用户名: 密码: 验证码:
蛋白水平及Lys/Met对断奶犊牛生长、消化代谢及瘤胃发育的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以断奶荷斯坦犊牛为试验动物,研究开食料中粗蛋白水平、低蛋白开食料中赖氨酸和蛋氨酸比例对犊牛生长性能、营养物质消化代谢和瘤胃发育的影响,旨在得出犊牛开食料的适宜粗蛋白水平及赖氨酸和蛋氨酸比,为后备牛的培育提供科学依据。具体分以下两个部分:
     试验一开食料中粗蛋白质水平对犊牛生长、消化及瘤胃发育的影响。
     试验选取15头8周龄荷斯坦公犊牛分为3个处理,每个处理5头牛。分别饲喂粗蛋白水平为16.22%、20.21%和24.30%的开食料,研究日粮蛋白水平对断奶犊牛生长、血清指标、物质代谢和瘤胃发育的影响,试验持续8周。试验期间每两周对犊牛进行称重、体尺测量、采血;在10和13周龄时每组选取3头犊牛进行代谢试验;犊牛12、16周龄采集瘤胃液测定瘤胃发酵能力和微生物酶活性。16周龄时对犊牛进行屠宰,取瘤胃组织样品研究瘤胃上皮细胞发育情况。结果表明,中蛋白组(20.21%)和高蛋白组(24.30%)犊牛的平均日增重分别为514g/d和518g/d,比低蛋白组(16.22%)高17.4%和18.2%;高蛋白组犊牛的血清尿素氮浓度显著高于中蛋白组(P<0.05)。高蛋白组犊牛粗蛋白的表观消化率高于低蛋白组(P<0.05),犊牛的吸收氮和沉积氮随开食料中粗蛋白水平升高而升高(P<0.05)。犊牛瘤胃液氨态氮、挥发性脂肪酸浓度、纤维素酶的活性有随开食料中粗蛋白水平的升高而升高的趋势(P>0.05)。开食料中粗蛋白水平对犊牛瘤胃乳头发育没有影响(P>0.05)。
     试验二开食料中Lys/Met对断奶犊牛生长性能和消化代谢的影响。
     选取24头健康的荷斯坦断奶母犊牛随机分为4个处理,每个处理6头牛。限量饲喂4种不同开食料,即对照组开食料(粗蛋白为19.64%)和3种赖氨酸、蛋氨酸比例分别为2.5﹕1,3.1﹕1,3.7﹕1的开食料(粗蛋白为15.22%),试验期为8周。在试验开始和结束时对犊牛进行称重和采血,在试验第3周每组选取4头犊牛进行代谢试验。结果表明,3.1﹕1组犊牛的增重达到834g,比对照组高10.21%(P﹥0.05),试验组犊牛血清尿素氮、精氨酸和缬氨酸浓度皆显著低于对照组(P﹤0.05),且各试验组之间没有显著差异(P﹥0.05)。开食料中赖氨酸和蛋氨酸比例对犊牛营养物质消化率没有影响(P﹥0.05)。低蛋白开食料中Lys/Met为3.1﹕1和3.7﹕1时,有减少N的排放,提高N的总利用率及N的表观生物学价值的趋势(P﹥0.05)。
     综上所述,本研究通过动物生长试验、消化代谢试验和屠宰试验,就断奶犊牛开食料适宜粗蛋白水平进行了较为系统的研究,确定了断奶犊牛开食料中粗蛋白水平为20.21%时有利于犊牛的生长发育;在此基础上,研究了在低蛋白开食料中优化赖氨酸和蛋氨酸比例对于犊牛开食料的可行性。结果表明,在低蛋白开食料(粗蛋白为15.22%)中赖氨酸和蛋氨酸比例为3.1﹕1时,犊牛的生长性能优于饲喂对照组开食料(粗蛋白为19.64%)的犊牛,并可提高粗蛋白的总利用率。
Weaned calves were used in a series of trials to study the effect of protein levels in starter feeds on growth performance, digestive physiology and rumen development, and the effects of lysine to methionine ratios in starter feeds with low protein levels on growth performance, nutrient digestibility and nitrogen metabolism.
     Experiment 1 was designed to study the effect of protein levels in starter feeds on growth performance, digestive physiology and rumen development in weaned calves. Fifteen male Holstein calves were fed a starter feed containing 16.22 (low protein), 20.21 (medium protein) or 24.30% crude protein (high protein) respectively to examine the effect of dietary protein on growth performance, serum parameters, nutrient metabolism and rumen development. Restricted amounts of starter feeds were fed to calves from 8 to 16 wk of age. Live weights, growth parameters and concentrations of blood metabolites were determined every two weeks. Three calves were selected from each group and two digestion trials were conducted at 10 and 13 wk. The rumen fluid was taken 3 h after feeding at 12 wk of age and then euthanized at 16 wk of age to investigate rumen fermentation, digesition and enzymes activity. All calves were euthanized at 16 wk of age and rumen tissues were sampled for measurements of the development of ruminal epithelium. The results showed that, although no statistical differences were detected among treatments (P>0.05), the weight gain of calves fed low protein starter feeds was lower than that of the other calves. The serum urea nitrogen of calves fed high protein starter feeds was higher than that of the other calves. Calves on low protein starter feeds had lower apparent digestibility of the nutrient except crude protein at 10 wk of age. The apparent digestibility of nutrients except dry matter at 13 wk of age tended to increase as the crude protein content in starter feeds increased. Fecal nitrogen, urinary nitrogen, absorbed nitrogen, retained nitrogen and total utilization of nitrogen increased linearly with the increasing dietary protein levels. The calves in group HP had a lower ruminal pH at 12 wk of age, had a higher ruminal pH at 16 wk of age. Ruminal concentrations of ammonia nitrogen and volatile fatty acids in calves fed starter feeds with HP were higher than those in the other calves. Theα-amylase activity was lower in calves fed MP starter feed than that fed the other starter feeds. The protease and cellulases activities tended to increase as the crude protein content increased. And they were higher in 16wk than in 12wk in the same treatment. Dietary protein levels had no effects on the development of the rumen .
     Experiment 2 was designed to examine the effects of the lysine to methionine ratio in diets on growth performance, nutrient digestibility and metabolism in weaned calves. Twenty four weaned calves were randomly divided into four groups and fed with a control starter diet with a crude protein level of 19.64% DM, or a test diet (15.22 crude protein% DM) with a lysine to methionine ratio of 2.5:1, 3.1:1 or 3.7:1 for 8 wk. The calves were weighed and blood samples were collected on the initial and final day of the trial. Four calves were selected from each group and digestion trials were conducted from the third week of the trial by total feces collection method. The result indicated that the gain of calves in group 3.1﹕1 was 834 g/d, which was 10.21% higher than that of calves in control group numerically (P﹥0.05). Serum urea nitrogen, arginine and valine concentrations in calves fed the test diet were lower than those in control calves (P﹤0.05). But it did not differ among test groups. The ratio of lysine to methionine had no influence on nutrient digestibility (P﹥0.05). But the utilization and apparent biological value of nitrogen in group 3.1﹕1 and group 3.7﹕1 were higher than group 2.5﹕1 and control group numerically(P﹥0.05).
     In conclusion, 20.21% protein was found to be the optimal to promote growth and development of the calves. In addition, the possibility of optimizing the lysine to methionine ratio at low protein levels was discussed and the calves fed the low protein diet with a lysine to methionine ratio of 3.1:1 had improved growth performance, and increase operating factor of protein.
引文
[1]陈宝江.寡肽对肉仔鸡消化生理及蛋白质合成调控的影响[陈宝江博士学位论文].北京:中国农业科学院, 2005.
    [2]刁其玉.犊牛早期断奶新招[M].北京:中国农业科学技术出版社, 2006.
    [3]董国忠,周安国,杨凤,陈可容.饲料蛋白质水平对早起断奶仔猪氮代谢的影响[J].动物营养学报, 1997, 9(2): 19~24.
    [4]董晓铃,王洪荣,卢德勋.内蒙古白绒山羊的限制性氨基酸研究[J].动物营养学报, 2006, 18(1): 26~31.
    [5]董志岩,刘景,叶鼎承,邱华玲,缪伏荣,李忠荣等.不同低蛋白日粮添加氨基酸对生长猪生长性能及血液生化指标的影响.福建农业学报, 2009, 24 (4): 341~344.
    [6]段志富,陈代文.不同理想蛋白质水平对早起断奶仔猪生产性能及蛋白质利用的影响[J].四川农业大学学报, 2005, 23 (3): 344~348.
    [7]冯仰廉.反刍动物营养学[M].北京:科学出版社, 2004.
    [8]嘎而迪,敖日格乐,金曙光,孟青龙,达胡巴雅尔,金学峰.犊牛开食料的研制及其犊牛生长发育规律的研究[J].内蒙古农牧学院学报, 1990, 8: 8~22.
    [9]高天增.赖氨酸与粗蛋白质比例对猪生产性能及氮利用率的影响[高天增博士学位论文].北京:中国农业大学, 2003.
    [10]管武太,李德发,于会民,车向荣,马法波.以理想氨基酸模式为基础配制日粮对断奶仔猪氮存留效率的影响[J].中国畜牧杂志, 2003, 39 (6): 23~24.
    [11]郭熠洁,王潍波,顾小卫,梁榕旺,赵国琦. 15N示踪法对日粮不同蛋白质水平山羊氮代谢的影响[J].中国饲料, 2009, 12: 21~25.
    [12]何明清,程安春.动物微生态学[M].四川:四川科学技术出版社, 2004: 401~403.
    [13]黄利强.犊牛开食料中适宜蛋白质水平的研究[黄利强硕士学位论文].杨凌:西北农林科技大学, 2008.
    [14]康萍. 3-6周龄北京鸭理想氨基酸模式的研究[康萍硕士学位论文].杨凌:西北农林科技大学, 2005.
    [15]孔祥浩,贾志海,张玉枝,朱晓萍,郭金双,王润莲等.粗蛋白水平对绵羊日粮养分后肠道消化的影响[J].动物营养学报, 2006, 18 (1): 32~36.
    [16]李辉.蛋白水平与来源对早期断奶犊牛消化代谢及胃肠道结构的影响[李辉博士学位论文].北京:中国农业科学院, 2008.
    [17]梁福广.生长猪低蛋白日粮可消化赖、蛋+肤、苏、色氨酸平衡模式的研究[梁福广博士学位论文].北京:中国农业大学. 2005.
    [18]毛文成.包被蛋氨酸和赖氨酸对肉羊蛋代谢和生产性能影响研究[毛文成硕士学位论文].北京:中国农业大学. 2004.
    [19]潘军,张永跟,王庆镐.高蛋白质水平的开食料对早期断奶犊牛生长发育的影响[J].中国奶牛, 1994, 3: 24~25.
    [20]苏有健,李德发,邢建军,陈志国.在低蛋白日粮中添加色氨酸对仔猪生产性能及血清游离氨基酸和尿素氮的影响[J].中国畜牧杂志, 2005, 41 (1): 26~28.
    [21]汤文杰,孔祥峰,刘志强,黄瑞林,徐海军,谭碧娥等.日粮不同蛋白质水平对肥育宁乡猪养分消化率和氮能代谢的影响[J].动物营养学报, 2008, 20(4): 458~462.
    [22]陶圣宏.日粮中添加伊普异黄酮对大鼠和肉鸡生长性能的影响及其分泌机制的研究[陶圣宏硕士学位论文].南京:南京农业大学. 2006.
    [23]王洪荣,卢德勋.饲喂玉米型日粮的生长绵羊限制性氨基酸研究[J].动物营养学报, 1999, 4(10): 17~28.
    [24]王镜岩,朱圣庚,徐长法.生物化学(第3版)[M].北京:高等教育出版社, 2002.
    [25]王雅倩,俞路,王春梅,赵国琦,孙龙生,黄俊.日粮蛋白质水平对湖羊胃肠道pH、氨态氮及尿素氮的影响[J].畜牧与兽医, 2008, 40: 3439.
    [26]席鹏彬,李德发,高天增,龚利敏.赖氨酸与蛋白质比例对断奶仔猪生长性能、血清尿素氮及游离氨基酸浓度的影响[J].动物营养学报, 2002, 14(1): 36~41.
    [27]杨凤.动物营养学(第2版)[M].北京:中国农业出版社, 2000.
    [28]杨维仁.瘤胃保护性氨基酸对肉牛消化代谢影响及适宜供给量的研究[杨维仁博士学位论文].北京:中国农业大学. 2004.
    [29]杨志强.日粮氨基酸配比对奶牛产奶性能和氮利用的影响[杨志强硕士学位论文].杭州:浙江大学. 2009.
    [30]张丽英.饲料分析及饲料质量检测技术(第2版)[M].北京:中国农业大学出版社, 2003.
    [31]张伟.不同开食料对加拿大奶犊牛采食量及生长发育影响对比试验[J].中国草食动物, 2007, 27(3): 35~37.
    [32]赵国先.低蛋白饲粮添加氨基酸对肉免生产性能及血液生化指标的影响[J].饲料与畜牧, 1997, 2: 9~11.
    [33]甄玉国,卢德勋,王洪荣,马宁,赵秀英,张海英.小肠可吸收氨基酸模式对内蒙古白绒山羊组织蛋白质周转的影响[J].畜牧兽医学报, 2007, 38: 1047~1053.
    [34]周怿,刁其玉,屠焰,云强.酵母β-葡聚糖对早期断奶犊牛胃肠道发育的影响[J].动物营养学报, 2009, 21(6): 846~852.
    [35] Abe, M., Iriki, T., & Funaba, M. Lysine deficiency in postweaned calves fed corn and corn gluten meal diets [J]. Journal of Animal Science, 1997, 75: 1974~1982.
    [36] Abe, M., Iriki, T., Funaba, M. & Onda, S. Limiting amino acids for a corn and soybean meal diet in weaned calves less than three months of age[J]. Journal of Animal Science, 1998, 76: 628~636.
    [37] Abe, M., Iriki, T., Kaneshige, K., Kuwashima, K., Watanabe, S., Sato, H., et al. Adverse effects of excess lysine in calves [J]. Journal of Animal Science, 2001, 79: 1337~1345.
    [38] Abe, M., Okada, H., Matsumura, D., Sato, H., Funaba, M., & Iriki, T. Methionine imbalance and toxicity in calves [J]. Journal of Animal Science, 2000, 78: 2722~2730.
    [39] Abe, M., Yamazaki, K., Kasahara, K., Iriki, T., Kuriyama, R., & Funaba, M. Absence of limiting amino acids in calves fed a corn and soybean meal diet past three months of age. Journal of Animal Science, 1999, 77: 769~779.
    [40] Austic, R. E., & Scott, R. L. Involvement of intake in the lysine-arginine antagonism in chicks [J]. Journal of Nutrition, 1975, 105: 1122~1131.
    [41] Bartlett, K .S., McKeith, F.K., VandeHaar, M.J., Dahl, G.E., & Drackley, J. K. Growth and body composition of dairy calves fed milk replacers containing different amounts of protein at two feeging rates[J]. Journal of animal Science, 2006, 84: 1454~1467.
    [42] Bartley, E. E. Effects of a self-fed pelleted mixture of hay and calf starter on the performance of young dairy calves [J]. Journal of Dairy Science, 1973, 56: 817~820.
    [43] Bergen, W. G. Free amino acids in blood of ruminants-physiological and nutritional regulation [J]. Journal of animal Science, 1979, 49: 1577~1589.
    [44] Bernard, J. K., Chandler, P. T., West, J. W., Parks, A. H., Amos, H. A., Froetschel, M. A., et al. Effect of supplemental L-lysine and corn source on rumen fermentation and amino acid flow to the small intestine [J]. Journal of Dairy Science, 2004, 87: 339~405.
    [45] Bertrand, J. A., Pardue, F. E., & Jenkins, T. C. Effect of ruminally protected amino acids on milk yield and composition of jersey cows fed whole cottonseed [J]. Journal of Dairy Science, 1998, 81: 2215~2220.
    [46] Broderick, G. A. Effects of varying dietary protein and energy levels on the production of lactating dairy cows.Journal of Dairy Science, 2003, 86: 1370~1381.
    [47] Brown, E. G., VandeHaar, M. J., & Daniels. K. M. Effect of increasing energy and protein intake on body growth and carcass composition of heifer calves [J]. Journal of Dairy Science, 2005, 88: 585~594.
    [48] Brown, L. D., Jacobson, D. R. Everett, J.P. Jr., Seath, D. M. & Rust, J. W. Urea utilization by young dairy calves as affected by chlortetracycline supplementation [J]. Journal of Dairy Science, 1960, 43: 1313~1321.
    [49] Brown, L. D., Lassiter, C. A., Everett, J. P. Jr., Seath, D. M., & Rust, J. W. Effect of protein level in calf starters on growth rate and metabolism of young calves [J]. Journal of Dairy Science, 1958, 41: 1425~1433.
    [50] Chalupa, W., Chandler, J. E., & Brown, R. E. Abomasal infusion of mixtures of amino acids to growing cattle [J]. Journal of Animal Science, 1973, 37: 339(Abstr.).
    [51] Cole, N. A. Nitrogen retention by lambs fed oscillating dietary protein concentrations [J]. Journal of Animal Science, 1999, 77: 215~222.
    [52] Colin-Schoellen, O., Laurent, F., Vignon, B., Robert, J. C., & Sloan, B. Interactions of ruminally protected methionine and lysine with protein source or energy level in the diets of cows [J]. Journal of Dairy Science, 1995, 78: 2807~2818.
    [53] Devant, M., Ferret, A., Gasa, J., Calsamiglia, S., & Casals, R. Effects of protein concentration and degradability on performance, ruminal fermentation, and nitrogen metabolism in rapidlygrowing heifers fed high-concentrate diets from 100 to 230 kg body weight [J]. Journal of Animal Science, 2000, 78: 16671676.
    [54] Driedger, L. J., & Loerch, S. C. Effects of protein concentration and source on nutrient digestibility by mature steers limit-fed high-concentrate diets [J]. Journal of Animal Science, 1999, 77: 960~966.
    [55] Everett, J. P., Brown, Jr., L. D., Lassiter, C. A., Jacobson, D. R., & Rust, J. W. Aureomycin as a protein-sparing agent and its influence on minimum starter protein level satisfactory for normal growth of dairy calves [J]. Journal of Dairy Science, 1958, 41: 1407~1416.
    [56] Faria, V. P. de., & Huber, J. T. Effect of dietary protein and energy levels on rumen fermentation in Holstein steers [J]. Journal of Animal Science, 1984, 58: 452~459.
    [57] Fell, B.F., Kay, M., Whitelaw, F.G., & Boyne. R. Observations on the development of ruminal lesions in calves fed on barley [J]. Research in Veterinary Science, 1968, 9: 458~466.
    [58] Flatt, W. P., Warner, R.G., & Loosli, J.K. Influence of purified materials on the development of the ruminant stomach [J]. Journal of Dairy Science, 1958, 41: 1593~1600.
    [59] Gardner, R. W. Digestible protein requirements of calves fed high energy rations ad libitum [J]. Journal of Dairy Science, 1968, 51: 888~897.
    [60] Gilliland, R. L., Bush, L. J., & Friend, J. D. Relation of ration composition to rumen development in early-weaned dairy calves with observations on ruminal parakeratosis [J]. Journal of Dairy Science, 1962, 45: 1211~1217.
    [61] Greenwood, R.H., Morrill, J. L., Titgemeyer, E.C. & Kennedy, G. A. A new method of measuring diet abrasion and its effect on the development of the forestomach [J]. Journal of Dairy Science, 1997, 80: 2534~2541.
    [62] Griswold, K. E., Apgar, G. A., Bouton, J., & Firkins, J. L. Effects of urea infusion and ruminal degradable protein concentration on microbial growth, digestibility, and fermentation in continuous culture [J]. Journal of Animal Science, 2003, 81: 329~336.
    [63] Han, I. K., Lee, J. H., Piao, X. S., & Li, D. F. Feeding and management system to reduce environmental pollution in swine production [J]. Asian-Australasian Journal of Animal Science, 2001, 14: 432~444.
    [64] Harter, J. M., & Baker, D. H. Factors affecting methionine toxicity and its alleviation in the chick [J]. Journal of Nutrition, 1978, 108: 1061~1070.
    [65] Jahn. E. & Chandler, P. T. Performance and nutrient requirements of calves fed varying percentages of protein and fiber [J]. Journal of Animal Science, 1976, 42: 724~735.
    [66] Katz, R. S., & Baker, D. H. Methionine toxicity in the chick: Nutritional and metabolic implications [J]. Journal of Nutrition, 1975, 105: 1168~1175.
    [67] Kerr, B. J., & Easter, R. A. Effect of feeding reduced protein, amino acids-supplemented diets on nitrogen and energy balance in growing pig. Journal of Animal Science, 1995, 73: 3000~3008.
    [68] Khan, M. A., Lee, H. J., Lee, W. S., Kim, H. S., Kim, S. B., Park, S. B., et al. Starch source evaluation in calf starter: II. ruminal parameters, rumen development, nutrient digestibilities, and nitrogen utilization in holstein calves [J]. Journal of Dairy Science, 2008, 91: 1140~1149.
    [69] Klemesrud, M. J., Klopfenstein, T. J., Stock, R. A., Lewis, A. J., & Herold, D. W. Effect of dietary concentration of metabolizable lysine on finishing cattle performance [J]. Journal of Animal Science, 2000, 78: 1060~1066.
    [70] Knowles, T. A., Southern, L. L., & Bidner, T. D. Ratio of total sulfur amino acids to lysine for finishing pigs [J]. Journal of Animal Science, 1998, 76: 1081~1090.
    [71] Kuehn,C.S., Otterby, D. E., Lynn, J. G., Olson, W. G., Chester-Jones, H., Marx, G.D., et al. The effect of dietary energy concentration on calf performance [J]. Journal of Dairy Science, 1994, 77: 2621~2629.
    [72] Leibholz, J. Ground roughage in the diet of the early-weaned calf [J]. Journal of Animal Production, 1975, 20: 93~100.
    [73] Leibholz, J., & Kang, H. S. The crude protein requirement of the early-weaned calf given urea, meat meal or soya bean meal with and without sulphur supplementation [J]. Journal of Animal Production, 1973, 17: 257~263.
    [74] Lesmeister, K. E., Tozer, P. R., & Heinrichs, A. J. Development and analysis of a rumen tissue sampling procedure. Journal of Dairy Science, 2004, 87: 1336~1344.
    [75] Luchini, N. D., Lane, S. F., & Combs, D. K. Evaluation of starter diet crude protein level and feeding regimen for calves weaned at 26 days of age [J]. Journal of Dairy Science, 1991, 74, 3949~3955.
    [76] Ludden, P. A., Wechter, T. L., & Hess, B. W. Effects of oscillating dietary protein on nutrient digestibility, nitrogen metabolism, and gastrointestinal organ mass in sheep. Journal of Animal Science, 2002, 80: 3021~3026.
    [77] Mackie, R. I., & Gilchrist, F. M. C. Changes in lactate-producing and lactate-utilizing bacteria in relation to pH in the rumen of sheep during stepwise adaptation to a high-concentrate diet [J]. Appl. Environ. Microbiol., 1979, 38: 422~430.
    [78] Marshall, D. S., & William, H. H. Methods for determining and factors affecting rumen microbial protein synthesis: a review [J]. Journal of Animal Science, 1979, 49: 1590~1603.
    [79] Merchen. N. R., & Titgemeyer, E. C. Manipulation of amino acid supply to the growing ruminant [J]. Journal of Animal Science, 1992, 70: 3238~3247.
    [80] Miller, W. J., Martin, Y. G. & Fowler, P.R. Effects of addition of fiber to simplified and complex starters fed to young dairy calves [J]. Journal of Dairy Science, 1969, 52: 672~676.
    [81] Morrill, J. L.. The calf: Birth to 12weeks [M]. Champaign, IL: American Dairy Sceince Association, 1992: 401~410.
    [82] Morrill, J. L., & Melton, S. L. Protein required in starters for calves fed milk once or twice daily [J]. Journal of Dairy Science, 1973, 56: 927~931.
    [83] Murphy, J.J., & Mara, F. O. Nutritional manipulation of milk protein concentration and its impact on the dairy industry [J]. Journal of Livestock Science, 1993, 35: 117~134.
    [84] National Research Council. Nutrient requirement of poultry. 9th Ed [M]. Washington, D.C: National Academy Press, 1994.
    [85] National Research Council. Nutrient requirements of swine. 10th Ed [M]. Washington, D.C: National Academy Press, 1998.
    [86] National Research Council. Nutrient requirements of dairy cattle 7th Ed [M]. Washington, D.C: National Academy Press, 2001.
    [87] Nocek, J. E., & Polan, C. E. Influence of ration form and nitrogen availability on ruminal fermentation pattern and plasma of growing bull calves [J]. Journal of Dairy Science, 1984, 67: 1038~1042.
    [88] Oke, B. O., Loerch, S. C., & Deetz, L. E. Effects of rumen-protected methionine and lysine on ruminant performance and nutrient metabolism [J]. Journal of Animal Science, 1986, 62: 1101~1112.
    [89] Otterby, D. E., & Linn, J. G. Advances in nutrition and management of calves and heifers [J]. Journal of Dairy Science, 1981, 64: 1365~1377.
    [90] Phillips, W. A., Webb, K. E. Jr., & Fontenot, J. P. Characteristics of threonine, valine and methionine absorption in the jejunum and ileum of sheep [J]. Journal of Animal Science, 1979, 48: 926~933.
    [91] Piepenbrink, M. S., Overton, T. R., & Clark, J. H. Response of cows fed a low crude protein diet to ruminally protected methionine and lysine [J]. Journal of Dairy Science, 1996, 79: 1638~1646.
    [92] Pisulewski, P.M., Rulquin, H. J., Peyraud, L., & Verite, R. Lactational and systemic responses of dairy cows to postruminal infusions of increasing amounts of methionine [J]. Journal of Dairy Science, 1996, 79: 1781~1791.
    [93] Reddy, P.V., Morrill, J.L., & Bates, L.S. Effects of roasting temperatures on soybean utilization by young dairy calves [J]. Journal of Dairy Science, 1993, 76: 1387~1393.
    [94] Robert, J. C., Sloan, B., Saby, B., Mathe, J., Dumont, G., Duron, M., et al. Influence of dietary nitrogen content and inclusion of rumen-protected methionine and lysine on nitrogen utilization in early lactation dairy cows [J]. Asian-Australasian Journal of Animal Science, 1989, 2: 544~545.
    [95] Roy, J. H. B. The Calf, 4th Ed [M]. Boston: Butterworths, 1980.
    [96] Rulquin, H., & Delaby, L. Lactational responses of dairy cows to graded amounts of rumen-protected methionine [J]. Journal of Dairy Science, 1994, 77(Suppl.1): 91(Abstr.)
    [97] Rulquin, H., C.Hurtaud, and L. Delaby. Effects of dietary protein level on lactational responses of dairy cows to rumen-protected methionine and lysine [J]. Ani. Zootech, 1994,43: 245~251
    [98] Sander, E. G., Warner, R. G., Harrison, H. N., & Loosli, J. K. The stimulatory effect of sodium butyrate and sodium propionate on the development of the rumen mucosa in the young calf [J]. Journal of Dairy Science, 1959, 42: 1600~1605.
    [99] Schingoethe, D. J., Voelker, H. H., & Ludens, F. C. High protein oats grain for lactating dairy cows and growing calves [J]. Journal of Animal Science, 1982, 55: 1200~1205.
    [100] Schurman, E. W., & Kesler, E. M. Protein-energy ratios in complete feeds for calves at ages 8 to 18 weeks [J]. Journal of Animal Science, 57, 1974, 1381~1384.
    [101] Schwab, C. G., Muise, S. J., Hylton, W. E. & Moorer, J. J. Response to abomasal infusion of methionine of weaned dairy calves fed a complete pelleted starter ration based on by-product feeds. Journal of Dairy Science, 1982, 65: 1950~1961.
    [102] Socha, M. T., Putnam, D. E., Garthwaite, B. D., Whitehouse, N. L., Kierstead, N. A., Schwab, C. G., et al.. Improving intestinal amino acid supply of pre- and postpartum dairy cows with rumen-protected methionine and lysine [J]. Journal of Dairy Science, 2005, 88: 1113~1126.
    [103] Stanley C. C., Williams, C. C., Jenny, B. F., Fernandez, J. M., Bateman, H. G., Nipper, W. A., et al. Effects of feeding milk replacer once versus twice daily on glucose metabolism in Holstein and Jersey calves [J]. Journal of dairy science, 2002, 85: 2335~2343.
    [104] Suarez, B. J., Van Reenen, C. G., Gerrits, W. J. J., Stockhofe, N., Van Vuuren. A. M., & Dijkstra .J.. Effects of supplementing concentrates differing in carbohydrate composition in veal calf diets: II. Rumen Development [J]. Journal of Dairy Science, 2006, 89: 4376~4386.
    [105] Tamate, H., McGilliard, A. D., Jacobson, N. L., & Getty, R. Effect of various dietaries on the anatomical developament of the stomach in the calf [J]. Journal of Dairy Science, 1962, 45: 408~420.
    [106] Thomas, J. L., & Colin, G. S. Hormonal responses to protein restriction in two strains of chickens with different growth characteristics. Journal of nutrition, 1987, 117: 758~763.
    [107] Titgemeyer, E. C., Merchen, N. R. & Berger, L. L. Estimation of lysine and methionine requirements of growing steers fed corn silage-based and corn-based diets. Journal of Dairy Science, 1988, 71: 421~434.
    [108] Traub, D. A., & Kesler, E. M. Effect of dietary protein-energy ratios on digestion and growth of Holstein calves at ages 8 to 18 weeks, and on free amino acids in blood [J]. Journal of Dairy Science, 1971, 55: 348~352.
    [109] Wang, T. C., &Fuller, M. F. The optimum dietary amino acid pattern for growing pigs. 1. Experiments by amino acid deletion [J]. British Journal of Nutrition, 1989, 62: 77~89.
    [110] Warner R.G. & Flatt, W. P. Physiology of digestion in the ruminant [M]. Butterworth: Washington, 1965.
    [111] Warner, R. G., Flatt, W. P., & Loosli, J. K. Dietary factors influencing the development of the ruminant stomach [J]. Journal of Agricultural and Food Chemistry, 1956, 4: 788~801.
    [112] Wright, M. D., & Loerch, S. C. Effects of rumen-protected amino acids on ruminant nitrogen balance, plasma amino acid concentrations and performance. Journal of Animal Science, 1988, 66: 2014~2027.
    [113] Xu, S., Harrison, J. H., Chalupa, W., Sniffen, C., Julien, W., Sato, H., et al. The effect of ruminal bypass lysine and methionine on milk yield and composition of lactating cows [J]. Journal of Dairy Science, 1998, 81: 1062~1077.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700