用户名: 密码: 验证码:
陕、甘黄土高原根瘤菌-豆科植物共生体结构及固氮作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对陕西、甘肃黄土高原地区的豆科29属63种野生及栽培豆科植物结瘤及固氮状况进行了野外调查和室内分析,新发现10种结瘤豆科植物,他们是山合欢(Albizzia kalkora)、扁茎黄芪(Astragalus complanatus)、胀萼黄芪(A.ellipsoideus)、糙叶黄芪(A.scaberrimus)、小花香槐(Cladrastis sinensis)、银豆(Falcata japonica)、野大豆(Glycine soja)、多花木蓝(Indigofera amblyantha)、百脉根(Lotus
     corniculatus)、黄花木(Piptanthus concolor)。采集根瘤的过程中发现在水分充足地带如河滩、田埂、树林等处的豆科植物容易结瘤且长势较好,而荒坡、沙地等缺水处的豆科植物结瘤较少并且形状较小。另外,同种豆科植物在湿润条件下容易结瘤,在干旱条件下不易结瘤。表明豆科植物的结瘤情况与环境关系密切,受环境条件的影响较大。
     比较研究表明,由于生态条件不同,豆科植物生活习性多样,从而使根瘤形态具有多种特征。根瘤形态大体可以分为两类:一类以苜蓿、草木樨、三叶草、红豆草等为代表,这种根瘤是长圆形的,较小,分生组织在顶端皮层以内,长圆形的根瘤可以是单个的,也可以聚集在一起,如此则形如掌状或生姜状,多呈不规则形态。另一类以大豆、国槐、菜豆的根瘤为代表,它们是圆形的,分生组织带状,在皮层内,根瘤大都单个存在。一般来说,生于山地草原,天然草场和林间湿地的豆科植物一年生草本居多,其根瘤也是一年生,在形态上较为规则,一般为圆形、长圆形,并带有粉红色,而分布于阳坡地带的多年生豆科乔木、灌木,其根瘤形态多为长柱状,且多具分叉,其颜色以白色、褐色、黄色者居多,着生部位多居于侧根、须根上,主根上很少有瘤。根瘤的直径大小也不一样,其中最小的是百脉根的根瘤,直径为0.8mm;较大的根瘤,如紫荆根瘤直径可达18mm。豆科植物的根瘤形态主要与植物种类有关,同属不同种的豆科植物根瘤形态往往是相似的。
     从豆科的牧草、沙生植物、灌木、乔木及豆科作物共计25属46种51份根瘤样品中,分离、纯化,获得根瘤菌47株,将获得根瘤菌菌株部分回接于原寄主植物,27d以后可以结瘤。这些菌株大都在酵母—甘露醇培养基上生长良好,
    
    并能分泌大t的粘多糖。一般3d形成菌落,菌落为圆形,边缘整齐,无色透明
    或乳白色,具有光泽。对其中的14株根瘤菌在个体形态特征方面进行了观察及
    生理生化试验,所得结果表明,来自不同植物根瘤的分离物其菌体形状有差异,
    但革兰氏染色均呈G-,在光学显微镜、电子显微镜下观察,有明显的异染颗粒
    区,可见菌体内有苏丹黑染色类脂颗粒存在.菌株3一酮基乳糖试验均为阴性.
    菌株在石蕊牛奶培养小5d后,石蕊变红,牛奶开始凝固.部分菌株发酵乳糖产
    酸l较高,能很快使牛奶凝固.
     菌株的氢离子浓度实验结果表明,供试菌株90%能在pH6.0~6.5Y侧叭培养
    基上生长,85%能在pH6.o一7.5条件下生长,15%能在pH7.0~7.5条件下生长良
    好.分离自首楷的根瘤菌株对pH适应范围较宽,为pHS.)7.5,其它大部分在
    pH 5 .5一7.5范围内生长良好。供试菌株大多在NaCI浓度为50/007%范围内生长良
    好,分离自首楷的根瘤菌株表现出较强的耐受性,在NaCI浓度为10%~15%范围
    内也能生长或生长良好。表明该地区根瘤菌对盐有较强的忍耐性.供试菌株在
    60℃条件下处理IOmin,仍然有50%的菌株能正常生长。可见,分离于此区域内
    的菌株有较强的温度适应能力和对高温有较强的耐性。
     对黄土高原地区以及新疆、甘肃、宁夏等不同生态环境中所采集的500余个
    根瘤样品进行了乙炔还原活性比较,测定结果表明,陕西、甘肃黄土高原地区采
    集的根瘤样品中85%以上的根瘤为有效根瘤,不同种根瘤的固氮活性差异比较
    大,一般活性都比较低,小于l林molCZ困gFwh的占46.6%,大于10林mol
    CZ执/gFWh的仅占6.8%,最高者仅37.73脚olCZH斌gFWll。在西北广大地区栽培
    历史悠久,面积较大的紫花首稽(MediC口90 sativa)、长柔毛野豌豆(巧cia viltosa)、
    大豆(Glycine max)、白花三叶草(Meditotus albus)以及豌豆(P sativum)等固氮
    活性都较高。
     影响豆科植物结瘤固氮的主要因素和影响豆科植物根瘤固氮活性的因子是
    十分复杂的。研究分布于西北地区沙漠、戈壁、荒地的野生豆科植物的结瘤状况,
    发现在高温、干旱季节并非所有的豆科植物都能结瘤,就是结瘤的豆科植物并非
    都有固氮能力。一般分布于农田田埂、河滩水分比较好的区域根瘤均具有固氮活
    性或固氮活性较高,而分布于戈壁、沙漠或沙丘豆科植物根瘤,一般固氮活性较
    低或没有固氮活性。
     在自然条件下,植物的生活习性不同,其根瘤活力也不一致,但是生活习性
    相同的同一种植物其根瘤的固氮活力也有差异,通常是随分布地点不同而异。因
    此,根瘤的固氮活性的表现与植物的生活习性关系较小,而环境条件对根瘤活性
    的影响较大。
     在早春冬雪融化,土壤湿度大,有利于植物根系的生长发育及土壤中根瘤菌
    
    的活动,从而促进根瘤菌对植物根系的侵染和结瘤共生.当土壤湿度不同时,根
    瘤在不同生育期表现出不同的固氮活性,因此,土壤水分是影响根瘤生长和固氮
    活性表达的重要因子。
     西北干早地区根瘤,对
The condition of nodulation and nitrogen fixation of wild and cultural leguminous plants belong to 63 species, 29 genera were field surveyed and indoor analysed. 10 species not reported previously were found nodulated, they were Albizzia kalkora, Astragalus complanatus, A. ellipsoideus, A. scaberrimus, Argyrolobiu argenteum, Glycine soja, Indigofera amblyantha, Lotus orniculatus, Piptanthus nepalensis. During the period of collecting nodules, it was observed that Leguminous plants distributed in region where water is enough, such as beach, field border, woodlot and so on, nodulated easily and nodules grew well, on the contrary, Leguminous plants grown on bareness and sand nodulated less and size of nodules were little. On the other hand, the same leguminous plant nodulated easily under the condition of moist, and nodulated difficultly under the condition of drought. It showed that nodulation condition was related with environment closely and was affected by the environment condition.
    Comparative studies suggested that with the difference of ecological condition, the life habits of leguminous plants were varied, and there were all kinds of characteristics in the morphology of the nodules. The nodules were divided into two sorts according to the different morphology: one sort was represented by the nodules of Medicago sativa , Melilotus suaveolens, Trifolium repens, Onobrychis viciifolia, which was long round, the size was little, meristem was in the tip cortex, and grew signally or aggregated together to form a palmate or a ginger structure; the other sort was presented by Glycine max, Phaseolus vulgaris, which was round, meristem was barred and in cortex, grew signally. In general, leguminous plants distributed in
    
    
    mountain grassland, native grassland and wet land were mainly annual herb, their nodules were also annual, the form of the nodules was regular, such as round and long round, the color was pink. While, leguminous plants grown in heliophilic area were perennial tree and shrub, their nodules mainly were long round, branched and white, brown or yellow, grew from lateral roots and fibrous root. The diameter of nodules were different, the smallest was the nodule of Lotus orniculatus, about 0.8mm; bigger nodule was one of Cercis chinensis, about 18mm. The morphology of nodules were mainly related with the plant, the nodule morphology of different species belong to the same genera was always similar.
    From the sample of 25 genera, 46 species, 51 nodules including leguminous pasturage, psammophyte, shrub, tree and field crops, 47 rhizobia were isolated and purified. Then part of them were inoculated to host plants, they nodulated after 27 days. These strains were able to grow in YMA medium well, and secreted glycosaminoglycan. In general, they could form bacterial colonies after 3 days. Colonies were round with luster, the edge were regular, transparent or lacte. The morphology characteristics of 14 strains purified were observed and at the same time physiological and biochemical tests were performed. The results showed there were differences in the morphology of bacteria from different nodules, the Gram staining showed G", An apparent metachromatic granular region was observed under microscope and electron microscope, which indicated there were lipid granular stained with Sudan black in rhizobia.
    The results of hydrogen ion concentraion experiment of strain showed that 95% of the rhizobia grew on YMA at pH 6.0-6.5, 85% at pH 6.0-7.5,15% at 7.0-7.5. The optimum pH range for rhizobia from Medicago sativa was 5.0-7.5, but most of them could grew at 5.5-7.5. Results above showed that the range of pH for rhizobia collected from the Loess Plateaus were wide. Most of rhizobia for experiment could grow well at the range of 5%~7% NaCl, and the rhizobia from Medicago sativa showed high tolerance, they could grew or grew well at the range of 10%-15% NaCl, which indicated that the tolerance of rhizobia to salt was related with the concentration of salt of soil where the rhizobia were collected. When they were treated for 10
引文
丁洪,郭庆元,李志玉.磷对大豆不同品种产量和品质的影响.中国油料作物学报,1998a,20(2):66~70.
    丁洪,李生秀.磷素营养与大豆生长和共生固氮的关系.西北农业大学学报,1998b,26(5):68~71.
    刁治民.青海野豌豆属植物及根瘤菌资源研究.四川草原,2000,(4):41~44.
    王卫卫,关桂兰,李仲元.根瘤菌剂在新疆应用的研究Ⅰ.干旱区研究,1986a,3(2):41~46.
    王卫卫,关桂兰,李仲元.大豆轮播对石河子地区土著根瘤菌的影响.干旱区研究,1986b,3(4):41~43.
    王卫卫,关桂兰,李仲元.大豆根瘤菌剂在新疆的推广和应用.土壤肥料,1986c,(4):23~27.
    王卫卫,关桂兰,李仲元.新疆根瘤菌的抗逆性.干旱区研究,1989,6(4):9~18
    王卫卫,李仲元,关桂兰.新疆地区大豆共生固氮动态及特性.干旱区研究,1991,8(4):25~29.
    王卫卫,关桂兰.新疆地区结瘤豆科植物调查.植物生理学通讯,1992,28(2):47~49.
    王卫卫,关桂兰,郭沛新.沙坡头地区豆科植物共生固氮资源初步研究.干旱区研究,1994,11(4):13~18.
    王卫卫,关桂兰,郭沛新.甘肃天水地区豆科植物共生固氮资源调查.干旱区研究,1995,12(1):7~10.
    王卫卫,关桂兰.新疆根瘤菌及其共生固氮抗逆性研究.见,彭珍荣主编:现代微生物学进展.武汉:武汉大学出版社,1995,p206~220.
    王卫卫,关桂兰.甘肃宁夏部分地区结瘤豆科植物调查.植物生理学通讯,1996a,32(1):41~44.
    王卫卫,陈菊英,董文彩.甘肃宁夏根瘤菌的分离及回接鉴定.干旱区研究,1996b,13(4):42~47.
    王卫卫,关桂兰,孔爱勤.河西走廊豆科植物结瘤固氮特性初步研究.西北植物学报,1997,17(4):450~457.
    王卫卫.麦积树木园豆科树木共生固氮特性的研究.西北大学学报,2001a,31(1):49~52.
    王卫卫,胡正海.甘宁黄土高原地区重要水土保持植物共生固氮资源及特性研究.水土保持通报,2001b,21(5):16~19.
    王卫卫,胡正海.阿拉善荒漠区豆科植物共生固氮资源初步研究.水土保持通报,
    
    2001c,21(5):30~33.
    王卫卫,杨灿,胡正海.甘肃白龙江流域豆科植物根瘤菌共生固氮及特性.水土保持通报,2001d,21(6):30~33.
    王卫卫,胡正海,关桂兰.甘肃、宁夏部分地区根瘤菌资源及其共生周氮特性.自然资源学报,2002a,17(1):48~54.
    王卫卫,胡正海,关桂兰.新疆干旱地区根瘤菌豆科植物结瘤特性.中国水土保持,2002b,(7):35.
    王卫卫,胡正海.几种生态因素对西北干旱地区豆科植物结瘤固氮的影响.西北植物学报,2003,23(7):163~168.
    王卫卫,胡正海.甘肃黄土高原地区豆科植物共生固氮资源及特性研究.科学农业,2001,49(7,8):176~180.
    王卫卫,胡正海.甘肃甘南、陇南地区豆科-根瘤菌资源与固氮特性.科学农业,2002a,50(5,6):273~277.
    王卫卫,胡正海.西北阿拉善荒漠区豆科-根瘤菌固氮特性调查与分析.科学农业,2002b,50(11,12):427~432.
    王素英,李新锁,陈文新.河北省豆科植物根瘤菌资源的初步调查研究.天津师大学报(自然科学版),2000,20(3):33~38.
    王素英,李润花,刘新成.西藏部分地区豆科植物根瘤茵资源的初步调查.西北农林科技大学学报(自然科学版),2002,30(1):53~57.
    王静,马玉珍,史清亮.山西根瘤菌资源多样性与特异性研究.应用与环境生物学报,1999,12(1):46~52.
    王慧英,黄维南.羊奶果根瘤侵入线和侵染细胞的亚显微结构.亚热带植物通讯,1995,24(1):1~3.
    王慧英,黄维南.毛萼田亲茎瘤的亚显微结构和固氮活性关系初探.核农学报,1995,9(4):243~246.
    石玉瑚.新疆新发现55种结瘤豆科植物.新疆农业科学,1986,(4):22~23.
    中国科学院上海植物生理研究所固氮室.共生固氮研究中乙炔还原简易峰高比法.植物学报,1974,16:382~384.
    中国科学院植物研究所.中国高等植物图鉴(Ⅱ).北京:科学出版社,1972,320~515.
    中国科学院南京土壤研究所微生物室.土壤微生物研究法.北京:科学出版社,1985,1~77.
    韦革宏,陈文新,朱铭莪.西北半干旱地区黄芪根瘤菌DNA同源性及16S rDNA全序列分析.中国农业科学,2001,34(4):410~415.
    韦革宏,陈文新,朱铭莪.陕甘宁地区根瘤菌的16SrDNA PCR-RFLP分析.农业生
    
    物技术学报,2000,8(4):333~336.
    韦革宏,陈文新,朱铭莪.陕甘宁地区根瘤菌数值分类与DNA同源性分析.应用与环境生物学报,1999,5(1):73~78.
    韦革宏,刘虎岐,朱铭莪.陕甘宁地区黄芪根瘤菌表型多样性研究.西北农业大学学报,1999,27(3):28~32。
    韦革宏,刘虎岐,孙科技.河南省豆科植物根瘤菌表型多样性研究.西北农林科技大学学报(自然科学版),2002,30(3):71~75.
    甘习华.接种根瘤菌后刺槐根表皮的超微结构观察.电子显微镜学报,1998,17(4):381~382.
    史清亮,马玉珍,贺跃武.山西土著花生根瘤菌的数量分布及其共生固氮特性.山西农业科学,1999,27(2):40~51.
    宁国赞,刘惠琴,马晓彤.生物固氮技术在退耕还林还草中的应用.中国草地,2001,23(4):69~72.
    刘宏生,宁美玲,李玉.辽宁省千阳地区豆科植物根瘤菌调查.辽宁大学学报,2001,25(2):133~136.
    刘杰,陈文新.我国中东部地区紫穗槐、紫荆、紫藤根瘤菌的数值分类及16SrDNA PCR-RFLP研究.中国农业科学,2003,36(1):17~25.
    江木兰,张学江,徐巧珍.大豆—根瘤菌的固氮作用.中国油料作物学报,2003,25(1):50~54.
    关桂兰,李仲元,王卫卫.新疆干旱地区豆科植物结瘤固氮特性.植物生理学报,1986,12(4):227~231.
    关桂兰,王卫卫,杨玉锁.新疆干旱地区固氮生物资源[M].北京:科学出版社,1991.21~56.
    关桂兰,王卫卫,杨玉锁.新疆干旱地区根瘤菌资源研究Ⅰ.微生物学报,1991,31(5):396~404.
    关桂兰,郭沛新,王卫卫.新疆干旱地区根瘤菌资源研究Ⅱ.微生物学报,1992,32(5):346~352.
    李力,曹凤明,徐玫玲.花生根瘤菌抗逆性初步研究.微生物学通报,2000,21(7):42~48.
    李仲元,关桂兰,王卫卫.新疆干旱条件下根瘤菌应用注意的几个问题.干旱区研究,1988,5(4):1~6.
    李颖,阮小超,陈文新.宁夏沙坡头地区根瘤菌特性分析.中国农业大学学报,1996,11(5):15~20.
    西北植物研究所.黄土高原植物志(第二卷).北京:中国林业出版社,1992,315~510.
    
    
    闫爱民,陈文新.干旱地区苜蓿、草木樨、锦鸡儿根瘤菌的表型多样性分析.生物多样性,1999,7(2):112~118.
    曲东明,王双,韩善华.沙棘共生固氮根瘤及其内生弗兰克氏菌.西北植物学报,1998,18(1):60~65.
    孙建光.海南生根瘤菌资源考察及分类[J].微生物学报,1994,33(2):135~143.
    陈文峰,陈文新.豆科树种刺槐、黄檀、合欢根瘤菌的数值分类及16S rDNA-PCR
    RFLP研究.应用与环境生物学报,2003,9(1):53~58.
    陈文新,吴柏和,骆传好,等.新疆豆科植物根瘤菌资源调查、分类与应用.中国农业科学,1987,2:22~27.
    陈华葵.土壤微生物学发展简史.见,陈华葵等编著《土壤微生物学》.上海:上海科学技术出版社,1981,1~9.
    吴钦孝,杨文治.黄土高原植被建设与持续发展.北京:科学出版社,1998,1~15.
    杨业华,周俊初,张忠明,等.菜豆根瘤、类根瘤以及根茎瘤的细胞学观察.植物学报,1993,38(4):280~285.
    何一,蔡霞,王卫卫.白车轴草和紫花苜蓿根瘤的显微及超微结构.西北植物学报,2003,23(3):369~373.
    周俊初.根瘤菌共生固氮基因的结构、功能和调控.高技术通讯,1996,(7):59~62.
    单雪琴,侯淑琴,荆玉祥.根瘤菌在宿主细胞内的存在形式及命运.植物学报,1995,37(7):522~526.
    单雪琴,侯淑琴,荆玉祥.豆科植物拟菌体周膜来源和扩增方式的多样性.植物学报,1995,37(10):795~799.
    洛周加措.甘南野生豆科牧草资源及其评价.草业科学,1996,13(5):59~61.
    张磊,程丽娟,朱铭莪.某些野生豆科植物共生根瘤菌的分类研究.土壤,1997,6:287~295.
    荆玉祥,张宝田,侯淑琴.拟菌体包囊膜的动态变化和宿主细胞与细菌的相互关系.植物学报,1984,26:473~478.
    荆玉祥,张宝田.发育过程中田菁根瘤超微结构的变化.植物学报,1988,30:207~209.
    荆玉祥.植物血红蛋白及其基因表达.植物生理生化进展,1987(5):141~154.
    贺学礼,赵丽莉.陕西豆科固氮牧草的生态研究[J].中国草地,1997,(2):44~47.
    高丽锋,邓馨.毛乌素沙地中间锦鸡儿根瘤菌遗传多样性及16SrDNA全系列分析.微生物学报,2002,42(6):649~657.
    晋坤贞,殷红,严宜昌.中国沙棘根瘤内生菌的观察和根瘤结构与发育的研究.西北大学学报,1995,25(2):155-156.
    
    
    黄维南,黄志宏.我国豆科树种结瘤调查.亚热带植物科学,2001,30(1):36~45.
    黄维南,黄志宏.我国豆科树种结瘤调查(续).亚热带植物科学,2001,30(2):46~55.
    章宁,黄维南.超结瘤大豆根瘤的亚显微结构.亚热带植物通讯,1997a,26(1):25~28.
    章宁,黄维南,黄志宏.肯氏相思根瘤亚显微结构观察.亚热带植物通讯,1997b,26(2):35~39.
    韩素芬.固氮豆科树种和豆科树种根瘤菌资源的研究.林业科学,1996,132(5):434~440.
    韩素芬,甘习华,黄金生.接种根瘤菌后刺槐根表皮形态和超微结构的变化.林业科学,1998,34(4):109~111.
    韩善华.大豆根瘤的超微结构特征.微生物学报,1987,27:217~222.
    韩善华,A.F.Yang.豌豆根瘤的超微结构研究.实验生物学报,1987,20:13~21.
    韩善华.豌豆根瘤侵染细胞衰老过程的电镜观察.植物学报,1988,30(2):124~128.
    韩善华,A.F.Yang.大豆根瘤的超微结构电镜观察.植物学报,1988,30:124~128.
    韩善华,郑国倡.豌豆根瘤细菌周膜在发育中的变化.微生物学报,1989,26:413~417.
    韩善华.红豆草根瘤侵染细胞的超微结构变化.植物学报,1990,32(10):809~811.
    韩善华.豌豆根瘤细菌周膜超微结构变化.实验生物学报,1991.24:175~179.
    韩善华.豌豆根瘤胞间细菌的扩展及其前途.微生物学报,1991,31(1):7~11.
    韩善华.红豆草根瘤细菌周膜形成.微生物学报,1992,32:42~46.
    韩善华.大豆根瘤中公共细菌周膜形成的一种特殊方式.微生物学报,1993,33:400~404.
    韩善华.箭舌豌豆根瘤液泡中细菌周膜来源的研究.微生物学报,1995,35(5):381~385.
    韩善华.PHB颗粒在红豆草根瘤细菌发育中的动态变化.微生物学报,1995,35(2):136~140.
    韩善华.细菌周膜研究的最新进展.生命科学,1996,8(5):44~46.
    韩善华,张红.沙冬青根瘤菌的电子显微镜研究.中国微生态学杂志,1999,11(1):27~29.
    韩善华,Yang AF.豌豆根瘤的超微结构研究.实验生物学报,1987,20:13~21.
    韩善华.豌豆根瘤侵染细胞衰老过程的电镜观察.植物学报,1988,30(2):124~128.
    曾英,刘世贵,Holger Blasam.青藏高寒草甸部分豆科植物根瘤菌的初步研究.草业科学,1994,11(6):32~34.
    喻敏,黄怀琼.Co对花生—根瘤菌共生固氮的促生作用.西南农业学报,1997,10(2):
    
    71~75.
    喻先素.我国根瘤菌共生固氮遗传学研究动态.西南农业学报,1995,8(3):113~116.
    谭志远.陕西甘、宁部分地区豆科植物根瘤菌资源调查.西北植物学报,1996,15(2):189~196.
    樊江文,高永革.混割草地中豆科牧草的固氮作用.中国草地,1994,6:64~69,73.
    阚凤玲,陈文新.西部某些根瘤菌的数值分类和16SrDNA PCR-RFLP分析.微生物学通报,2002,29(3):1~8.
    蔺继尚,王丽霞,关桂兰.常年干旱环境对新疆豆科植物根瘤形态结构的影响.应用生态学报,1993,4(3):299-302.
    Akasaka, Yoko' Mii,Masahiro' Daimon, Hiroyuki. Morphological Alterations and Root Nodule Formation in Agrobacterium rhizogenes-mediated Transgenic Hairy Roots of Peanut (Arachis hypogaeaL.). Annals of Botany. 1998, 81(2):355~362.
    Alan SP, Joe RC. Development of bacteroids in Alfalfa (Medicaga sativa) nodules. Plant physiol, 1978, 62:526~530.
    Allen, O.N. and Allen, E.K. The Leguminosae: a source book of characteristics, uses and nodulation. University of Wisconsin Press, 1981, 1~407.
    An Jinhua, Carlson, Russell W. Glushka, John. The structure of a novel polysaccharide produced by Bradyrhizobium species within soybean nodules. Carbohydrate Research,1995, 26(2):303~317.
    Bassett B.,R.N.Goodman and A. Novack.. Ultrastructure of soybean nodules.Ⅱ. deterioratioll of the symbiosis in ineffective nodules. Can. J. Microbiol. 1977, 23: 873~883.
    Bergeren F.J.. Root Nodules of Legumes, Structures and Functions. Research Studies Press,1982:12~19.
    Blumwald E. ,M.G. Fortin, P.A.Pea, et al. Prescence of host-plasma membrabe type H~+ATPase in the membrane-envelope enclosing the bacteroids in soybean root nodules. Plant Physial, 1985, 78:665~672.
    Bottomley P.J.. Ecology of Bradyrhizobium and Rhizobium. In: Biological nitrogen fixation. Chapman and Hall, New York,Ny, 1992, 293~348.
    Bolanos,Vasquez M.C., Wemer D. Effects of Rhizobium tropici, R.etli and R. leguminosarum bv. phaseoli on Nod gene inducing flav on oidsinrootexudates of Phase olusvulgaris. MPMI, 1997,10(3):339~346.
    Brewin,N.J..Development of the legume root nodule. Ann. Rev. Cell Biol. 1991,
    
    7:191~226.
    Brown, S. M. Oparka, K. J. Sprent, J. I.. Symplastic transport in soybean root nodules. Soil Biology & Biochemistry, 1995, 27(4-5): 387~399.
    Buvat R. Origin and continuity of cell vacuoles. In: "Origin and continuity of cell organelles. Results and problems in cell differentiation.Vol.2 (Reinert J Hrsprung H eds). Springer-Verlag, Berlin, 1971, 127~157.
    Caetano-Anoll(?)s, Gustavo. Molecular dissection and improvement of the nodule symbiosis in legumes. Field Crops Research, 1997, 530-3):47~68.
    Carlson RW, Price NPJ, Stacey G.The biosynthesis of Rhizobial Lipooligsaccharide nodulation signal molecules. MPMI,1995, 7:684~695
    Castro, Stella' Permigiani, Marcela' Vinocur, Marta. Nodulation in peanut(Arachis hypogaea L.) roots in the presence of native and inoculated rhizobia strains. Applied Soil Ecology,1999, 13(1): 39~44.
    Chen, W.X. et. al. Numerical taxonomy Study on Fast Growing Soybean Rhizobia and a Proposal that Rhizobium frdii Be Assigned to sinorhizobium gen. now. Int. J. Syst. bactefiol. 1988, 38(4):391~397.
    Chen, W.X. et. al. Rhizobium, huakuii sp. nov. Isolated from the Root Nodule of Astraglus sinicus. Int. J.syst.Bacteriol. 1991, 41 (2):275~280.
    Chen Wenxin, et. al. Charateristics of Rhizobium tianshanese sp. nov., a moderately and slowly growing root nodule bacterium isolated from an arid saline environment in Xinjiang, People s Republic of China. Int. J. Syst. Bactefiol. 1995, 45(1):153~159.
    Chen Wenxin, et. al. Rhizobium hainanese sp. nov. isolated from tropical legumes, Int. J.Syst. Bacteriol. 1997, 47(3):870~873.
    Chen, Y.X. He, Y.F. Yang, Y. Effect of cadmium on nodulation and N_2-fixation of soybean in contaminated soils. Chemosphere Volume: 50, Issue: 6, February, 2003, pp. 781~787.
    Chudek, J.A. Hunter, G. Sprent, J.I. An application of NMR microimaging to investigate nitrogen fixing root nodules. Magnetic Resonance Imaging. 1997, Vo1.15(3): 361~368.
    Cohn, Jonathan Day, R. B. Stacey, G.Legume nodule organogenesis. Trends in Plant Science. 1998, 3( 3): 105~110.
    Craig A.S, R.M.Grunwood and K.I. Williamscn. Ultrastructural inclusioa of rhizobial bacteroids of Lotus nodules and their taxomomic significance.Arch.
    
    Microbiol,1973, 89:23~32.
    Darts P.. Infection and developmenit of leguminous nodoles.In:"A Treastise on P. J.
    Dinitrogen Fixation"(R.W.F.Hardy ed).John Wiley and Sons,New York, 1977,pp 372~472.
    Dart P.F., V. Mercer.Fine structure of bacteroids in root nodules of Vigna singeses, Acacia longifoli,Viminaria juncea and Lupimus angustifolius. J. Bacteriol, 1966, 99:1314~1319.
    Denarie J, Cullimore J. Lipooligosaccharide nodulation factors: a new class of signaling molecules mediating recognition and morphogenesis. Cell,1993, 74:95~954.
    Dowling, D.N.,et al. Competition for nodulation of legumes. Ann. Rev. Microbiol., 1986,40:131~157.
    Dudley M.E.,T.W.Jacobs and S.R.Long. Microscopic studies of cell divisions in alfalfa roots by Rhizobium meliloti. Planta,1987, 171:289~301.
    Elsheikh, E. A. E., Wood, M. Nodulation and N_2 fixation by soybean inoculated with salt-tolerant rhizobia or salt-sensitive bradyrhizobia in saline soil. Soil Biology & Biochemistry. 1995,Vol.27(4-5):657~661.
    Fellay R, Rochepeau P, Relic B. Signals to and emanating from Rhizobium largly control symbiotic specificity. In: Singh US, Singh RP, Kohmoto K, eds. Pathogens is and Host Specificity in Plant Diseases. Oxford: Pergam on Elsevier Science Ltd, 1995,Vol 1.199~20.
    Frioni L. Dodera, R. Malat(?)s, D. An assessment of nitrogen fixation capability of leguminous trees in Uruguay. Applied Soil Ecology. 1998, Vol.7(3):271-279.
    Frueauf J. B. Dolata M. L. Joseph F. Peptides isolated from cell walls of Medicago truncatula nodules and uninfected root. Phytochemistry. 2000, 55(5): 429~438.
    Goethals K., Van Montagu M., Holsters M. Conserved motifsinadivergent nod box of Azorhizobium caulinosans ORS571 reveal a common structure in promoters regulated by lys R type Proteins. Proc NatlAcad Sci USA;1992, 89: 1646~1650.
    Goi, S. R. Sprent, J. I. Jacob-Neto, J. Effect of different sources of N_2 on the structure of Mimosa caesalpiniaefolia root nodules. Soil Biology & Biochemistry. 1997, 29(5-6): 983~987.
    Gresshoff P. M., M L.Skotnick, J. F. Eadle, et al. Viability of Rhizobium trifolii bacteroids from clover root nodules. Plant Sci Lett. 1977,10:299~304.
    
    
    Grilli M. Osservazioni suirapporti tra cell ospitie riaobi nei tubercoli di pisello (Pisum sativum) Caryologia., 1963, 16:561~594.
    Groppa, M. D. Zawoznik, M. S. Tomato, M. L..Effect of co-inoculation with Bradyrhizobium japonicum and Azospirillum brasilense on soybean plants. European Journal of Soil Biology. 1998, 34(2): 75~80.
    Gu J, Balatti AP, Krishnan HB, et al. Characterization of the over lapping promoters of nol Bandnol W, two soybean cultivar specificity genes from Rhizobium fredii strain USDA257.MPMI, 1997,10(1): 138~141.
    Gyorgypal Z, Kiss GB, Kondorsi A. Trans duction of plant signal molecules by the Rhizobium nod D proteins. Bioessays, 1991, 13:575~581.
    Haverka, U.D .and R.W.F.Hardy. Research on Nitrogen and Carbon Input to Increase Domestic Crop Protein Production, In: Milner, M.(ed),Protein Resources and Technology,Printed in U.S.A. 1978, 204~235.
    Heidstra O, Thomas Oates JE, Glushka J. Phospholipids of Rhizobium contain nod E determined high lyunsaturated fatty acid moieties. J. Biological Chemistry, 1994, 269:11090~11097.
    Heidstra R, Bisseling T. Nod factor induced host responses and mechanisms of nod factor preception. NewPhytol, 1996, 133:25~43.
    Hirsch A.M.,D.Drake, T.W.Jacobs and S.R.Long. Nodules are induced on alfalfa roots by Agrobacterium tumefaciens and Rhizobium trifoolii containing small segments of the Rhizobium meliloti nodulation region. J. Bacteriol. 1985,161: 223~230.
    Hirsch A.M.,K.J.Wilson, J.D.G.Jones,et al.. Rhizobium melioti nodulation genes allow Agrobacterium tumefacients and Escherichia coli to form pseudoonodules on alfalfa.J. Bacteriol. 1984,158:1133~1142.
    Ham G.E. ,V.B. Cardwell, H.W.Johnson. Evaluation of Rhizobium japonicum inoclants in solids containing naturalizaed populations of rhizobia. Agron J, 1971,63:301~303.
    Hunt S., S.T.Gaito, and D.B.Layzell. Model of gas exchange and diffusion in legume nodules(Ⅱ). Planta. 1988,173:128~141.
    James E.K., Minchin F.R.. Temporal Relationships between Nitrogenase and Intercellular b Glycoprotein in Developing White Lupin Nodules. Annals of Botany. 1997, 79(5): 493~503.
    Jarvis B.D.W.P. van Berkum, Wenxin Chen,et al. Transfer of Rhizobium loti, R.
    
    huakuii, R. mediterraneum, and R. tianshanese to Mesorhizobium gen.nov. Int. J. Syst. Bacteriol. 1997, 47(3): 895~898.
    Jordan D.C., I.Grinyer, W.J.Coulter. Electron microscopy of infection thread and bacteria in young root nodules of Medicago sativa. J. Bacteriol,1963, 86:125~137.
    Jordan D.C., FamilyⅢ. Rhizobiaceae Corm 1938, In:Krieg N.R.(ed) ,Bergey's manual of systematic bacteriology, The Williams & Wilkins Co., Baltimore 1984, 1: 234~254.
    Kijne J. W.. The fine structure of pea root nodules. 2. Senescence and disintegration of the bacteroid tissue. Physiol. Plant Path. 1975, 7:17~21
    Kijne J.W.and K.Planque. Ultrastructural study of the endomembranl system in infected cells of pea and soybean root nodules. Physiol. Plant path. 1979,14:339~345.
    Kondorosi E, Buire M, Cren M. Involvement of the syr M and nod D3 Genes of Rhizobium meliloti in nod gene activation and in optimal nodulation of the plant host.MolMicrobiol, 1991, 5:3035~3048.
    Krelovich W. L.,V. I. Romanov, L. A. Yushkova. V. I. Shranko and N. G Fedulova. Nitrogen fixation and poly-β-hydroxybutyric acid content in bacteroids of Rhizobium lupini and Rhizobium legurninosarum. Plant and Soil, 1977: 48:291~302.
    Lafontaine, P.J., N. Benhamou and H. Antoum. The occurrence of unusual laminated structures rich in β-1,4-glucans in plastids of Phaseolus vulgaris root-nodule cells infected by an ineffective C4-dicarboxylic-acid mutant of Rhizobium leguminosarum by, phaseoli.Planta, 1990,180:312~323.
    Layzell, D.B., S.T. Gaito, and S.Hunt. Model of gas exchange and diffusion in legume nodules(Ⅰ). Planta. 1988,173:117~127.
    Lestrange K.K., Bender G.L., Djordjevic M.A., The Rhizobium strain NGR234 nod D1 gene product responds to activation by the simple phenoliccompoundsvanillin and isovanill in present in wheat seeding extracts. J Bacteriol, 1990,3:214~220.
    Lie,T.A. Evinironmenntal Physiology of The Legume-Rhizobium Symbiosis, In: Brolghton, W.J.(ed):Nitrogen Fixation Viol,1 .Clarendon Press Oxford, 1981:104~134.
    Lindstrom,K.,et al. Symbiotic niteogen fixation of Rhizobiun in acid soils, and its
    
    survival in soil under acid and cold stress. Plant and Soil,1985,87:293~302.
    Libbenga, K.B.and R.J. Bogers. The Biology of Nitrogen Fixation. Edited By A. Quispel. North-Holland Publ. Co., Amsterdam, 1974, pp.430~472.
    Liu, Xiaobing' Herbert, Stephen J. Fifteen years of research examining cultivation of continuous soybean in northeast China: A review. Field Crops Research. 2002,79(1): 1-7~.
    Long, S.R., Rhizobium-legume nodulation: Life together in the underground. Cell, 1989,56:203~214.
    Materon L.A. Zibilske, L. Delayed inoculation and competition of nitrogen-fixing strains in Medicago noeana (Boiss.) and Medicago polymorpha (L.). Applied Soil Ecology. 2001, 17(2):175~181.
    Mathieu C., Moreau, S., Frendo, P.. Direct detection of radicals in intact soybean nodules: presence of nitric oxide-leghemoglobin complexes. Free Radical Biology and Medicine. 1998, 24(7-8): 1242~1249.
    Moreau, Sophie Meyer, Jean-Marie Puppo, Alain. Uptake of iron by symbiosomes and bacteroids from soybean nodules. FEBS Letters. 1995, 361(2-3): 225~228.
    Nap P.P., and T. Bisseling, Developmental biology of a plant-Prokaryote symbiosis.. The legume root nodule.Science,1990,250:948~954.
    Newcomb W. A correlated light and electron microscopic study of symbiotic growth and differentiation in Pisum sativum root nodules. Can J Bot, 1976,54:2163~2186.
    Newcomb, W.: International Review of Cytology. Supplement, 1981,13:247~297
    Nov(?)k, K., Pe(?)ina, K., Nebes(?)rov(?) J. Symbiotic Tissue Degradation Pattern in the Ineffective Nodules of Three Nodulation Mutants of Pea (Pisum sativum L.). Annals of Botany. 1995,76( 3): 303~313.
    Nutman P.S., Symbiotic nitrogen fixation on plants, Cambridge Univ. Press, 1976,22~48.
    Obrain, M.R.et al.: Proceedings of the National Academy of Science USA, 1987, 84:8390~8393.
    Paau A.S.,Bloch C.B.,Brill W.J..Development fate of Rhizobium meliloti bacteroids in alfalfa nodules. J. Bacteriol, 1980,143:1480~1490.
    Paau, A. S. , J. R. Cowles and D. Raveed. Development of bacteroids in alfalfa (Medicago sativa) nodules. Plant Physiol., 1978, 62:526~530.
    Paau, A. S.,J. R. Cowles and D. Raveed. Development of bacteroids in alfalfa
    
    (Medicago sativa) nodules. Plant Physiol., 1975, 62:526-530.
    Paau, A.,C. B. Bloch and W.J.Brill. Developmental fate of Rhizobium meliloti bacteroids in alfalfa nodules. J. Bacteriol. 1950, 143:1450~1490.
    Price N.P.J. ,Relic B., Talmont F., et al. Broad hastrange Rhizobium species strain NGR234 secretes a family of carbamoylated, and fucosylated, nodulation signals that are Oacetylated or sulphated. Mol Microbiol, 1992, 6:3575~3584.
    Price, Neil P.J. Carbohydrate determinants of Rhizobium-legume symbioses. Carbohydrate Research. 1999, 317(1-4):1~ 9.
    Provorov N. A., Borisov A.Y., Tikhonovich I.A.. Developmental Genetics and Evolution of Symbiotic Structures in Nitrogen-fixing Nodules and Arbuscular Mycorrhiza. Journal of Theoretical Biology. 2002, 214(2): 215~232.
    Provorov, Nikolai A., Borisov, Alex Y.U.. Developmental Genetics and Evolution of Symbiotic Structures in Nitrogen-fixing Nodules and Arbuscular Myconrrhiza. Journal of Theoretical Biology. 2002, 214(2): 215~232.
    Prasad D. N. De. Ultrastrncmre of release of Rhlzobium and formation of membrane envelope in root nodules. Microbiosis. 1971,4:13~20.
    Purwantari N. D., Date R. A., Dart, P. J.. Nodulation and N_2-fixation by calliandra calothyrsus and sesbania sesban grown at different root temperatures. Soil Biology & Biochemistry. 1995, 27(4-5): 421~425.
    Reyes, V G., S E L chmidt. Population densities of Rhizobium japonicum strain 123 estimated directly directly in soil and rhizospheres.Appl Environ Microbiol, 1979,37:854~858.
    Robertson J. G. et al. In Nitrogen Fixation Research, Proceedings of the 5th International Symposium on Nitrogen Fixation (Eds. Veeger, C. et al.), Noordwijkerhout, Netherland, 1984, p. 475~481.
    Rosbrook, P. A. Reddell, P. Isolation of frankia from root nodules of three species of casuarinas. Soil Biology & Biochemistry. 1995, 27(4-5): 427~429.
    Sprent, Janet I.Parsons, Richard. Nitrogen fixation in legume and non-legume trees Field Crops Research. 2000,Vol. 65( 2-3):153~196.
    Sadowsky MJ, Cregan PB, Gottfer M. The Bradyrhizobium japonicumnol Agene and it sinvolvement in the genotype specific nodulation of soybeans. Proc NatlAcad Sci USA, 1991,88:637~641.
    Schultze M., Staehelin C., Rohrig H. Invitrosulfotransferase activity of Rhizotium meliloti Nod H protein: Lipochitoologosac charide nodulation signals are
    
    sulfated afte synthesis of the corestructure. Proc NatlAcad Sci USA, 1995,92:2706~2709.
    Scott D.B., Young C.A., Collins Emerson J.M. Novelandcompl exchromosom alar rangement of Rhizobium lotinodulationgenes. MPMI, 1996,9(3): 187~197.
    Shaw M.D., and M.S.Manocha. Fine structure in detached senescing wheat leaves. Can. J. Bot. 1965, 43:747~755.
    Spaink H.P., Bloembery G.V., Van Brusse L. A.N. Host specificity of Rhizobium leguminosarum is determined by the hydrophobicity of high lyunsaturated fattyacylmoieties of the nodulation factor. MPMI, 1995, 8:155~164.
    Suttonl,W.D.. Nodule development and senescence. In: Nitrogen Fixation (W.J.Broughten ed). Clarendonl Press, Oxford,UK, 1983, p 144~212.
    Tan, ZY., Kan F.L. Chen, W.X. et al. Rhizobium yanglinggense sp. nov., isolated from arid and semi-arid regions in china. 2001,51:909~914.
    Tezuka, Takafumi Murayama, Yuko. Formation of pyridine nucleotides under symbiotic and non-symbiotic conditions between soybean nodules and free-living rhizobia. Phytochemistry. 2002, 61(6): 637~644.
    Torrey, J.G. and L.J.Winship(eds.). Application of continuous and steady-state methods to root biology. Kluwer Aacademy Publisher, Dordrechi, 1989, 97~19.
    Truchet G. and PH Coulomb. Mise enevidenceet evolution du systeme phytolysosomal darts les cellules des differentes zones de nodules radiculaires de pois (Pisum sativum), Notion d' heterophagie. J. Ultrasstructure. Res. 1973, 43:36~57.
    Vance C.E, L.E.B.Johnson,A.M..Holvorsen. Histological and ultrastructural observation of Medicago sativa root nodule senescence after foloage removal. Can. J. Bot., 1980, 58:295~309.
    Verma D.ES. Endosymbiosis of Rhizobium: Internalization of the "extracellular compartment", and metabolites exchange. In: Gresshoff P M. Roth L E. Stacey Get al. eds., Nitrogen Fixation: Achievenments and Objectives. New York: Chapman and Hall, 1990, 235~237.
    Verma D.ES.Chen C-I, Lee N-G et al. Biogenesis of peribacteroid membrane(PBM) forming a subcellular compartment essential for symbiotic nitrogen fixation. In: Pahcios R.Mora J.Newton W.E. eds. New Horizons in Nitrogen Fixation. Dordrecht: Kluwer Academic Publishers.1993,269~274.
    
    
    Vincent, J.M.,A Manual for the Practical Study ,the Root-nodule Bacteria, Black Well Scientific Publication, Oxford and Edinburgh,1970,p277~366.
    Wang, E.T.,P. van Berkum, W.X chen et. al. Rhizobium huautlcnse sp. nov.,a symbiont of Sesbania bervacae which has aclose phylogcnctic relationship with Rhizobium galegae. Int. J Syst. Bacteriol. 1998, 48: 687~699.
    Wang, E.T.P. van Berkum, Chen W.X. et. al. Diversity of rhizobia associated with Amophae fruticosa isolated from Chinese soil and discription of Mesorhizobium a morphae sp. Nov. Int. J. Syst.Bacteriol. 1999, 49:51~65.
    Wang Weiwei, Hu Zhenghai ,Guan Guilan. Studies on the Characteristics Related to Symbiotic Nitrogen Fixation of legumes in Xinjiang Region, China. 12th International Soil Conservation Organization Conference.May 26~31, 2002, Beijing.
    Wang Weiwei, Guan Guilan. On the Resistance of Rhizobium in Xinjiang Arid Area. Chinese Journal of Aria Land Research. 1995, 8(2):131~133.
    Wong, E P. and H. J. Evans. Poly-β-hydroxybutyrate utilization by soybean(Glycine max Merr)Nodules and assessment of its role in maintenance of nitrogenase activity. Plant Physiol. 1971, 47:750~755.
    Xu, L., Ge, C., Li, J, et al. Bradyrhizobium liaoningenses sp. nov. isolated from the root nodules ofsoybean. Int.J. Syst.Bactedol. 1995, 45:706~711.
    Zhang, X.X.et al. The common nodulation genes of Astrgalus sinicus rhizobia are conserved despite chhromosomal diversity .Appl. Environ. Microbiol. 2000,66(7): 2988~2995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700