison of three related recombinant inbred populations. Crop Sci, 1999, 39(6): 1642-1651
    [82] Njiti V N, Meksem K, Lqbal M J, et al. Common loci underlie field resistance to soybean sudden death syndrome in Forrest, Pyramid, Essex, and Douglas. Theor Appl Genet, 2002,104(2): 294-300
    [83] Guo B, Sleper D A, Arelli P R, et al. Identification of QTLs associated with resistance to soybean cyst nematode races 2,3 and 5 in soybean PI 90763. Theor Appl Genet, 2005. 103(8): 1167-1173
    
    [84] Chung J, Babka H L, Graef G L, et al. The seed protein, oil, and yield QTL on soybean linkage group I Crop Sci, 2003,43 (3): 1053-1067
    [85] Chapman A, Pantalone V R, Usten A, et al. Quantitative trait loci for agronomic and seed quality traits in an F-2 and F-4:6 soybean population. Euphytica, 2003,129 (3): 387-393
    [86] Kassem M A, Meksem K, Kang C H, et al, Loci underlying resistance to manganese toxicity mapped in a soybean recombinant inbred line population of 'Essex' x 'Forrest', Plant and Soil. Kluwer Academic Publisher, 2003,260: 197-204
    [87] Maughan P J, Saghai-Maroof M A, Buss G R, et al. Molecular-marker analysis of seed-weight: genomic locations, gene action, and evidence for orthologous evolution among three legume species. Theor appl genet, 1996 b, 93:574-579
    [88] Arahana V S, Graef G L, Specht J E, et al. Identification of QTLs for Resistance to Sclerotinia sclerotiorum in Soybean Crop Sci., 2001; 41(1): 180 -188.
    [89] Mahalingam R, Skorupska H T. DNA markers for resistance to Heterodera glycines I. race 3 in soybean cultivar. Peking, 1995,45: 435
    [90] Maughan P J, Maroof M A S, Buss G R. Identification of quantitative trait loci controlling sucrose content in soybean (Glycine max). Molecular Breeding, 2000, 6(1): 105-111
    [91] Yuan J, Njiti V N, Meksem K, et al. Quantitative trait loci in Two Soybean Recombinant Inbred Line Populations Segregating for Yield and Disease Resistance. Crop Sci, 2002,42: 271-277
    [92] Pin Y, David A S, Prakash R A. Mapping Resistance to Multiple Races of Heterodera glycines inSoybean PI 89772. Crop Sci, 2001,41:1589-1595
    [93] Panthee D R, Kwanyuan P, Sams C E, et al. Quantitative Trait Loci for B-Conglycinin (7S) and Glycinin (US) Fractions of Soybean Storage Protein Journal of the American Oil Chemists' Society. 2004, 81(11):1005-1012
    [94] Fasoula, V A, Harris D K, Boerma H R. Validation and Designation of Quantitative Trait Loci for Seed Protein, Seed Oil, and Seed Weight from Two Soybean Populations. Crop Sci, 2004,44:1218-1225
    [95]Yue P,Sleper D A.Molecular characterization of resistance to Heterodera glycines in soybean PI 438489B,Theor Appl Genet.2001,102 6/7:921-928
    [96]Bianchi-Hall C M,Carter T E J,Bailey M A,et al.Aluminum tolerance associated with quantitative trait loci derived from soybean PI 416937 in hydroponics.Crop Sci,2000,40(2):538-545
    [97]Panthee D R,Pantalone V R,Sams C E,et al.Genomic Regions Governing Soybean Seed Nitrogen Accumulation.Journal of the American Chemists' Society,2004,81(1):77-81.
    [98]Lin S F,Baumer J,Ivers D,et al.Nutrient solution screening of Fe chlorosis resistance in soybean evaluated by molecular characterization.Journal of plant natrition,2000,23(11-12):1915-1928
    [99]Diers B W,Shoenaker R C.Restriction Fragment Length Polymorphism Analysis of Soybean Fatty Acid Content.JAOCE,1992,69:1242
    [100]Csanadi G,Voumann J,Stift G,et al.Seed quality QTLs identified in a molecular map of early maturing soybean.Theor Appl Genet,2001,103(7):912-919
    [101]Rector B G,All J N,Parrott W A,et al.Identificatin of molecular markers linked to quantitative trait loci for soybean resisitance to com-earworm.Theo.Appl.Genet.1998,98:786-790
    [102]Rector B G,All J N,Parrott W A,et al.Quantitative trait loci for antixenosis resistance to corn earworm in soybean.Crop Sci,1999,39(2):531-538
    [103]Lee S H,Bailey M A,Mian M A R,et al.Identification of quantitative trait loci for plant height,lodging,and maturity in a soybean population segregating for growth habit.Theor appl genet,1996,92:516-523
    [104]Lin S,Cianzio S R,Shoemaker R C.Mapping genetic loci for iron deficiency chlorosis in soybean.Molec breeding,1997,3:219
    [105]Li Z,Jakkula L,Hussey R S,et al.SSR mapping and confirmation of the QTL from PI96354conditioning soybean resistance to southern root-knot nematode.Thecr Appl Genet,2001,103(8):1167-1173
    [106]Csanadi G,Vollmann J,Stift G,et al.Seed quality QTLs identified in a molecular map of early maturing soybean.Theor Appl Genet,2001,103:912 - 919
    [107]Cui Z L,Thomas E,Carter J,et al.Genetic diversity patterns in Chinese soybean cultivars Based on Coefficient of Parentage.Crop Sci,2000(40):1780-1793
    [108]Romero-Severson J,Smith J S C,Ziegle J,et al.Pedigree analysis and haplotype sharing within diverse groups of Zea mays L.Inbreds.Theor Appl Genet,2001,103:567-574
    [109]Lu H,Bernardo R.Molecular marker diversity among current and historical maize inbreds.Theor Appl Genet,2001,103:613-617
    [110]邱丽娟.有效利用国外资源丰富我国大豆遗传基础.中国油料,1993,3:76-78
    [111]Mansur L M,Lark K G,Kross H,et al.Interval mapping of quantitative trait loci for reproductive,morphological,and seed traits of soybean(Glycine max L.).Theor Appl Genet,1993,86:907-913
    [112]Vergel C C,Brian W D,Prakash R A.A Decade of QTL Mapping for Cyst Nematode Resistance in Soybean.Crop Sci 2004,44:1121-1131
    [113]Antonio J D V,Dario A O,Tais C B S,et al.Use of the QTL approach to the study of soybean trait relationships in two populations of recombinant inbred lines at the F7 and F8 generations.Braz.J Plant Physiol,2006.2:281-290.
    [114]Guzmana P S,Diersb B W,Neecec D J,et al.QTL Associated with Yield in Three Backcross-Derived Populations of Soybean.Crop Sci,2007,47:111-122
    [115]Shoemaker R C,Olson T C.Molecular linkage map of soybean(Glycine max(L.)Merr.).In:O'Brien,S.J.(ed.)Genetic maps.Cold Spring Harbor Laboratory Publisher.Cold Spring Harbor,New York,1993.6:131-138
    [116]Alev J H,Guorong M.Molecular marker mapping of Rsv4,a gene conferring resistance to all known strains of Soybean Mosaic Virus.Crop Sci,2000,40(5):1434-1437
    [117]Diers B W,Cianzio S R,Shoemaker R C.Possible Identification of Quantitative Trait Loci Affecting Iron Efficiency in Soybean.Plant Nutr.1992,15:2127-2136
    [118]Diers B W,Keim P.,Fehr W R,et al.RFLP Analysis of Soybean Seed Protein and Oil Content.Theor Appl Genet,1992g,83:608-612
    [119]Cregan P B,Jarvik T,Bush A L.An Integrated Genetic Linkage Map of the Soybean Genome.Crop Science.1999,39:1464-1490
    [120]Zhang W K,Wang Y J,Zhang J S,et al.QTL Mapping of Ten Agronomic Traits on the Soybean (Glycine max(L.)Merr.)Genetic Map and Their Association with EST Markers.Theor Appl Genet,2004,108:1131-1139
    [121]Eshed,Zamir D.An introgression line population of lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL.Genetics.1995,141:1147-1162
    [122]Fulton T M,Nelson J C,Tanksley S D.lntrogression and DNA marker analysis of Lycopersicon peruvianum,a wild relative of the cultivated tomato,into Lycopersicon esculentum,followed through three successive backcross generations.Thero Appl Genet,1997,95:895-902
    [123]Shen L,Courtois B,McNally K L.Evaluation of near-isogenie lines of rice introgressioned with QTLs for root depth through marker-aided selection.TheorAppl Genet,2001.103:75-83
    [124]Bums M J,Barnes S R,Bowman J C X.QTL analysis of an intervarietal set of substitution lines in Brassica napus:(i)Seed oil content and fatty acid composition.Heredity,2003,90:39-48
    [125]万建林,翟虎渠,万建民,等.利用粳稻染色体片段置换系群体检测水稻抗亚铁毒胁迫有关性状QTL.遗传学报,2003,30(10):893-898
    [126]翁建峰,万向元,郭涛,等.利用CSSL群体研究稻米加工品质相关QTL表达的稳定性.中国农业科学,2007,40(10):2128-2135
    [127]Grupo A,Gerrner S,Usuka J,et al.In silico mapping of complex disease-related traits in mice.Science,2001,292:1915-1918.
    [128]Chesler E J,Rodriguez S L,Mogil J S.In silico mapping of mouse quantitative trait loci. Science,2001,294:2423
    [129]Parisseaux B,Bemardo R.In silico mapping of quantitative trait loci in maize.Theor Appl Genet,2004,109:508-514
    [130]Zhang Y M,Mao Y C,Xie C Q,et al.genetics.Mapping Quantitative Trait Loci Using Naturally Occurring Genetic Variance Among Commercial Inbred Lines of Maize(Zea mays L.).Genetics,2005,169:2267-2275.
    [131]Churchill G A,Doerge R W.Empirical threshold values for quantitative trait mapping.Genetics,1994,138:963-971.
    [132]Doerge R W,Churchill G A.Permutation tests for multiple loci affecting a quantitative character.Genetics,1996,142:285-294.
    [133]Lee S H,Bailey M A,Mian M A,et al.Molecular markers associated with soybean plant height,lodging,and maturity across locations.Crop Sci,1996,36:728-735.
    [134]Qiu B X,Arelli P,Sleper D A.RFLP markers associated with soybean cyst nematode resistance and seed composition in a 'Peking' x 'Essex' population.Theor appl genet,1999,98:356-364.
    [135]Adler F R,Chase K,Lark K G,et al.Interactions between quantitative trait loci in soybean in which trait variation at one locus is conditional upon a specific allele at another,IND20463800.1995,92:4656- 4660
    [136]Panthee D R,Pantalone V R,West D R,et al.Quantitative Trait Loci for Seed Protein and Oil Concentration,and Seed Size in Soybean.Crop Sci,2005,45:2015-2022
    [137]Landau E D,Pantalone V R,Sams C E,et al.Seed quality QTL in a prominent soybean population.Theor Appl Genet,2004,109:552-561
    [138]Pantalone V R,Panthee D R,Sams C E,et al.Quantitative Trait Loci for Seed Protein and Oil Concentration,and Seed Size in Soybean.Crop Sci 2005,45:2015-2022
    [139]Lee H S,Lee S H,Park E H,et al.Genetic mapping of QTLs conditioning soybean sprout yield and quality.Theor Appl Genet,2001,103(5):702-709
    [140]Brummer E C,Graef G L,Orf J H,et al.1997.Mapping QTL for seed protein and oil content in eight soybean populations,SoyBase52797820.1997,37:370-378
    [141]Ashley D A,Bailey M A,Boerma H R,et al.Molecular markers associated with seed weight in two soybean populations,SoyBase52897915.1996,93:1011-1016
    [142]Adler F R,Chase K,Cregan P B,et al.Genetics of soybean agronomic traits:Ⅰ.Comparison of three related recombinant inbred populations.Crop Sci,1999,39:(6):1642-1651
    [143]Mansur L M,Orf J H,Chase K,et al.Genetic mapping of agronomic traits using recombinant inbred lines of soybean.Crop Science,1996,36:1327-1336
    [144]Mian M A R,Shipe E R,Alvernaz J,et al.RFLP Analysis of Chlorimuron Ethyl ensitivity in Soybean.Journal of Heredity,1997:88:38-41
    [145]朱晓丽.大豆遗传图谱的构建及重要农艺性状的QTL定位.,哈尔滨:东北农业大学硕士论文18-24
    [146]Jiang C,Zeng Z B.Multiple trait analysis of genetic mapping for quantitative trait loci.Genetics, 1995,140:1111-1127
    [147] Korol A B, Ronin Y T, Kirzhner V M. Interval mapping of quantitative trait loci employing correlated trait complexes. Genetics. 1995,140: 1137-1147
    [148] Korol A B, Ronin Y T, Itskovich A M, et al. Enhanced efficiency of quantitative trait loci mapping analysis based on multivariate complexs of quantitative traits. Genetics, 2001, 157: 1789-1803
    [149] Mangin B, Thoquet P, Grimslev N. Pleiotropic QTL analysis. Biometrics, 1998, 54: 88-99
    [150] Henshall J M, Goddard M E. Multiple trait mapping of quantitative trait loci after selective genotyping using logistic regression. Genetics, 1999, 151:885-894
    [151]Williams J T, Van Eerdewegh P, Almasy L, et al. Joint multipoint linkage analysis of multivariatequalitative and quantitative traits. I. Likelihood formulation and simulation results. Am J Hum Genet. 1999, 65: 1134-1147
    [152] Knott S A, Haley C S. Multitrait least squares for quantitative trait loci detection.Genetics. 2000, 156:899-911
    [153] Hackett C A, Meyer R C, Thomas W T O. Multitrait QTL mapping in barley using multivariate regression. Genet Res, 2001,77:95-106
    [154] Shaw R G. Maximum-likelihood approaches applied to quantitative genetics of naturalpopulations. Evolution 198745: 143-151
    
    [155] Mardia K V, Kent J T, Bibby J M. Multivariate analysis. Academic Press, London, 1979
    [156] Lorenzen L L, Boutin S, Young N, et al. Soybean pedigree analysis using map-based molecular markers I. Tracking chromosomal regions. Crop Sci, 1995,35:1326-1336
    [157] Lorenzen L L, Lin S F, Shoemaker R C. Soybean pedigree analysis using map-based molecular markers: recombination during cultivar development. Theor Appl Genet, 1996, 93:1251-1260
    [158] George N U, William J K, Jose M C, et al. Genetic Diversity of Soybean Cultivars from China, Japan, North America, and North American Ancestral Lines Determined by Amplified Fragment Length Polymorphism. Crop Sci, 2003,43:1858-1867

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700