用户名: 密码: 验证码:
甘南郎木寺早中全新世湖沼沉积物脂类生物标志化合物与沉积环境
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
应用生物标志化合物恢复古气候、探索古人类活动已成为古气候研究中的重要内容。生物标志化合物具有稳定、保存时限长、分布广等特点,对气候和环境有很好的指示作用。它含有反映有机质母源先质的骨架结构,可以记录古气候、古环境和古植被的演变信息,已有效运用于气溶胶、海相沉积物、湖沼沉积物、黄土和古土壤等各种环境载体中。
     由于其独特的地理位置和对全球变化的敏感响应,青藏高原成为全球地球科学界瞩目的焦点。本文以位于青藏高原东北部的郎木寺地区采取的一湖沼沉积物剖面为研究对象,在剖面中检出了丰富的脂类生物标志化合物。本文主要分析了正构烷烃和直链烷基-2-酮的分布特征及各项参数。正构烷烃的碳数分布范围为C_(16)~C_(33),以中、长链组分为主,主峰碳变化较大,在C_(21)以后具有明显的奇碳优势;直链烷基-2-酮基本以C_(23)为其主峰,在C_(21)以后具有明显的奇碳优势。正构烷烃的分布特征指示了研究区植被以陆源高等植物为主。直链烷基-2-酮的分布特征与正构烷烃不具相似性,样品没有提取脂肪酸,因此,我们初步认为剖面样品中检出的直链烷基-2-酮来源于沉积物中的高等植物。
     文中通过对剖面总有机碳含量的分析,结合年代学建立气候序列,再结合脂类生物标志化合物的各气候代用指标,对剖面形成的气候环境进行讨论。在约11.3~7.3 cal ka BP,郎木寺地区气候整体体现为较为干冷的条件。其中,在9.6~8.6 cal ka BP,该区出现过一次短暂的沼泽化过程,气候出现较大波动,在9~8.6cal ka BP,该区有一次明显的降温事件,可能对应于以往研究中的8.8 ka BP的干冷事件。自约7.3 cal ka BP起,各项指标指示该区进入全新世最适宜期。7.3~6.5cal ka BP为初期的升温,约6.5~5.5 cal ka BP为气候最为暖湿的时期。约5.5 cal kaBP起,郎木寺地区进入一个新的阶段。气候有变干变冷的趋势,是中全新世相对较为干冷的一个阶段,这与青藏高原其它地区此时段的气候特征一致。约4.8cal ka BP,夏季风强度又回升,之后气候又转为干冷,在14 cm(约4.0 cal ka BP)处泥炭停止发育。在约5 cal ka BP出现特殊情况,该区也曾出现一次明显的降温,但正构烷烃分析结果却反映了不同的结果,我们将其归因于某一种特殊的植物。
Present use of biomarkers to reconstruct paleoclimate and ancient human activities has become an important part of molecular stratigraphy.Biomarkers have the characteristics of stable compounds,long-time preservation and wide distribution, providing great information on climatic and environmental changes.They contain framework structures of parent materials,and they can record evolution of palaeoclimate,palaeovegetation and palaeoenvironment.Many types of biomarkers have been reported,such as alkanes,aromatics,alkanoic acids,alkanols,alkenones and esters.Most researches mainly focused on the category,concentration,relative abundance of biomarker compounds,and compositions of stable isotopes such as monomer carbon,hydrogen,oxygen,and nitrogen.The research areas have reached aerosols,marine sediments,lacustrine and peat sediments,loess and so on.
     Because of its special location and sensitive response to the global climate transformation,Tibetan Plateau has been regarded by scholars of the geoscience domain.The research area is located on the edge of the northeast Tibetan Plateau.The sampling site is in Langmusi County,with an altitude of 3559m(34°09′N,102°34′E).This sedimentary sequence was selectively investigated by lipid molecular stratigraphy by gas chromatography-mass spectrometer(GC-MS).A variety of molecular fossils are found in this profile,including n-alkanes,n-alkan-2-ones,pristane,phytane and so on.N-alkane and n-alkan-2-ones are concerned in our research.The n-alkanes are ranged from C_(16)~C_(33).The n-alkan-2-ones are range from C_(19)to C_(33),having a maximum at C_(23)or C_(29).Higher plants are the predominant source of the n-alkane compositions.Combining the distribution of lipids and types of vegetation in and near this area,we can conclude that the source is mainly herbages.N-alkan-2-ones are from epicuticular waxes of higher plants.
     Based on the establishment of a reliable AMS dating,we have been able to establish climate change series of the profile using the distribution patterns of the TOC and the indexes concluding from lipids during the Holocene.
     The profile was formed from 11.3 to 4 cal ka BP.From the variation of those indexes,we can conclude as follow.From 11.3 to 7.3 cal ka BP,the Langmusi area was cold and arid.From 9.6 to 8.6 cal ka BP,there has been a fluctuation.Since 7.3 cal ka BP,this area became warmer,and the climate came into the optimum.Though this period,peat had been deposited,and we can devide it into three phases:from 7.3 to 6.5 cal ka BP,the climate began to become warmer;from 6.5 to 5.5 cal ka BP,the climate of this atea was warmest and most humid;since 5.5 cal ka BP,the climate became colder again,and peat cease to develop at about 4 cal ka BE During the Holocene,there were several cold events in Langmusi area.They happened in about 8.8 cal ka BP and 5 cal ka BP.
     It's very special at about 5 cal ka BP.The ACL and Pαq values of n-alkane indicate that there may be many submerged and floating macrophytes in this area,but other indexes such as TOC and L/H of alkane show the cold and dry climate.We conclude that it may be attribute to a particular species of plant in this area.
引文
1. Baas M, Pancost R, Geel B V et al. A comparative study of lipids in Sphagnum species. Organic Geochemistry, 2000, 31 (6): 535-541
    
    2. Bai Y, Fang X M, Wang Y L et al. Distribution of aliphatic ketones in Chinese soils: Potential environmental implications. Organic Geochemistry, 2006, 37 (7): 860-869
    
    3. Bard E, Bostek F, Sonzogni C. Interhemispheric synchrony of the last deglaciation inferred from alkenone palaeothermometry. Nature, 1997, 385: 707-710
    
    4. BlumerM, Guillard R R L, Chase T. Hydrocarbons of marine phytoplankton. Marine Biology, 1971, 8: 183-189
    
    5. Bond G, William J S. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science, 1997, 278 (5341): 1257-1266
    
    6. Boon A R, Duinevald G C A. Phytopigments and fatty acids as molecular markers for the quality of near bottom particulate organic matter in the North Sea. Journal of Sea Research, 1996, 35: 279-291
    
    7. Brassel S C, Eglinton G, Marlowe I T et al. Molecular stratigraphy: a new tool for climatic assessment. Nature, 1986, 320: 129-133
    
    8. Brassell S C. Applications of biomarkers for delineating marine paleoclimatic fluctuations during the Pleistocene. In: Engel M H, Macko S A eds. Organic Geochemistry: Principles and Applications. New York: Plenum Press, 1993, 699-738
    
    9. Brincat D, Yamada K, Ishiwatari Ret al. Molecular-isotopic stratigraphy of long-chain n-alkanes in Lake Baikal Holocene and glacial age sediments. Organic Geochemistry, 2000, 31 (4): 287-294
    
    10. Carrie R H, Mitchell L, Black K D. Fatty acids in surface sediment at the Hebridean shelf edge, west of Scotland. Organic Geochemistry, 1998, 29: 1583-1593
    
    11. Cranwell P A. Chain-length distribution of n-alkanes from lake sediments in relation to post-glacial environmental change. Freshwater Biology, 1973, 3: 259 - 265
    
    12. Cranwell P A, Eglinton G, Robinson N. Lipids of aquatic organisms as potential contributors to lacustrine sediments. Organic Geochemistry, 1987: 513 - 527
    
    13. Didky B M. Organic geochemical indicator of paleoenvironment condition of sedimentation. Nature, 1978, 272: 216-222
    
    14. Duan Y, Ma L H. Lipid geochemistry in a sediment core from Ruoergai Marsh deposit (Eastern Qinghai-Tibet Plateau, China). Organic Geochemistry, 2001, 32( 12): 1429 - 1442
    
    15. Eglinton G, Hamilton R J. Leaf epicuficular waxes. Science, 1967, 156: 1322-1334 England J, Atkinson N, Dyke A S et al. The Innuitian Ice Sheet: configuration, dynamics and chronology. Quaternary Science Reviews, 2006, 25: 689-703
    16. Enzel Y, Ely L L, Mishra S et al. High-resolution Holocene environmental changes in the Thar Deset, northwestern India. Science, 1999, 284: 125-128
    17. Ererira W P, Hostettl F D, Luoma S N et al. Sedimentary record of anthropogenic and biogenic polycyclic aromatic hydrocarbons in San Francisco Bay, California . Marine Chemistry, 1999, 64: 99-113
    18. Ficken K J, Li B, Swain D L et al. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Organic Geochemistry, 2000, 31 (7-8): 745-749
    19. Francisco J, Gonzalez V, Oliva Polvillo et al. Biomarker patterns in a time resolved holocene/terminal Pleistocene sedimentary sequence from the Guadiana river estuarine area (SW Portugal/Spain border). Organic Geochemistry, 2003, 34: 1601-1613
    20. Gasse F, Arnold M, Fontes J C etal. A 13,000-year climate record from western Tibet. Nature, 1991, 353: 742-745
    21. Graumlich L J. High resolution pollen analysis provides new perspective on catastrophic elm decline. Trends in Ecology & Evolution, 1993, 8 (11): 387 - 388
    22. Hernandez M E, Mead R, Peralba M C et al. Origin and transport of n-alkane-2-ones in a subtropical estuary: potential biomarkers for seagrass-derived organic matter. Organic Geochemistry, 2001, 32: 21-32
    23. Hanne E, Morten H, Trond H E. Lateglacial and early Holocene climatic oscillations on the western Svalbard margin, European Arctic. Quaternary Science Reviews, 2007, 26: 1999 -2011
    24. Hong Y T, Hong B, Lin Q H et al. Correlation between Indian Ocean summer monsoon and North Atlantic climate during the Holocene. Earth and Planetary Science Letters, 2003, 211: 371-380
    25. Hormes A, Mull B U, SchluchterC. The Alps with littlee ice: evidence for eight Holoence phases of reduced glacier extent in the Central Swiss Alps. The Holocene, 2001, 11: 255-265
    26. Huang Y, Collister J W, Chester J, etal. Molecular and δ~(13)C mapping of aeolian input of organic compounds into marine sediment s in t he Nort heastern Atlantic [A]. Organic Geochemistry . Falch Hurtigtrykk, Oslo, 1993, 523-528
    27. Huang Y, Dupont L, Sarnt hein M, et al. Mapping of C4 plant input from North West Africa into North East Atlantic. Geochimica et CosmochimicaActa, 2000, 64: 3505-3513
    28. Ishiwatari R, Hirakawa Y. Organic geochemistry of the Japan Sea sediments-1: bulk organic matter and hydrocarbon analyses of Core KH-79 3, C-3 from the Oki Ridge for paleoenvironment assessments. Journal of Oceanography, 1994, 50: 179 - 195
    
    29. Ives D A, O' Neill A N. The chemistry of peat. Part Ⅰ: The sterols of peat moss (Sphagnum). Canadian Journal of Chemistry, 1958, 36: 434-439
    
    30. IvesDA, O' Neill AN. The chemistry of peat. Part Ⅱ: The triterpenes of peat moss (Sphagnum). Canadian Journal of Chemistry, 1958, 36: 926-930
    
    31. Karunen P, Ekman R. Senescence-related changes in the composition of free and esteried sterols and alcohols in Sphagnum fuscum. Pflanzenphysiologie, 1981, 104: 319-330
    
    32. Karunen P, Ekman R, Salin M. Sphagnum mosses as sources of sterols in peat. In : Fuchsman C H, Spigarelli S A (eds.) .Proceedings of the International Symposium on Peat Utilization. Bemidji: Bemidji State University Press, 1983, 487 - 493
    
    33. Karunen P, Mikola H, Linko R, et al. Lipids in Sphagnum mosses of various ages. Canadian Journal of Botany, 1979, 53: 1335-1339
    
    34. Karunen P, Salin M. Lipid composition of Sphagnum fuscum shoots of various ages. Finnish Chemistry, 1980, 7: 500-502
    
    35. Kuder T, Kruge M A. Preservation of biomolecules in sub-fossil plants from raised peat bogs-a potential paleoenvironmental proxy. Organic Geochemistry, 1998, 29: 1355-1368
    
    36. Langdon P G, Barber K E, Hughes P D M. A 7,500-year peat-based palaeoclimatic reconstruction and evidence for an 1,100-year cyclicity in bog surface wetness from Temple Hill Moss, Pentland Hills, southeast Scotland. Quaternary Science Reviews, 2003, 22: 259 - 274
    
    37. Leif R N, Simoneit B R T. Ketones in hydrothermal petroleums and sediment extracts from Guaymas Basin, Gulf of California. Organic Geochemistry, 1995, 23 (10): 889-904
    
    38. Liew P M, Lee C Y, Kuo C M. Holocene thermal optimal and climate variability of East Asian monsoon inferred from forest reconstruction of a subalpine pollen sequence, Taiwan. Earth and Planetary Science Letters, 2006, 250: 596-605
    
    39. Madureira L A S, van Kreveld S A. Late Quaternary high-resolution biomarker and other sedimentary climate proxies in a nort heast Atlantic core . Paleoceanography, 1997, 12: 255 - 269
    
    40. Meyers P A, Bernasconi S M, Forster A. Origins and accumulation of organic matter in expanded Albian to Santonian black shale sequences on the Demerara Rise, South American margin. Organic Geochemistry, 2006, 37 (12): 1816-1830
    
    41. Meyers P A. Application of organic geochemistry to paleolimnological restructions: A summary of examples from the Laurentian Great Lake. Organic Geochemistry, 2003, 34 (2): 261-289
    42. Mille G, Asia L, Guiliano M et al. Hydrocarbons in coastal sediments from the Mediterranean sea (Gulf of Fos area, France). Marine Pollution Bulletin, 2007. 54 (5): 566 - 575
    
    43. Muri Gregor, Wakeham S G, Pease T K et al. Evaluation of lipid biomarkers as indicators of changes in organic matter delivery to sediments from Lake Planina, a remote mountain lake in NW Slovenia. Organic Geochemistry, 2004, 35 (10): 1083-1093
    
    44. Nichols J E, Booth R K. Paleohydrologic reconstruction based on n-alkane distributions in ombrotrophic peat. Organic Geochemistry, 2006, 37: 1505 - 1513
    
    45. Nichols J E, Huang Y S. C_(23)-C_(31) n-alkan-2-ones are biomarkers for the genus Sphagnum in freshwater peatlands. Organic Geochemistry, 2007, 38 (11): 1972-1976
    
    46. Nott C J, Xie S C, Avsejs L A etal. n-Alkane distributions in ombrotrophic mires as indicators of vegetation change related to climatic variation. Organic Geochemistry, 2000, 31 (2-3): 231-235
    
    47. Pancost R D, Boot C S. The palaeoclimatic utility of terrestrial biomarkers in marine sediments. Marine Chemistry, 2004, 92 (1-4): 239-261
    
    48. Parkas R J. Analysis of microbial communities within sediments using biomarkers.In: Ecology of Microbial Communities SGM 41, Cambridge University Press, 1987, 147 - 177
    
    49. Poinar G O, Robson B, Clifford H. Reconstruction and climatic interpretation of a late Pleistocene peat deposit in northwestern Oregon. Bulletin of the Geobotanical Institute ETH, 2002, 68: 17-27
    
    50. Poynter J G, Farrimond P, Brassell S C et al. Aeolian-derived higher-plant lipids in the marine sedimentary record: Links with paleoclimate[A ]. Palaeoclimatology and Palaeometeorology: Modern and Past Patterns of Global AtmosphereTransport. Kluwer, 1989, 435-462
    
    51. Reddy C M, Eglinton T I, Palic R et al. Even carbon number predominance of plant wax n-alkane: A correction. Organic Geochemistry, 2000, 31: 331-336
    
    52. Renssen H, Brovkin V, Fichefet V et al. Holocene climate instability during the termination of the African Humid Period. Geophysical Research Letters, 2003, 30 (4): 1184, dio: 10.1029/2002GL016636
    
    53. Rieley G, Collier R J, Jones D M et al. Sources of sedimentary lipids deduced from stable carbon isotope analyses of individual compounds. Nature, 1991, 352: 425-427
    
    54. Rieley G, Collier R J, Jones D M et al. The biochemistry of Ellesmere Lake, UK-1 .Source correlation of leaf was inputs to the sedimentary record. Organic Geochemistry, 1991, 17: 901-912
    
    55. Schiefu B E, Ratmeyer V, Stuut Jan-Berend W et al. Carbon isotope analysis of n-alkanes in dust from the lower atmosphere over the central eastern Atlantic. Geochimica et CosmochimicaActa, 2003, 67 (10): 1757-1767
    
    56. Simoneit B R T, Cardoso J N, Robinson N. An assessment of terrestrial higher molecular weight lipid compounds in aerosols particulate matter over the South Atlantic from about 30 ° -70° S. Chemosphere, 1991, 23 (4): 447-465
    
    57. Stein R. Organic carbon and sedimentation rate-further evidence for anoxic deep-water conditions in the Cenomanian/Turonian Atlantic Ocean. Marine Geology, 1986, 72: 199- 209
    
    58. Thomas E R, Wolff E W, Robert M et al. The 8.2 ka event from Greenland ice cores. Quaternary Science Reviews, 2007, 26(1-2): 70-81
    
    59. Villanueva J, Grimalt J O, Cortijo E et al. A biomarker approach to the organic matter deposited in the North Atlantic during the last climatic cycle. Geochimica et Cosmochimica Acta, 1997, 61: 4633-4646
    
    60. Volkman J K, Rrvill A T, Bonham P et al. Sources of organic matter in sediments from the Ord River in tropical northern Australia. Organic Geochemistry, 2007, 38 (7): 1039 - 1060
    
    61. Wakeham S G. Algal and bacterial hydrocarbons in particulate matter and interfacial sediment of the Cariaco trench. Geochimica et Cosmochimica Acta, 1990, 54 (5): 1325 - 1336
    
    62. Wang S W, Zhu J H. Studies on the Chronology of Millennial Time Scale Climate Oscillations in the Holocene. Advances in Climate Change Research, 2006, 2 (Suppl. 1): 73-76
    
    63. Wang Y L, Fang X M, Bai Y et al. Macrocyclic alkanes in modern soils of China. Organic Geochemistry, 2006, 37 (2): 146-151
    
    64. Wang Y L, Wang X B, Wang Y X et al. The analysis of biomarkers in modern lake sediments from antarctica with supercritical fluid extraction and gas chromatography - mass spectrometry. Chinese Journal of Analytical Chemistry, 2005, 33 (2): 289-289
    
    65. Wang Y L, Fang X M, Bai Y et al. Distribution of lipids in modern soils from various regions with continuous climate (moisture - heat) change in China and their climate significance. Science in China (Series D-Earth Sciences), 2007, 50 (4): 600-612
    
    67. Xie S C, Chen F H, Wang Z Y et al. Lipid distribution in loess-paleosol sequences from Northwest China. Organic Geochemistry, 2003, 34(8): 1071-1079
    
    68. Xie S C, Nott C J, Avsejs L A et al. Molecular and isotopic stratigraphy in an ombrotrophic mire for paleoclimate reconstruction. Geochemica et Cosmochimica Acta, 2004, 68(13): 2849 - 2862
    
    69. Xie S C, Yi Y, Huang J H et al. Lipid distribution in a subtropical southern China stalagmite as a record of soil ecosystem response to paleolimate change.Quaternary Research,2003,60:340-347
    70.Zhang Z H,Zhao M X,Yang X D et al.A hydrocarbon biomarker record for the last 40 kyr of plant input to Lake Heqing,southwestern China.Organic Geochemistry,2004,35:595-613
    71.Zhang Z H,Zhao M X,Eglinton G et al.Leaf wax lipids as paleovegetational and paleoenvironm- ental proxies for the Chinese Loess Plateau over the last 170 kyr.Quaternary Science Review,2006,25(5-6):575-594
    72.Zhao M,Dupont L.N-alkanes and pollen reconstruction of terrestrial climate and vegetation for NW Africa over the last 160 a.Organic Geochemistry,2003,34:131-143
    73.Zheng Y H,Zhou W J,Meyers P A et al.Lipid biomarkers in the Zoige-Hongyuan peat deposit:Indicators of Holocene climate changes in West China.Organic Geochemistry,2007,38(11):1927-1940
    74.Zhou W J,Xie S C,Meyers P A et al.Reconstruction of late glacial and Holocene climate evolution in southern China from geolipids and pollen in the Dingnan peat sequence.Organic Geochemistry,2005,36(9):1272-1284
    75.Johns R B.沉积记录中的生物标志物.王铁冠,黄第藩,徐丽娜等译.北京:科学出版社,1991.1-23
    76.Peters K E,Walters C C,Moldowan J M.生物标记化合物指南-古代沉积物和石油分子化石的解释.姜乃煌,张水昌,林用汉等译.北京:石油工业出版社,1995.4-148
    77.柴岫.泥炭地学.北京:地质出版社,1990.136-309
    78.陈发虎,李吉均,张维信.末次冰期以来兰州地区冬季风变化研究.第四纪研究,1999,4:306-313
    79.陈发虎,吴薇,朱艳等.阿拉善高原中全新世干旱事件的湖泊记录研究.科学通报,2004,49(1):1-9
    80.陈建芳.古海洋与古气候演化的生物标志化合物记录.海洋通报,1996,15(5):33-37
    81.邓宏文,钱凯.沉积地球化学与环境分析.甘肃兰州:甘肃科学出版社,1993.4-63
    82.段毅.甘南沼泽沉积脂类生物标志化合物的组成特征.地球化学,2002,31(6):525-531
    83.段毅,崔明中,罗斌杰等.我国海洋沉降颗粒物质的有机地球化学研究Ⅰ.有机质通量及烃类化合物和脂肪酸分布特征.中国科学(D辑),1997,27(5):442-446
    84.段毅,崔明中,马兰花等.我国海洋沉降颗粒物质的有机地球化学研究-Ⅱ.酮、醛和醇脂类化合物组成特征的地球化学意义.科学通报,1997,42(19):2086-2089
    85.段毅,王智平.南沙海洋沉积单体长链正构烷烃成因的碳同位素证据.科学通报,2001,46(23):2003-2006
    86.傅家谟,盛国英.分子有机地球化学研究进展.自然科学进展,1995,5(2):139-146
    87.傅家谟,盛国英.分子有机地球化学与古气候、古环境研究.第四纪研究,1992,4:306-320
    88.郭志刚,杨作升,林田等.东海泥质区单体正构烷烃的碳同位素组成及物源分析.第四纪研究,2006,26(3):384-390
    89.黄春长.西北欧全新世中期的Elm Decline研究新进展.地球科学进展,1996,11(5):487-492
    90.洪冰,林庆华,朱咏煊等.红原泥炭苔草的碳同位素组成与全新世季风变化.矿物岩石地球化学通报,2003,22(2):99-103
    91.洪业汤,姜洪波,陶发祥等.近5 ka温度的金川泥炭δ ~(18)O记录.中国科学(D辑),1997,27(6):525-530
    92.胡建芳,彭平安,贾国东等.三万年来南沙海区古环境重建:生物标志物定量与单体碳同位素研究.沉积学报,2003,21(2):211-218
    93.贾玉连,施雅风,范云崎.四万年以来青海湖的三期高湖面及其降水量研究.湖泊科学,2000,12(3):211-218
    94.赖旭龙,杨洪.古代生物分子在第四纪研究中的应用.第四纪研究,2003,23(5):457-479
    95.李辉,王升忠,冷雪天.泥炭沼泽脂类化合物有机地球化学研究进展.湿地科学,2004,2(1):61-67
    96.梁斌,谢树成,顾延生等.安徽宣城更新世红土正构烷烃分布特征及其古植被意义.地球化学,2005,30(2):129-132
    97.林瑞芬,卫克勤,程致远等.新疆玛纳斯湖沉积柱样的古气候古环境研究.地球化学,1996,25(1):63-72
    98.刘国卿,张干,金章东等.太湖多环芳烃的历史沉积记录.环境科学学报,2006,26(6):981-986
    99.瞿文川,王苏民,张平中等.太湖沉积物中长链脂肪酸甲酯化合物的检出及意义.湖泊科学,1999,11(3):245-250
    100.谭红兵,于升松.我国湖泊沉积环境演变研究中元素地球化学的应用现状及发展方向[J].盐湖研究,1999,7(3):58-65
    101.沈吉,刘兴起,Matsumoto R等.晚冰期以来青海湖沉积物多指标高分辨率的古气候演化.中国科学(D辑),2004,34(6):582-589
    102.王富葆,阎革,林本海等.若尔盖高原泥炭δ ~(13)C的初步研究.科学通报,1993,38(1):65-67
    103.王华,洪业汤,朱咏煊等.青藏高原泥炭腐殖化度的古气候意义.科学通报,2004,49(7):686-691
    104.王奉瑜,孙湘君.内蒙古察素齐泥炭剖面全新世古环境变迁的初步研究.科学通报,1997,42(5):514-518
    105.王永莉,方小敏,白艳等.中国气候(水热)连续变化区域现代土壤中类脂物分子分布特征及其气候意义.中国科学(D辑),2007,37(3):386-396
    106.王玉斌,关平,刘文汇.四川西部沉积物中饱和烃单体碳同位素研究及其环境意义.北京大学学报(自然科学版),2005,41(4):542-550
    107.王志远,刘占红,易轶等.不同气候和植被区现代土壤脂类物分子特征及其意义.土壤学报,2003,40(6):967-970
    108.王志远,谢树成,陈发虎等.临夏源堡黄土地层S1古土壤中的正构烷烃及其古植被意义.第四纪研究,2004,24(2):231-235
    109.王志远,喻建华,顾延生等.浙江长兴更新世红土中的分子化石及其古环境意义.海洋地质与第四纪地质,2002,22(1):97-102
    110.吴敬禄,沈吉,王苏民等.新疆艾比湖地区湖泊沉积记录的早全新世气候环境特征.中国科学(D辑),2003,33(6):569-575
    111.谢树成,易轶,梁斌等.泥炭分子化石单体碳氢同位素的古气候意义.矿物岩石地球化学通报,2003,22(1):8-13
    112.谢树成,易轶,刘育燕等.中国南方更新世网纹红土对全球气候变化的响应:分子化石记录.中国科学(D辑),2003,33(5):411-417
    113.谢树成,Evershed R P.泥炭分子化石记录气候变迁和生物演替的信息.科学通报,2001,46(10):863-866
    114.谢树成,王志远,王红梅等,末次间冰期以来黄土高原的草原植被景观:来自分子化石的证据.中国科学(D辑),2002,32(1):28-35
    115.徐寿昌.有机地球化学.北京:高等教育出版社,1982.293-307
    116.颜备战,贾蓉芬,胡凯等.陕西谓南黄土剖面系列链烃化合物的分布与古气候意义.地球化学,1998,27(2):180-186
    117.杨丹,姚龙奎,王方国等.南海现代沉积物中正构烷烃碳分子组合特征及其指示意义.海洋学研究,2006,24(4):29-39
    118.杨明生,张虎才,雷国良等.洛川黄土剖面末次冰期间冰段弱古土壤(L_1 SS_1)分子化石及其古植被与古环境.第四纪研究,2006,26(6):976-984
    119.杨逸畴,高登义,李渤生.雅鲁藏布江下游河谷水汽通道初探.中国科学(B辑),1987,8:893-902
    120.羊向东,王苏民.一万年以来乌伦古湖地区花粉组合及其环境.干旱区地理,1994,11(2):7-10
    121.姚书春,沈吉.巢湖沉积物柱样中正构烷烃初探.湖泊科学,2003,15(3):200-204
    122.姚檀栋,Thompson L G,施雅风等.古里雅冰芯中末次间冰期以来气候变化记录研究.中国科学(D辑),1997,127(5):447-452
    123.伊海生,林金辉,王成善等.藏北可可西里地区中新世湖相油页岩的生物分子标识及碳同位素异常.成都理工学院学报,2002,29(5):473-480
    124.于学峰,周卫建.全新世泥炭古气候记录研究进展.海洋地质与第四纪地质,2003,24(4):121-126
    125.于学锋,周卫建,Franzen L G等.青藏高原东部全新世东夏季风变化的高分辨率泥炭记录.中国科学(D辑),2006,36(2):182-187
    126.于世永,朱诚,王富葆等.太湖流域全新世气候-海面短期震荡事件及其对新石器文化的影响.地理科学,2000,20(4):331-336
    127.郑艳红,程鹏,周卫建.正构烷烃及单体碳同位素的古植被与古气候意义.海洋地质与第四纪地质,2005,25(1):99-104
    128.郑艳红,周卫健,谢树成.若尔盖高原全新世气候序列的类脂分子化石记录.第四纪研究,2007,27(1):108-113
    129.钟艳霞,陈发虎,安成邦等.陇西黄土高原秦安地区全新世植被的讨论.科学通报,2007,52(3):318-323
    130.周卫建,卢雪峰,武振坤等.若尔盖高原全新世气候变化的泥炭记录与加速器放射性碳测年.科学通报,2001,46(12):1040-1044

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700