用户名: 密码: 验证码:
小分子CCR4拮抗剂的设计、合成与筛选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CCR4(chemokine receptor 4)属于CC类趋化因子受体(CCR)家族成员之一,在自身免疫性疾病、过敏性炎症、血栓性疾病等过程中发挥重要作用。研究选择性的活性小分子化合物不仅有利于研究CCR4的生物功能,而且还可为以CCR4作为潜在的药物靶标发展新型药物进行有益的探索,尤其是在抗哮喘药物方面,具有广阔的研究、开发与应用前景。本课题基于同源模建方法构建了CCR4的三维结构,分析其结构特征及与配体的相互作用特点,采用Me Too的策略,利用计算机药物辅助设计的手段,设计并合成了30个全新结构化合物,建立了化合物绝对构型的确证方法。在活性筛选中,通过毛细管电泳结果表明有9个化合物与CCR4受体N端有较强的结合作用;其中有6个化合物有较强的抑制MDC介导CCR4转染的HEK293细胞的趋化运动。化合物N8的趋化抑制作用与阳性对照化合物的趋化抑制作用相当,具有进一步的研究价值。在所合成的酯类化合物中,化合物N29表现出良好的抑制MDC介导CCR4转染的HEK293细胞的趋化运动作用,说明酯类化合物有进一步研究与开发的价值。MTT法实验结果表明,优选化合物的细胞毒性低于阳性对照化合物或与之相当。根据得到的活性数据对已合成的化合物进行了构效关系的分析,为下一步的工作提供了理论依据。
Chemokines and their receptors play an important role in inflammation, tumor, autoimmune diseases, allergy and HIV infection. So far, about 50 species of human chemokines and about 20 kinds of chemokine receptors has been obtained by cloning. With the completion of the Human Genome Project and the development of orphan receptor program, the amount of chemokines and their receptors will continue to increase, therefore the research on this field research has great theoretical significance and application value. Some of the reorganized chemokines, chemokines and their receptor antagonists which have entered the clinical research have become new biological treatment hot spots.
     CC chemokine receptor 4 (CCR4) is a kind of G-protein-coupled receptors with a characteristic seven-transmembrane structure and selectively expressed on Th2-type CD41 T cells, which was found in 1995. It has 3 natural-specific ligands, among which Thymus and activation regulated chemokines (TARC/CCL17) and macrophage-derived chemokine (MDC/CCL22) positioned on the 16q13 region of 16th human chromosome have a high affinity to CCR4, and their Kd values were 0.5nm and 0.18nM separately. The third natural CCR4 ligand, Chemokine-like factor 1(CKLF1), a new cytokine which was found in July 2001, positioned on the 16q22 region of 16th chromosome has very different structure and expression from TARC and MDC and its in-depth study is now in progress.
     CCR4 plays an important role in autoimmune diseases, allergic inflammation, thrombotic diseases etc.. The small molecule CCR4 antagonists synthesized by now are: flavanone thiazole compounds, lactam compounds, 2 - aminothiazoles compounds, sulfonyl aryl amines, diamino-pyrimidine, as well as cyclic amine. At present, Chemokine receptor antagonists in Phase I Clinical Trial Service are CXCR2, CXCR4, CCR1 and CCR5 antagonists, but not CCR4 antagonists. Therefore the research of activie and selective small molecule CCR4 antagonists is conducive not only to study CCR4 biological function, but also beneficial to explore the development of new drugs with CCR4 as a potential drug target, especially in the anti-asthma drugs, and has broad research, development and application prospects.
     Since no experimentally determined three-dimensional CCR4 structure is currently available, we modeled the structure of CCR4 based on the structure of 1U19A protein of bovine rhodopsin. By analysis of its structural characteristics and the characteristics of ligand interaction, using Me Too strategy and computer- assisted drug design methods; we designed and synthesized 30 compounds, among which 22 are lactam compounds and 8 ester compounds. All the compounds synthesized have two chiral carbon atoms. We have used Chiral Synthesisl method, directly obtaied the R, R configuration of the enantiomers, thus avoided separation of chiral compounds and the use of chiral separation column. At the same time, by the use of 2D 1H-1H COSY spectra and 1D-NOESY spectrum the absolute configurations of these compounds have been determined. This method is convenient, easy, economic and efficient.
     Capillary Electrophoresis results showed that 9 compounds have strong combination with the receptor, among which 6 compounds have strong MDC- mediated inhibition of CCR4-transfected HEK293 cells chemotaxis.1 compound has an significant inhibitory effect similar to that of the positive compound. It has the value for further research. There is an ester compounds showed good activity. This indicates that the esters have the value of research and development. MTT results show that the toxicity of optimization compounds lower than positive compound or equivalent. We analyzed the structure-activity relationship of compounds. This provides a theoretical basis for the next work.
引文
[1] Gerard C, Rollins BJ. Chemokines and disease[J]. Nat Immunol, 2001, 2(2): 108-115.
    [2] Rossi D, Zlotnik A. The biology of chemokines and their receptors[J]. Annu Rev Immunol, 2000, 18:217-242.
    [3] Jose CG, Clare L, Jose AG. Eotaxin: from an eosinophilic chemokine to a major regulator of allergic reactions[J]. Immunol Today, 1999, 20: 500-504.
    [4] Richard H. Chemokine receptors and HIV-1: the fusion of two major research fields[J]. Immunol Today, 1999, 20: 89-94.
    [5] Marshall A. HGS launches first genomics product in clinic[J].. Nat Biotechnol, 1998, 16: 129-131.
    [6] Mark JC, Ernest MJ. During a randomized phaseⅡstudy of BB-10010 (macrophage inflammatory protein-lα) in patients with advanced breast cancer receiving 5-fluorouracil, adriamycin, and cyclophosphamide chemotherapy[J]. Blood, 1998, 92: 1532-1540.
    [7] Nicholas WL, Sandra HP, Oliveira, et al. Hogaboam chemokines and asthma: redundancy of function or a coordinated effort?[J]. J Clin Invest, 1999, 104: 995-999.
    [8] Alain PV., Christophe C. Chemokines in cancer[J].. Cytokine & Growth Factor Reviews, 2002 (13): 143-154.
    [9] Thersa JR, Pieter HE. Chemokines and atherosclerosis[J]. Athcrosclerosis, 1999, 147: 213-225.
    [10] Matloubian M, David A, Engel S, et al. A transmembrane CXC chemokine is a ligand for HIV-coreceptor bonzo[J]. Nat Immunol, 2000, 1: 298-304.
    [11]王应,韩文玲,张颖妹等.人趋化因子受体CCR4的克隆与表达[J].中国免疫学杂志, 2001, 17(3): 123-124.
    [12] Power CA, Meyer A, Memeth K, et al. Necleic acids, protein synthesis andmolecular Genetics[J]. J Biol Chem, 1995, 270(8): 19495-19500.
    [13] Onuffer JJ, Horuk R. Chemokines, chemokine receptors, and small-molecule antagonists: recent developments[J]. Trends Pharmocol Sci, 2002, 23: 459-467.
    [14] Godisk R, Chantry D, Raport CJ, et al. Human macrophage-derived chemokine(MDC), a novel chemoattractant for monocytes, monocyte-derived dendritic cells, and natural killer cell[J]. J Exp Med, 1997, 185: 1595-1604.
    [15] De Paepe B, DE Bleecker JL.β-Chemokine receptor expression in idiopathic inflammatory myopathies[J]. Muscle Nerve, 2005, 31: 621-627.
    [16] Chantry D, Demaggio AJ, Brammer H, et al. Profile of human macrophage transcripts: insights into macrophage biology and indentification of novel chemokines[J]. J Leuko Biol, 1998, 64: 49-54.
    [17] Kowalska MA, Ratajczak MZ, Majka M., et al. Stromal cell-derived factor 1 and macrophane-drived chemokine 2 chemokines that activate platelets[J]. Blood, 2000, 96: 50-57.
    [18] Abi-Younes S, Si-Tahar M, Luster AD. The CC chemokines MDC and TARC induce platelet activation via CCR4[J]. Throm Res, 2001, 101: 279-289.
    [19] Inngierdingen M, Damaj B, Maghazachi AA. Expression and regulation of chemokine receptors in human natural killer cell[J]. Blood, 2001, 97: 367-375.
    [20] Johansson C, Ahlstedt I, Furubacka S, et al. Differential expression of chemokine receptors on human IgA+ and IgG+ B cell[J]. Clin Exp Immunol, 2005, 141: 279-287.
    [21] Sebastiani S, Allavena P, Albanesi C, et al. A chemokine receptor expression and function in CD4+ T lymphocytes with regulatory activity[J]. J Immunol, 2001, 166: 996-1002.
    [22] Nanki T, Lipski PE. Lack of correlation between chemokine receptor and Th1/Th2 cytokine expression by individual memory T cells[J]. Int Immunol, 2000, 12:1659-1667.
    [23] Kim CH, Rott L, Kunkel EJ, et al. Rules of chemokine receptor association with T cell polarization in vivo[J]. J Clin Invest, 2001, 108: 1331-1339.
    [24] Imai T, Baba M, Nishimura M, et al. The T cell-directed CC chemokine TARC is a highly specific biological ligang for CC chemokine receptor 4[J]. J Biol Chem,1997, 272: 15036-15042.
    [25] Imai T, Chantry D, Raport CJ, et al. Macrophage-derived chemokine is a functional ligand for the CC chemokine receptor 4[J]. J Biol Chem, 1998, 273: 1764-1768.
    [26] Han WL, Lou YX, Tang JM, et al. Molecular cloning and characterization of chemokine-like factor 1(CKLF1), a novel human cytokine with unique structure and potential chemotactic activity[J]. Biochem J, 2001, 357: 127-135.
    [27] Soon HK, Mary MC, Howard SF, et al. CCR4-bearing T cells participate in autoimmune diabetes[J]. J Clin Invest, 2002, 110: 1675-1686.
    [28] Gangur V, Oppenheim JJ. Are chemokines essential or secondary participants in allergic responses?[J]. Ann. Allergy Asthma Immunol, 2000, 84: 569-581.
    [29] Romagnani S. Cytokines and chemoattractants in allergic inflammation[J]. Mol Immunol, 2001, 38: 881-885.
    [30] Anderson HR, Bailey PA, Cooper JS, et al. Morbidity and school absence caused by asthma and wheezy illness[J]. Arch Dis Child, 1983, 58: 77–84.
    [31] Burney PGJ, Chinn S, Rona RJ. Has the prevalence of asthma increased in children? Evidence from the national study of health and growth 1973-86[J]. BMJ, 1990, 300: 1306–10.
    [32] Pahl A, Szelenyi I. Asthma therapy in the new millennium[J]. Inflammation Research, 2002, 51: 273-282.
    [33] Barnes PJ, Chung KF, Page CP, Inflammatory mediators of asthma: an update[J]. Am Soc Pharmacol Exp Ther, 1998, 52(4): 517-572.
    [34] WilliamW, Busse MD, Robert F, et al. Asthma[J]. N Engl J Med, 2001, 344(5): 350-362.
    [35] Brian JL. Modern drug treatment of chronic asthma[J]. BMJ, 1999, 318(6): 380-384.
    [36] Clare ML, Sara MR. Chemokines in allergic airway disease[J]. Curr Opin Pharmacol, 2003, 3: 443-448.
    [37] Ying S, Zhang GZ, Gu SY, et al. How much do we know about atopic asthma: where are we now?[J]. Cell Mol Immunol, 2006, 3(5): 321-332.
    [38] Charles O. Chemokine receptors in airway disease: which receptors to target?[J].Pulmonary Pharmacology & Therapeutics, 2001, 14: 193–202.
    [39] Tan YX, Ma DL, Han WL, et al. Chemokise-like factor-1 .an novel human cytokine, contributes to the air way remodeling in asthma[M]. The asthma International Conference, 2001,Chicago.U.S.A.
    [40]韩文玲,马大龙.一个新的多功能细胞因子——趋化素样因子[J].上海免疫学杂志, 2002, 22(4): 217-219.
    [41] Nakatani T, Kaburagi Y, Shimada Y, et al. CCR4 memory CD4+ tlymphocytes are increased in peripheral blood and lesional skin from patients with atopic dermatitis[J]. J Allergy Clin Immunol, 2001, 107: 353–358.
    [42] Kakinuma T, Nakamura K, Wakugawa M, et al. Thymus and activate ionregulated chemokine in atopic dermatitis: serum thymus and activation- regulated chemokine level is closely related with disease activity[J]. J Allergy Clin Immunol, 2001, 107: 535–541.
    [43] Rottman JB, Smith TL, Ganley KG, et al. Potential role of the chemokine receptors CXCR3, CCR4, and the integrin alphaEbeta7 in the pathogenesis of psoriasis vulgaris[J]. Lab Invest, 2001, 81(3): 335-347.
    [44] Abi-Younes S, Si-Tahar M, Luster AD. The CC chemokines MDC and TARC induce platelet activation via CCR4[J]. Thromb Res, 2001, 101: 279-289.
    [45] Hase K, Tani K, Shimizu T, et al. Increased CCR4 expression in active system lupus erythematosus[J]. J Leukoc Biol, 2001, 70(5): 749- 755.
    [46]黎莉,陈顺乐,沈南等.系统性红斑狼疮初发患者Th细胞异常分化相关分子基因表达研究[J].中华风湿病学杂志, 2003, 7 (3): 133-138.
    [47] Yang PT, Kasai H, Zhao LJ, et al. Increased CCR4 expression on circulation CD4+ T cells in ankylosing spondylitis, rheumatoid arthritis and systemic lupus erythematosu[J]. Clin Exp Immunol, 2004, 138: 342-347.
    [48] Aeberli D, Seitz M, Juni P, et al. Increase of peripheral CXCR3 positive T lymphocytes upon treatment of RA patients with TNF-a inhibitors[J]. Rheumatology, 2005, 44: 172-175.
    [49] Ruth JH, Rottman JB, Katschke Jr, et al. Selective lymphocyte chemokine receptor expression in the rheumatoid joint[J]. Arthritis Rheum, 2001, 44: 2750-2760.
    [50]杨娉婷,沈辉,赵丽娟等,趋化因子受体CCR4在活动期类风湿关节炎患者外周血CD4+T细胞表达的研究[J].中华风湿病学杂志, 2005, 9(7): 401-404.
    [51] Martin R, McFarland HF, McFarlin DE, Immunological aspects of demyeylinating diseases[J]. Annu Rev Immunol, 1992. 10:153-187.
    [52] Luster AD. Chemokines—chemotactic cytokines that mediate inflammation[J]. N Engl J Med, 1998, 338: 436-445.
    [53] Sallusto F, Lanzavecchia A, Mackay CR. Chemokines and chemokine receptors in T-cell priming and Th1/Th2-mediated responses[J]. Immunol Today, 1998, 19: 568-574.
    [54] Balashov KE, Rottman JB, Weiner HL, et al. CCR5+ and CXCR3+ T cells are increased in multiple sclerosis and their ligands MIP-1a and IP-10 are expressed in demyelinating brain lesions[J]. Proc Natl Acad Sci USA, 1999, 96: 6873- 6878.
    [55] Sfrensen TL, Tani M, Jensen J, et al. Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients[J]. J Clin Invest, 1999, 103: 807-815.
    [56] Wang HY, Matsui M, Araya S, et al. Chemokine receptors associated with immunity within and outside the central nervous system in early relapsing– remitting multiple sclerosis[J]. J Neuroimmunol, 2002, 133: 184-192.
    [57] Tatsuro M, Hiroshi O, Kazuo F, et al. Chemokine receptor expression on T cells in blood and cerebrospinal fluid at relapse and remission of multiple sclerosis: imbalance of Th1/Th2 -associated chemokine signaling[J]. J Neuroimmunol, 2001, 114: 207-212.
    [58] Arnon K, Konstantin B, Wayne WH, et al. Cyclophosphamide modulates CD4+ T cells into a T helper type 2 phenotype and reverses increased IFN-g production of CD8+ T cells in secondary progressive multiple sclerosis[J]. J Neuroimmunol, 2004, 146: 189-198.
    [59] Owens T, Sriram S. The immunology of multiple sclerosis and its animal model, experimental allergic encephalomyelitis[J]. Neurol Clin, 1995, 13: 51-73.
    [60] Sandra C, Barbara S, Elena A, et al. Induction of macrophage- derived chemokine/CCL22 expression in experimental autoimmune encephalomyelitisand cultured microglia: implications for disease regulation[J]. J Neuroimmunol, 2002, 130: 10-21.
    [61] Shelley A, Bradley N, Aaron SA, et al. Discovery and SAR of trisubstituted thiazolidinones as CCR4 antagonists[J]. Bioor Med Chem Lett, 2004, 14(7): 1619-1624.
    [62] Bradley N, Shelley A, Benjamin F, et al. Racemic and chiral lactams as potent, selective and functionally active CCR4 antagonists[J]. Bioor Med Chem Lett, 2004, 14(22): 5537–5542.
    [63] Joshua DH, Bradley JN, Shelley A, et al. Synthesis of spirolactams and spiropiperidines as CCR4 receptor antagonists[J]. Tetrahedron Letters, 2006, 47(1): 69–72.
    [64] Wang XM, Xu F, Xu QG, et.al. Optimization of 2-aminothiazole derivatives as CCR4 antagonists[J]. Bioor Med Chem Lett, 2006, 16(10): 2800-2803.
    [65] Harrison R, Mete A, Teobald B, et al. Sulphonamide compounds that modulate chemokine receptor activity (CCR4)[P]. WO 2004/108692 A1, (Dec. 16 2004).
    [66] Habashita H, Kokubo M, Shibayama S, et al. Preparation of pyridinyl benzenesulfonylamide derivatives as chemokine receptor antagonist[P]. WO 2004007472. (Jan. 22, 2004).
    [67] Habashita H, Ochiai H, Tokuda N, et al. Preparation of pyridinyl benzene- benzenesulfonylamide derivatives as chemokine receptor antagonist[P]. WO sulfonylamide 2005023771 (March 17, 2005).
    [68] Ashok VP, Gao AM, Wan HH, et al. Identification of chemokine receptor CCR4 antagonist[J]. Bioorganic & Medicinal Chemistry Letters, 2005, 15(10): 2669–2672.
    [69] Kawano N, Koganemaru Y, Masuda N, et al. Preparation of substituted pyrimidine derivatives as CCR4, TARC and MDC function-controlling agents[P]. WO 2005085212. (Sept. 15, 2005).
    [70] Kawano N, Igarashi S, Koganemaru Y, et al. Preparation of bicyclic pyrimidine derivatives as CCR4 function-controlling agents[P]. WO 2005082865 (Sept. 9, 2005).
    [71] Machii D, Yamaura Y, Arai H, et al. Anti- Antiinflammatory Agents[P]. WO03082855 (Oct. 9, 2003).
    [72] Kazuhiro Y, Noriko I, Susumu I, et al. Discovery of potent CCR4 antagonists: synthesis and structure–activity relationship study of 2,4-diaminoquinazolines [J]. Bioorganic & Medicinal Chemistry, 2008, 16: 7021–7032.
    [73] Kazuhiro Y, Noriko I, Susumu I, et al. Potent CCR4 antagonists: synthesis, evaluation, and docking study of 2,4-diaminoquinazolines [J]. Bioorganic & Medicinal Chemistry, 2008, 16: 7021–7032.
    [74] Wang LP, Maccoss M, Kothandaraman S. Cyclic amine modulators of chemokine receptor activity[P]. CA2319781, (01.02.1999).
    [75] Bballa US, Iyengar R. Emergent properties of networks of biological signaling pathway[J]. Science, 1999: 283-381.
    [76] Biocarta. C. Pathway of life[EB/OL]. http://www.biocarta.com/gene/CellSignal. asp, 2003-12-012
    [77] Anfinsen CB. Principles that govern the folding of protein chains[J]. Science, 1973, 181(96): 223-230.
    [78]王树青,刘红,杜奇石等.依据氨基酸残基的相关性预测蛋白质的结构类[J].物理化学学报, 2004, 20(5): 498-502.
    [79] InsightII, version [CP]. MSI: Sandiego, 2000.
    [80] Blundell TL, Sibanda BI, Sternberg MJE, et al. Knowledge-based prediction of protion structure and the design of novel molecules[J]. Nature, 1987,326: 347-352.
    [81]赵丽琴,肖军海,李松.分子对接在基于结构药物设计中的应用[J].生物物理学报, 2002, 18(3): 263-270.
    [82] Filikov AV, Monam V, Vickers TA, et al. Identification of ligands for RNA targets via structure-based virtual screening: HIV-1 TAR[J]. J Comput Aided Mol Des, 2000, 14(6): 593-610.
    [83] Perola E, Xu K, Kollmeyer TM, et al. Successful virtual screening of a chemical database for famesyltransferase inhibitor leads[J]. J Med Chem, 2000, 43(3): 401-408.
    [84] Morris GM, Goodsell DS, Hlliday RS, et al. Automated docking using a lamarckian generic algorithm and empirical binding free energy function[J]. JComput Chem, 1998, 19: 1639-1662.
    [85] Goodsell DS, Morris GM, Olson AJ. Automated docking of flexible ligands applications of AutoDock[J]. J Mol Recog, 1996, 9(1): 1-5.
    [86] Liu H, Huang X, Shen J, et al. Inbibitory mode of 1,5-diarylpyrazole derivatives against cyclooxygenase-2 and cyclooxygenase-1: molecular docking and 3D QSAR analyses[J]. J Med Chem, 2002, 45: 4816-4827.
    [87] Meyers AI, Brengel GP. Chiral bicyclic lactams: useful precursors and templates for asymmetric synthese[J]. Chem Commun, 1997: 1-8.
    [88] Myers AI, Michael H, Robert G. Asymmetric synthesis of quaternary carbon centers[J]. J Am Chem Soc, 1984, 106:1146-1148.
    [89] Nilsson BM, Vargas HM, Ringdahl B, et al. Phenyl-substituted analogues of oxotremorine as muscarinic antagonists[J]. J Med Chem,1992, 35(2): 285-294.
    [90] Yoshiyuki K, Humiko H, Tatsuo N, et al. Synthesis of 5-amino-2-pyrrolidinone and its derivatives[J]. Heterocycles, 1980, 14(9): 1245-1249.
    [91] Tatsuo N, Masako A, Naganori O, et al. 5-acetoxy-2- pyrrolidinone as a precursor for N-acylimminium ion[J]. Heterocycles, 1983, 20(6): 985-990.
    [92] Rigo B, Fasseur D, Cherepy N, et al. Decarboxylation of pyroglutamic acids with P2O5/CH3SO3H: a general synthesis of 5-aryl-2-pyrrolidinones[J]. Tetrahedron Letters, 1989, 30(50): 7057-7060.
    [93] Wagenaar MM, Williamson RT, Ho DM, et al. Structure and absolute stereochemistry of 21-hydroxyoligomycin A[J]. J Nat Prod, 2007, 70(3): 367-371.
    [94] Holsworth DD, Jalaie M, Belliotti T, et al. Discovery of 6-ethyl-2,4-diamino pyrimidine-based small molecule rennin inhibitors[J]. Bioorg Med Chem Lett, 2007, 17(13): 3575-3580.
    [95]刘力军,仲伯华,缪振春.胸腺五肽的NMR研究[J].波谱学杂志, 2005, 22(2): 201-207.
    [96] Andrasi M, Gaspar A, Klekner A. Analysis of cephalosporins in bronchial secretions by capillary electrophorsis after simple pretreatment[J]. J Chromatogr B, 2007, 846: 355-358.
    [97] Bishop SC, Mccord BR, Cradz SR, et al. Simultaneous separation of different types of amphetamine piperazine designer drugs by capillary electrophoresiswith a chiral selector [J]. J Forensic Sci, 2005, 50:326-335.
    [98] Ohashi M, Omeae H, Hashida M, et al. Determination of vanillin and related flavor compounds in cocoa drink by capillary electrophoresis[J]. J Chromatogr A, 2007, 1138: 262-267.
    [99] Debnath AK, Radigan L, Jiang S. Structure-based identification of small molecule antiviral compounds targeted to the gp41 core structure of the human immunodecifiency virus type 1[J]. J Med Chem, 1999, 42: 3203-3209.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700