用户名: 密码: 验证码:
供水管网水质模型校正及水质监控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文围绕给水管网水质模型校正问题进行了相关基础性研究,并通过对二次加氯站布置研究讨论了水质监控的相关问题。
     首先,基于多组分物质混合理论,利用EPANET2.0和EPANET-MSX工具包编程模拟计算,采用蒙特卡罗模拟的方法对影响水质模型准确性的主要参数进行了不确定性分析,结果表明,各水源不同水质主体余氯衰减系数K_b和管壁余氯衰减系数K_w较之其它参数对于水质模型节点余氯浓度不确定性影响程度较大;在此基础上,对两个水源不同水质的水流在管网中混合运行后的各管段主体水流余氯衰减系数进行了确定估计,并基于该方法对多个水源不同水质供水管网管道的主体水流余氯衰减系数的确定进行了扩展,经过算例验证表明,该研究为管网水质模型中主体水流余氯衰减系数的确定提出了一种更为快捷的方法;基于管壁余氯一级衰减模型,建立了多工况下管壁余氯衰减系数校正的优化模型,采用Max-Min蚁群算法求解给水管网管壁余氯衰减系数校正数学模型,算例证明了该校正模型方法的正确性和可行性,为更加准确地描述管网水质模型和更好地解决水质问题,提供了新的研究途径。
     其次,基于D-优化方法和一次二阶矩(FOSM)理论,定量研究了给水管网水质模型管壁余氯衰减系数和模型预测值的不确定性问题,研究表明,在节点流量较大情况下,采集校正数据得出的校正参数的不确定性比较小,模型预测值不确定性相对较大,供水管网水质模型不确定性研究为水质模型系统全面校正提供了一定的依据和方法;基于水质模型参数及模型预测值不确定性研究,提出了以模型参数不确定性最小及采样点设计花费最小为目标函数,建立了水质模型校正的采样点优化布置多目标数学模型,采用NSGA-Ⅱ多目标遗传算法对该模型进行了求解研究。通过算例分析,结果表明该方法有效可行,对于水质模型校正的采样设计问题具有一定的参考价值。
     再次,以管网供出的达标水量最大为目标函数,结合加氯站布置的部分影响原理,建立了二次加氯选址的数学模型,采用粒子群优化算法对一级二次加氯点布置优化进行了优化选址,取得了较好效果;引入管网余氯与来自水源有机物反应衰减的水质模拟模型,以管网中包括水源地在内的各加氯站总加氯量最小为目标函数,考虑余氯与有机物反应后各节点余氯浓度及所对应副产物浓度符合要求为约束,建立了二次加氯投加量的优化模型,采用遗传算法对该模型进行了优化求解。基于以余氯浓度值为基础的管网水质服务水平的理论,对二次加氯前后管网水质服务水平情况进行了评价比较,结果表明,采用二次加氯站优化结果相对未设置二次加氯站之前,不仅提高了服务水平,有效地减小了投加氯总量,而且避免了余氯量过大及由此可能产生的负面作用,为管网水质模型和水质监控管理运行提供了参考依据。
     最后,在实例研究中实现了管网的水质模型主体余氯衰减系数和管壁余氯衰减系数确定和校正,对基于水质模型校正的采样点优化布置问题进行了求解,并在准确校正水质模型之后,对管网二次加氯站进行了优化选址和投加量方案的优化,分析计算结果表明,本文提出的相关模型和方法具有较好的实用性。
Calibration can be defined as a process in which a number of WDS model parameters are adjusted until the model mimics behavior of the real WDS as closely as possible. The focus of this dissertation is the relative research about water quality model estimates, calibration and monitoring, besides booster chlorination setup.
     Firstly, chlorine bulk and wall decay coefficients have been estimated and calibrated. Based on EPANET2 and EPANET-MSX toolkits, the effect of individual parameters uncertainty, as well as the combined effect of the parameters uncertainty, on water quality in a distribution system was analyzed by Monte Carlo simulation (MCS). It concludes that chlorine bulk and wall decay coefficients have larger influence on model prediction comparing with other parameters. Then chlorine bulk coefficients in two-source water distribution system networks, two sources of which have different source bulk decay coefficients, have been estimated. The method can be used in multi-sources networks, which can provide a novel means to get the bulk chlorine coefficients instead of measuring in the lab. Besides, a general calibration model under multi-mode for identifying wall decay parameters is formulated, based on the simple first-order reaction of chlorine and the Lagrange time-based approach of dynamic water quality model. Multi-mode model was analyzed to collect more node residual chlorine for calibration. Max-min ant colony system algorithm was proposed to solve the calibration model that is coupled with hydraulic and water quality simulation models using EPANET2 Toolkits. It concludes that the methods can obtain the solution quickly and effectively.
     Secondly, based on D-optimization and FOSM theory, the uncertainties involved with estimated parameters and the model prediction uncertainties for critical demand conditions due to the parameter uncertainties are calculated. Then location optimization of sampling and measurement for water quality calibration has been proposed based on estimated parameters and the model prediction uncertainties, and has been resolved by multi-objective genetic algorithm NSGA-II. The number of measurement can be determined from the obtained pareto front solution. NSGA-II is very befitting for resolving such two-objective optimization problem.
     Thirdly, booster chlorination added to water distribution to maintain disinfectant residuals and avoid high dosages at water sources has been researched. The objective function which maximizes the certified water quantity to consumer, considering partial influence on nodes by booster chlorination, has been proposed. The mathematical model has been solved by particle swarm optimization algorithm; given a set number of boosters' stations. By considering the natural organic matter reacting with the chlorine and the disinfectant by-products concentration under allowed maximization as one of the restrictions, the chlorine injection rates of chlorine boosters have been optimized by minimizing the total chlorine mass to be injected to maintain required residuals, using genetic algorithms. Then though introducing performance evaluation system of networks service level, the level of service has been compared between no booster chlorination and re-chlorination. It concludes that booster chlorination not only increase the service level of networks, but can allow lower average chlorine and decrease the variability of chlorine residuals through a water distribution network, which lead to a lower dosage and may reduce the formation of disinfectant by-products.
     Finally, the methods of calibrating chlorine bulk and wall decay coefficients have been used in a realistic network. Then sampling design based on water quality model calibration has been optimized and booster chlorination stations have been displayed including the optimal location and chlorine injection rates in different time. It concludes that the model and method which have been proposed in this research can be applied to solve relative problems.
引文
[1]Biswas,A.K.Summary and Main Documents[C].United Nations Water Conference,Oxford.Pergamon Press,1978.
    [2]Mageed,Y.A.Opening Statement of the Secretary General[C].United Nations Water Conference:Summary and Main Documents,Oxford.Pergamon Press,1978.
    [3]Biswas,A.K.Water Missing from Agenda[J].Stockholm Water Front,1993,2:12-13.
    [4]陈邵金.水安全系统评价、预警与调控研究[D].南京:河海大学,2005.
    [5]黄亚东.给水管网水质传感器优化选址研究[D].杭州:浙江大学,2007.
    [6]李振东.认真贯彻建设部城市供水系统重大事故应急预案切实加强城市供水安全保障工作[1].李振东在中国水协2006年秘书长工作会上的讲话,2006.
    [7]吴小虎.西安城市供水管网系统运行安全评价方法初探[D].西安:城市规划与设计,西安建筑科技大学,2007.
    [8]何文杰.供水管网系统动态模拟技术的研究[D].哈尔滨:市政工程,哈尔滨工业大学,2001.
    [9]吴文燕,赵洪宾,解守志.监测配水管网水质[J].中国给水排水,1996,22(6):25-27.
    [10]徐洪福.配水管网系统水质变化规律与水质模型研究[D].哈尔滨:哈尔滨工业大学,2003.
    [11]吴晨光,孙雨石,赵洪宾.环状管网模拟余氯衰减模型[J].中国给水排水2006,22(1):9-13.
    [12]张土乔,黄亚东,吴小刚.供水管网水质检测点优化选址研究[J].浙江大学学报:工学版,2007,41(1):1-5.
    [13]Pasha,M.E K.Uncertainty analysis and calibration of water distribution quality models[D].United States—Arizona:The University of Arizona,2006.
    [14]张土乔,许刚.给水管网管道摩阻校正方法研究[J].浙江大学学报:工学版,2006,40(7):1201-1205.
    [15]Li,X.,Gu,D.M.,Qi,J.Y.Modeling of residual chlorine in water distribution system[J].Journal of Environmental Sciences,2003,15(1):136-144.
    [16]许刚,张土乔,吕谋.多工況的遗传算法校正管道摩阻系数[J].中国给水排水,2004,20(8):50-53.
    [17]信昆仑.遗传算法应用于给水管网管径组合优化[D].青岛:青岛建筑工程学院,2000.
    [18]信昆仑.给水管网微观模型优化调度应用研究[D].上海:同济大学,2003.
    [19]吴文燕.给水管网系统水质模型的研究[DI.哈尔滨:哈尔滨工业大学,1999.
    [20]李欣.配水管网水质变化的研究[DI.哈尔滨:市政工程,哈尔滨建筑大学,1999.
    [21]仇保兴.城镇水务工作五个重点[J].建设科技(建设部),2005,18:8.
    [22]Tryby,M.E.Contaminant source monitoring and characterization in water distribution systems[D].United States—North Carolina:North Carolina State University,2008.
    [23]徐洪福,赵洪宾,尤作亮,等.配水系统的水质模型研究概况[J].中国给水排水,2002,18(3):33-36.
    [24]李欣,马建薇,袁一星.城市给水管网水质研究与进展[J].哈尔滨工业大学学报,2004,36(10):1392-1396.
    [25]Ormsbee,L.E.,Wood,D.J.Explicit Pipe Network Calibration[J].Journal of Water Resources Planning and Management,1986,112(2):166-182.
    [26]Males,R.M.,Clark,R.M.,Wehrman,P.J.,et al.Algorithm for mixing problems in water systems[J].Journal of Hydraulic Engineering,1985,111(2):206-219.
    [27]Clark,R.M.,Rossman,L.A.,Wymer,L.J.Modeling distribution system water quality:regulatory implications[J].Journal of Water Resources Planning and Management,1995,121(6):423-428.
    [28]Rossman,L.A.,Boulos,P.F.Numerical methods for modeling water quality in distribution systems:A comparison[J].Journal of Water Resources Planning and Management,1996,122(2):137-146.
    [29]Rossman,L.A.,Chaudhry,M.H.,Grayman,W.M.Modeling chlorine residuals in drinking-water distribution systems[J].Journal of Environment Engineering,1994,120(4):803-820.
    [30]Lious,C.P.,Kroon,J.R.Modeling the propagation of water-borne substances in distribution networks[J].Journal of American Water Works Association,1987,79(11):54-58.
    [31]Chaudhry,M.H.,Islam,M.R.(1995).Water quality modeling in pipe networks.Paper presented at:Improving Efficiency and Reliability in Water Distribution Systems (Netherlard,Kluwer Academic publishers).
    [32]Shang,F.,Uber,J.G.EPANET Multi-Species Extension User's Manual[M].Cincinnati,2008.
    [33]赵洪宾,严煦世.给水管网系统理论与分析[M].北京:中国建筑工业出版社,2003.
    [34]袁一星,赵洪宾,赵明.给水管网生长环研究[J].哈尔滨建筑大学学报,1998,31(1):72-76.
    [35]李斌.城市输配水管网水质变化的动态模拟[D].长沙:给排水工程系统及优化,湖南大学.2002.
    [36]王阳.城市供水管网水质预测模型的研究与应用[D].天津:环境工程,天津大学,2005.
    [37]王志丹.输配水系统水质统计模型的研究[D].天津:环境工程,天津大学,2005.
    [38]王静海.北方地区给水管网水质稳定性的研究[D].哈尔滨:市政工程,哈尔滨工业大学.2004.
    [39]王亮亮.供水管网中水质稳定性及其影响因素研究[D].哈尔滨:环境工程,哈尔滨工业大学.2004.
    [40]马建薇.供水管网水质生物稳定性及其影响因素的研究[D].哈尔滨:环境工程,哈尔滨工业大学.2003.
    [41]王旭冕.城市供水系统水质安全性与余氯控制的研究[D].西安:市政工程,西安建筑科技大学.2006.
    [42]马力辉.供水管网余氯优化控制决策支持系统研究[D].上海:市政工程,同济大学,2007.
    [43]减金双.给水管网水质稳定与水质模拟[D].西安:市政工程,西安建筑科技大学,2008.
    [44]王向会.天津市输配水管网水质变化的研究[D].天津:环境工程,天津大学,2005.
    [45]董晓磊.给水管网水质动态模拟[D].合肥:水力学及河流动力学,合肥工业大学,2006.
    [46]吴卿.饮用水管网微生物学水质研究及模拟[D].天津:环境科学与工程,天津大学, 2005.
    [47]蔡云龙.饮用水生物稳定性和管网水质污染指数的研究[D].上海:市政工程,同济大学,2006.
    [48]韩宏大.安全饮用水保障集成技术研究[D].北京:市政工程 给排水系统优化,北京工业大学,2006.
    [49]鲁巍,张晓健.给水管网细菌生长的动力学模型[J].中国给水排水,2006,22(18):8-10.
    [50]Walski,T.M.Technique for Calibrating Network Models[J].Journal of Water Resources Planning and Management,ASCE,1983,109(4):360-372.
    [51]Ormsbee,L.E.Implicit Network Calibration[J].Journal of Water Resources Planning and Management,ASCE,1989,115(2):243-257.
    [52]Kapelan,Z.S.,Savic,D.A.,Waiters,G.A.Optimal Sampling Design Methodologies for Water Distribution Model Calibration[J].Journal of Hydraulic Engineering,2005,131(3):190-200.
    [53]许刚.给水管网水力模型正研究[D].杭州:市政工程,浙江大学,2006.
    [54]Shamir,U.Optimal Design and Operation of Water Distribution Systems[J].Water Resources Research,1974,10(1):27-36.
    [55]Lansey,K.E.,Basnet,C.Parameter Estimation for Water Distribution Networks[J].Journal of Water Resources Planning and Management,ASCE,1991,117(1):126-144.
    [56]Savic,D.A.,Waiters,G.A.Genetic Algorithm Techniques for Calibrating Network Models[R].Centre for Systems and Control Engineering,University of Exeter,1995.
    [57]Reddy,E V.N.,Sridharan,K.,Rao,P.V.WLS Method for Parameter Estimation in Water Distribution Networks[J].Journal of Water Resources Planning and management,ASCE,1996,122(3):157-164.
    [58]Lingireddy,S.,Ormsbee,L.E.(1999).Optimal Network Calibration Model Based on Genetic Algorithms.Paper presented at:WRPMD 1999(University of Kentucky,USA.).
    [59]Greco,M.,Giudice,G.D.New Approach to Water Distribution Network Calibration[J].Journal of Hydraulic Engineering,1999,125(8):849-854.
    [60]Kapelan,Z.S.Calibration of Water Distribution System Hydraulic Models[D].School of Engineering and Computer Science,the University of Exeter,UK.,2002.
    [61]信昆仑,刘遂庆.城市给水管网水力模型准确度的影响因素[J].中国给水排水,2003,
    19(4):52-55.
    [62]袁一星,曲世琳,伍悦滨.城市给水管网系统的阻力变化规律研究[J].中国给水排水,2003,19(10):52-54.
    [63]许刚,张土乔,吕谋,等.多工况的遗传算法校正管道摩阻系数[J].中国给水排水,2004,20(8):50-53.
    [64]王云海,俞国平.给水管网水力模型校正的一种新方法[J].工业用水与废水,2004,35(4):61-63.
    [65]信昆仑,程声通,刘遂庆.实数型编码遗传算法校核管道摩阻系数[J].中国给水排水,2004,20(9):68-70.
    [66]赵志领,赵洪宾,何文杰.城市给水管网的水质变化规律研究[J].中国给水排水,2006,22(19):44-46.
    [67]Ostfeid,A.Enhancing Water-Distribution System Security through Modeling[J].Journal of Water Resources Planning and Management,2006,132(4):209-210.
    [68]Vasconelos,J.J.,Rossman,L.A.,Grayman,W.M.,et al.Kinetics of chlorine decay[J]. Journal of American Water Works Association, 1997, 89(7): 55-65.
    [69] Islam, M. R., Chaudhry, M. H., Clark, R. M. Inverse modeling of chlorine concentration in pipe networks under dynamic condition[J]. Journal of Environmental Engineering, 1997, 123(10): 1033-1040.
    [70] Maier, S. H., Powell, R. S., Woodward, C. A. Calibration and comparison of chlorine decay models for a test water distribution system[J]. Water Research, 2000,34(8): 2301-2309.
    [71] Al-Omari, A. S., Chaudhry, M. H. Unsteady-state inverse chlorine modeling in pipe networks[J]. Journal of Hydraulic Engineering, 2001,127(8): 669-677.
    [72] Hallam, N. B., West, J. R., Forster, C. F.,et al. The decay of chlorine associated with the pipe wall in water distribution systems[J]. Water Research, 2002, 36(14): 3479-3488.
    [73] Hallam, N. B., Hua, F., West, J. R.,et al. Bulk decay of chlorine in water distribution systems[J]. Journal of Water Resources Planning and Management-Asce, 2003, 129(1): 78-81.
    [74] Munavalli, G. R., Mohan, K. M. S. Water quality parameter estimation in a distribution system under dynamic state[J]. Water Research, 2005, 39(18): 4287-4298.
    [75] Shang, F. Path-dependent approach to estimate chlorine wall demand coefficient in water distribution system[D]. Ohio: University of Cincinnati, 2005.
    [76] Rossman, L. A. EPANET 2 User's Manual[M]. Cincinnati,U.S., 2000.
    [77] Van Lieverloo, J. H. M., Mesman, G. A. M., Bakker, G. L.,et al. Probability of detecting and quantifying faecal contaminations of drinking water by periodically sampling for E. coli: A simulation model study[J]. Water Research, 2007,41(19): 4299-4308.
    [78] Sumer, D. Impact of data collection and calibration of water distribution models on model-based decisions[D]. Arizona,United States: The University of Arizona, 2007.
    [79] Shang, F., Uber, J. G. Calibrating Pipe Wall Demand Coefficient for Chlorine Decay in Water Distribution System[J]. Journal of Water Resources Planning and Management, 2007, 133(4): 363-371.
    [80] Huang, J. J. Chlorine decay modelling and contamination identification strategies for water distribution systems[D]. Guelph: University of Guelph, 2007.
    [81] Basha, H. A., Malaeb, L. N. Eulerian—Lagrangian Method for Constituent Transport in Water Distribution Networks[J]. Journal of Hydraulic Engineering, 2007, 133(10): 1155-1166.
    [82] Huang, J. J., McBean, E. A. Using Bayesian statistics to estimate chlorine wall decay coefficients for water supply system[J]. Journal of Water Resources Planning and Management-Asce, 2008, 134(2): 129-137.
    [83] Courtis, B. J., West, J. R., Bridgeman, J. Temporal and Spatial Variations in Bulk Chlorine Decay within a Water Supply SystemfJ]. Journal of Environmental Engineering-Asce, 2009, 135(3): 147-152.
    [84] Wagner, J. M., Shamir, U., Marks, D. H. Water disribution reliability: simulation methods[J]. Journal of Water Resources Planning and Management, 1988,114(3): 276-294.
    [85] Bao, Y., Mays, L. W. Model fr water distribution system reliability[J]. ournal of Hydraulic Engineering, 1990, 116(9): 1119-1137.
    [86] Xu, C., Goulter, I. Probabilistic Model for Wter Distribution Reliability[J]. Journal of Water Resources Planning and Management, 1998, 124(4): 218-228.
    [87] Sadiq, R., Kleiner, Y., Rajani, B. Aggregative risk anaysis for water quality failure in distribution networks[J]. Journl of Water Supply Research and Technology, 2004, 53(4): 241-261.
    [88] Barkdoll, B. D., Didigam, H. Effect of user demand on water quality and hydraulics of distribution systems[C]. Proceedings of the 2004 Conference. 2004.
    [89] Deininger, R. A., Literathy, P., Bartram, J. Security of public water supplies[C]. Kluwer Academic Publ, the Netherlands. 2000.
    [90] Neukrug, H. M., Burlingame, G. A., Wankoff, W.,et al. Water quality regs: Staying ahead.[J]. Civil Engineering, 1995: 4.
    [91] Lee, B. H., Deininger, R. A. Optimal locations of monitoring stations in water distribution system[J]. Journal of Environmental Engineering, 1992, 118(1): 4-16.
    [92] Al-Zahrani, M., Moied, K. Optimizing water quality monitoring stations using genetic algorithms[J]. The Arabian Journal for Science and Engineering, 2003,28(1B): 57-75.
    [93] Woo, H.-M., Yoon, J.-H., Choi, D.-Y. (2001). Optimal Monitoring Sites Based on Water Quality and Quantity in Water Distribution Systems. Paper presented at: World Water Congress 2001 (Orlando, Florida, USA, ASCE).
    [94] Harmant, P., Nace, A., Kiene, L.,et al (1999). Optimal Supervision of Drinking Water Distribution Network. Paper presented at: WRPMD 1999 (Tempe, Arizona, USA, ASCE).
    [95] Kumar, A., Kansal, M. L., Arora, G. Identification of Monitoring Stations in Water Distribution System[J]. Journal of Environmental Engineering, 1997, 123(8): 746-752.
    [96] Kessler, A., Ostfeld, A., Sinai, G. Detecting Accidental Contaminations in Municipal Water Networks[J]. Journal of Water Resources Planning and Management, 1998, 124(4): 192-198.
    [97] Ostfeld, A., Kessler, A. Protecting urban water distribution systems against accidental hazards intrusions[J]. Proc, IWA 2nd Conf, IWA, 2001.
    [98] Kumar, A., Kansal, M. L., Arora, G.,et al. Detecting Accidental Contaminations in Municipal Water Networks[J]. Journal of Water Resources Planning and Management, 1999, 125(5): 308-310.
    [99] Kumar, A., Kansal, M. L., Arora, G. Closure to "Identification of Monitoring Stations in Water Distribution System" by Arun Kumar, M. L. Kansal, and Geeta Arora[J]. Journal of Environmental Engineering, 1999, 125(2): 203-204.
    [100] Kumar, A., Kansal, M. L., Arora, G. Discussion of detecting accidental contaminations in municipal water netwoks[J]. Journal of Water Resources Planning and Management, 1999, 125(5): 308-310.
    [101] Berry, J., Fleischer, L., Hart, W.,et al (2003). Sensor Placement in Municipal Water Networks. Paper presented at: World Water Congress 2003 (Philadelphia, Pennsylvania, USA, ASCE).
    [102] Berry, J. W, Fleischer, L., Hart, W. E.,et al. Sensor Placement in Municipal Water Networks[J]. Journal of Water Resources Planning and Management, 2005, 131(3): 237-243.
    [103] Carr, R. D., Greenberg, H. J., Hart, W. E.,et al (2004). Addressing Modeling Uncertainties in Sensor Placement for Community Water Systems. Paper presented at: World Water Congress 2004 (Salt Lake City, Utah, USA, ASCE).
    [104] Watson, J.-P., Greenberg, H. J., Hart, W. E. (2004). A Multiple-Objective Analysis of Sensor Placement Optimization in Water Networks.Paper presented at:World Water Congress 2004(Salt Lake City,Utah,USA,ASCE).
    [105]Ostfeid,A.,Salomons,E.Optimal early warning monitoring system layout for water networks security:inclusion of sensors sensitivities and response delays[J].Civil Engineering and Environmental Systems,2005,22(3):151-169.
    [106]Grayman,W.M.,Ostfeld,A.,Salomons,E.Locating Monitors in Water Distribution Systems:Red Team—Blue Team Exercise[J].Journal of Water Resources Planning and Management,2006,132(4):300-304.
    [107]Helbling,D.E.Monitoring chlorine as an indicator of microbial contamination in water distribution systems[D].United States—Pennsylvania:Carnegie Mellon University,2008.
    [108]郭娇,刘遂庆,信昆仑(2006).供水管网水质监测点优化布置方法.Paper presented at:供水行业2010年技术进步发展规划研讨会论文集.
    [109]方海恩,吕谋,毕继胜.预警监测站优化布置方法的探讨[J].青岛理工大学学报,2006,27(3):4.
    [110]方海恩,吕谋(2005).供水管网预警监测站的优化布置.Paper presented at:供水管网信息化管理与检测技术应用论文集(郑州).
    [111]韩云峰.城市供水管网水质在线监测系统的研究[D].哈尔滨:环境工程,哈尔滨工业大学,2004.
    [112]Boccelli,D.L.,Tryby,M.E.,Uber,J.G.,et al.Optimal Scheduling of Booster Disinfection in Water Distribution Systems[J].Journal of Water Resources Planning and Management,1998,124(2):99-111.
    [113]Propato,M.,Uber,J.G.Linear Least-Squares Formulation for Operation of Booster Disinfection Systems[J].Journal of Water Resources Planning and Management,2004,130(1):53-62.
    [114]Prasad,T.D.,Waiters,G.A.,Savic,D.A.Booster Disinfection of Water Supply Networks:Multiobjective Approach[J].Journal of Water Resources Planning and Management,2004,130(5):367-376.
    [115]Munavalli,G.R.,Kumar,M.S.M.Optimal Scheduling of Multiple Chlorine Sources in Water Distribution Systems[J].Journal of Water Resources Planning and Management,2003,129(6):493-504.
    [116]Tryby,M.E.,Boccelli,D.L.,Uber,J.G.,et al.Facility Location Model for Booster Disinfection of Water Supply Networks[J].Journal of Water Resources Planning and Management,2002,128(5):322-333.
    [117]Ucaner,M.E.,Ozdemir,O.N.Application of Genetic Algorithms for Booster Chlorination in Water Supply Networks[C].World Water Congress 2003,Philadelphia,Pennsylvania,USA.ASCE,2003.
    [118]Church,R.L.,Revelle,C.The maximal covering location problem[J].Paper of Reginal Science Association,1974,32:101-118.
    [119]迟海燕.城市供水管网氯的优化配置[D].天津:天津大学,2004.
    [120]黄雅芳.城市配水管网二次加氯的优化研究[D].长沙:市政工程,湖南大学,2005.
    [121]鲁宁波.城市给水管网二次加氯优化及算法实现[D].哈尔滨:市政工程,哈尔滨工业大学,2006.
    [22]邓涛.供水系统加氯模式优化理论与计算方法[D].哈尔滨:哈尔滨工业大学,2007.
    [123]Demoyer,R.,Horwitz,L.B.Macroscopic Distribution-System Modeling[J].Journal of American Water Works Association,1975,(July):377-380.
    [124]吴学伟,赵洪宾.给水管网状态估计方法的研究[J].哈尔滨建筑大学学报,1995.28(6):61-65.
    [125]Axworthy,D.H.Water Distribution Network Modelling:From Steady State to Waterhammer[D].Department of Civil Engineering,University of Toronto,1997.
    [126]Todini,E.,Pilati,S.A Gradient Algorithm for the Analysis of Pipe Networks[C].Proc.Computer Applications in Water Supply,New York,USA,.1988.
    [127]陈磊.大规模供水系统直接优化调度研究[D].杭州:市政工程,浙江大学,2005.
    [128]吕谋.大规模供水系统多目标混合直接优化调度[D].哈尔滨:市政工程,哈尔滨建筑大学.1998.
    [129]吴学伟.给水管网状态估计及多目标直接优化运行调度[D].哈尔滨:市政工程,哈尔滨建筑大学,1996.
    [130]许刚,洪赟,吕谋,等.城市给水管网状态模拟方法探讨[J].水利水电技术,2005,36(7):129-131.
    [131]俞亭超.城市供水系统优化调度研究[D].杭州:市政工程,浙江大学,2004.
    [132]张宏伟.城市供水系统运行决策支持系统[D].天津:管理科学与工程,天津大学,2001.
    [133]周建华.大规模城市给水管网系统优化运行模型研究[D].哈尔滨:市政工程,哈尔滨建筑大学,2003.
    [134]许刚,吕谋,张土乔.给水管网神经网络模型数据预处理方法探讨[J].中国农村水利水电,2005,(5):17-19.
    [135]王荣和.给水管网系统多工况优化设计及拟稳定状态水力模拟研究[D].上海:环境工程,同济大学,1998.
    [136]李欣,赵洪宾,浮田正夫.配水管网水质变化的研究(1)——管网的水力分析与计算[J].哈尔滨建筑大学学报,1999,32(1):62-66.
    [137]Walski,T.M.Standards for Model Calibration[C].Proc.AWWA Computer Conference,Norfolk,UK.1995.
    [138]齐晶瑶,李欣,赵洪宾。关于供水管道内余氯消耗机理的探讨[J].给水排水,2000,26(8):66-69.
    [139]李欣,赵洪宾,浮田正夫.配水管网中三卤甲烷的研究[J].给水排水,1999,24(1):11-14.[140]Feng,S.,James,G.U.,Lewis,A.R.Modeling Reaction and Transport of Multiple Species in Water Distribution Systems[J].Environmental Science & Technology,2008,42(3):808-814.
    [141]Walski,T.M.Technique for Calibrating Network Models[J].Journal of Water Resources Planning and Management,1983,109(4):360-372.
    [142]舒诗湖,明,赵.,何文杰.供水管网水力、质模型校核标准探讨[J].中国给水排水,2008,24(18):104-106.
    [143]王中宇,刘智敏,夏新涛.测量误差与不确定度评定[M].北京:科学出版社,2008.
    [144]周建华,赵洪宾,薛罡.配水管网中与有机物反应的余氯衰减动力学模型[J].环境科学,2003,24(3):45-49.
    [145]徐洪福,赵洪宾,张金松.输配水系统中水体余氯的衰减规律研究[J].中国给水排水,2003,19(8):15-18.
    [146] Munavalli, G. R., Kumar, M. S. M. Autocalibration of a water distribution model for water quality parameters using GA[J]. American Water Works Association Journal, 2006, 98(9): 109.
    
    [147] Dorigo, M., Stutzle, T. Ant Colony Optimization[M]. the MIT press, 2004.
    [148] Stutzle, T., Hoos, H. (1997). MAX-MIN Ant System and Local Search for Combinatorial Optimization Problems. Paper presented at: 2nd International Conference on Metaheuristics-MIC97 (Sophia-Antipolis, France).
    [149] Tryby, M. E. Contaminant source monitoring and characterization in water distribution systems[D]. United States -- North Carolina: North Carolina State University, 2008.
    [150] Bush, C. A., Uber, J. G. Sampling Design Methods for Water Distribution Model Calibration[J]. Journal of Water Resources Planning and Management, 1998, 124(6): 334-344.
    [151] Kapelan, Z. S., Savic, D. A., Walters, G. A. Multiobjective Sampling Design for Water Distribution Model Calibration[J]. Journal of Water Resources Planning and Management, 2003, 129(6): 466-479.
    [152] Lansey, K. E., El-Shorbagy, W., Ahmed, I.,et al. Calibration Assessment and Data Collection for Water Distribution Networks[J]. Journal of Hydraulic Engineering, 2001, 127(4): 270-279.
    [153] Bargiela, A., Hainsworth, G. D. Pressure and Flow Uncertainty in Water Systems[J]. Journal of Water Resources Planning and Management, ASCE, 1989,115(2): 212-229.
    [154] Hsu, N. S., Yeh, W. W. G. Optimum Experimental Design for Parameter Identification in Groundwater Hydrology[J]. Water Resources Research, 1989,25(5): 1025-1040.
    [155] Knopman, D. S., Voss, C. I. Multiobjective Sampling Design for Parameter Estimation and Model Discrimination in Groundwater Solute Transport[J]. Water Resources Research, 1989, 25(10): 2245-2258.
    [156] Wagner, B. J. Sampling Design Methods for Groundwater Modelling Under Uncertainty[J]. Water Resources Research, 1995,31(10): 2581-2591.
    [157] Bush, C. A., Uber, J. G. Sampling Design Methods for Water Distribution Model Calibration[J]. Journal of Water Resources Planning and Management, ASCE, 1998, 124(6): 334-344.
    [158] Lansey, K. E., El-Shorbagy, W., Ahmed, I.,et al. Calibration Assessment and Data Collection for Water Distribution Networks[J]. Journal of Hydraulic Engineering, ASCE, 2001, 127(4): 270-279.
    [159] Datta, R. S. N., Sridharan, K. Parameter Estimation in Water-Distribution Systems by Least Squares[J]. Journal of Water Resources Planning and Management, ASCE, 1994, 120(4): 405-422.
    [160] Pudar, R. S., Liggett, J. A. Leaks in Pipe Networks[J]. Journal of Hydraulic Engineering, ASCE, 1992, 118(7): 1031-1046.
    [161] Vitkovsky, J. P., Simpson, A. R., Lambert, M. F. Leak Detection and Calibration Using Transients and Genetic Algorithms[J]. Journal of Water Resources Planning and Management, ASCE, 2000, 126(4): 262-264.
    [162] Xu, C., Goulter, I. C. Probabilistic Model for Water Distribution Reliability[J]. Journal of Hydraulic Engineering, ASCE, 1998, 124(4): 218-228.
    [163] deSchaetzen, W. Optimal Calibration and Sampling Design for Hydraulic Network Models[D].School of Engineering and Computer Science,University of Exeter,2000.
    [164]Yu,G.,Powell,R.S.Optimal Design of Meter Placement in Water Distribution Systems[J].International Journal of Systems Science,1994,25(12):2155-2166.
    [165]陈洋波,王先甲,冯尚友.考虑发电量与保证出力的水库调度多目标优化方法[J].系统工程理论与实践,1998,(4):95-101.
    [166]Srinivas,N.,Deb,K.Multiobjective Optimization Using Non-dominated Sorting in Genetic Algorithms[J].Evolutionary Computation,1994,2(3):221-248.
    [167]Deb,K.,Member,A.,Pratap,A.,et al.A Fast and Elitist Multiobjective Genetic Algorithm:NSGA-Ⅱ[J].IEEE Transactions on Evolutionary Computation.2002.6(2):182-197.
    [168]李莉.基于水质安全的城市输配水系统二次加氯优化与分析[D].杭州:市政工程,浙江大学.2008.
    [169]孙傅,陈吉宁,曾思育.基于EPANET-MSX的多组分给水管网水质模型的开发与应用[J].环境科学,2008,29(12):3360-3367.
    [170]Kennedy,J.,Eberhart,R.A discrete binary version of the particle swarm algorithm[C].Proceedings of the World Multiconference on Systemics,Cybernetics and Informatics,Piscataway.IEEE Service Center,1997.
    [171]Tamminen,S.,Ramos,H.,Covas,D.Water Supply System Performance for Different Pipe Materials PartⅠ:Water Quality Analysis[J].Water Resources Manage,2008,22(10):1579-1607.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700