用户名: 密码: 验证码:
Bola表面活性剂(G_2D)及复配体系中核黄素的光物理和光化学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1. 1, 12-二谷氨酸基十二烷基二胺盐的合成及复配研究
     合成了一种具有生物适应性的Bola型表面活性剂1,12-二谷氨酸基十二烷基二胺盐(G2D)和单链型的表面活性剂谷氨酸基十二烷基铵盐(GDA),并通过核磁、红外光谱,元素分析等方法对它们的结构进行了鉴定。此外,通过表面张力、等温滴定微量量热法等实验手段测定了G2D的临界胶束浓度、胶束聚集数、胶束的流体力学半径等。研究发现:与传统的单链表面活性剂GDA相比,Bola型表面活性剂G2D的表面活性较低,其表面张力曲线出现了两个转折点,对应的临界二聚体浓度(cdc)和临界胶束浓度(cmc)分别是7 mmol?L-1、17 mmol?L-1。将G2D和GDA混合后,经负染透射电镜证实,在一定复配比例条件下体系中有囊泡和链珠状聚集体存在。并且随着表面活性剂总浓度、复配比例、温度的改变,不同的聚集体结构之间可以相互转化和共存。根据实验结果,提出了G2D和GDA的相互作用及其聚集形貌的形成机理,并进一步通过微量量热、荧光光谱、核磁等实验手段对提出的机理进行验证。
     2.表面活性剂溶液中核黄素的光物理和光化学性质
     以G2D、GDA胶束水溶液和G2D/GDA复配形成的囊泡体系模拟仿生细胞膜,以核磁共振、等温滴定微量量热法、紫外光谱、荧光光谱、时间分辨荧光光谱法等方法研究了这三种分子有序组合体中核黄素的光物理和光化学性质。结果表明:随着胶束的形成,被增溶的核黄素自发地定位于G2D胶束的疏水碳氢链附近,它们的相互作用是放热过程。紫外光照条件下,核黄素在G2D溶液中发生光还原反应的速率常数与G2D的浓度有关。同时实验还证实表面活性剂的极性头基在核黄素与表面活性剂的相互作用中起决定性作用。在单头基的GDA胶束中,核黄素本身的光物理性质发生更为显著地变化,且核黄素与GDA分子间的强静电吸引作用使得GDA胶束结构变得更为松散。为考察体系微环境的影响,实验进一步研究了G2D/GDA复配体系中核黄素的光物理和光化学性质。结果表明:当摩尔比从15:1变到1:15时,体系由囊泡向链珠状聚集体转变,体系中核黄素的荧光和紫外强度都呈先降低再增大的趋势。在紫外光照条件下,核黄素在复配体系中发生光还原反应的速率同样与聚集体的形貌有关,链珠状聚集体比球形囊泡更有利于核黄素光反应的进行。
     3.表面活性剂溶液中核黄素与血红蛋白的相互作用
     利用荧光光谱、紫外吸收光谱、圆二色光谱等技术比较性研究了两种表面活性剂G2D、GDA与血红蛋白的相互作用。研究表明:G2D和GDA都可以结合在血红蛋白上。随着这两种表面活性剂浓度的增大,血红蛋白开始解螺旋,疏水空腔逐渐打开,血红蛋白逐渐变性。在G2D、GDA的血红蛋白溶液中加入核黄素后,核黄素与血红蛋白之间通过形成1:1型的复合物而猝灭血红蛋白的内源荧光,温度升高不利于该过程的进行。根据F?rster非辐射能量转移理论,得到G2D和GDA溶液中核黄素与血红蛋白分子间的能量转移效率、结合距离等。这不仅丰富了生物大分子与小分子之间相互作用的研究内容,为研究核黄素在活体细胞中的作用机制提供了可靠的实验数据,同时实验结果也对进一步理解血红蛋白的结构和功能关系提供了重要的理论依据。
1. Synthesis and mixing behavior of 1, 12-diglutamic diaminododecane
     A novel bolaform surfactant 1,12-diglutamic diaminododecane (G2D) and its counterpart n-dodecylammonium glutamate (GDA) with biodegradability and biological compatibility, have been synthesized and characterized by DSC, FT-IR, 1HNMR and elementary analysis measurements. The critical micelle concentration (cmc), the aggregation number and the average radius of the micelles of G2D are investigated by surface tension, isothermal titration microcalorimetry and dynamic light scattering experiments. Compared with its counterpart (GDA), G2D has lower surface activity and the values of critical dimer concentration (cdc) and critical micelle concentration (cmc) obtained from the surface tension curve are 7 mmol?L-1 and 17 mmol?L-1, respectively. Besides, the GDA and G2D mixing behavior is also studied. The coexistence of vesicles and beads aggregate is proved by the negative staining-TEM results. Another striking feature of this mixing system is that the vesicle formation and transformation can be adjusted by different factors, including the total surfactant concentration, the mixing molar ratios, and increase of temperature. Finally the mechanism to explain the interaction between the GDA and G2D is introduced and verified by mehtods of dynamic light scattering, fluorescence spectroscopy, nuclear magnetic resonance technology and isothermal titration microcalorimetry.
     2. Photophysical and photochemical properties of riboflavin in surfactant solutions
     The photophysical and photochemical properties of riboflavin have been undertaken in biomimetic systems formed by glutamic surfactants of different headgroups, namely G2D, GDA, and G2D/GDA mixed systems, using NMR, ITC, fluorescence, UV-vis absorption, time-resolved fluorescence spectroscopy. The results demonstrate that in the G2D micelles, riboflavin can spontaneously locate in the hydrophobic region formed by the hydrocarbon chain of G2D, which is an exothermic process. Ultraviolet illumination of riboflavin in G2D solution leads to the photo reduction of riboflavin and the reaction rate is dependent on the concentration of G2D. It is also confirmed from the parallel experiments that variation in the surfactant headgroup plays an important role in promoting a specific structural dynamism of the fluorophore of riboflavin. In GDA solution, the photophysical property of riboflavin shows greater change and the strong electrostatic interaction can further induce the loose of GDA micelle structure. In order to investigate the influence of polarity and viscosity of the microenvironments around the riboflavin molecules, the photophysical and photochemical properties of riboflavin in G2D/GDA mixed systems are further studied. The maximum absorbance and the fluorescence intensity of riboflavin in G2D/GDA mixed systems show tendency to ascend and followed to descend when the mixed molar ratios vary from 15:1 to 1:15, corresponding to the transformation from vesicles to beads aggregate. Meanwhile the photo reduction rates of riboflavin in G2D/GDA solutions are also related to the aggregation morphology, that is the beads aggregate favors the photochemical reaction of riboflavin under the illumination of UV light source.
     3. The interaction between riboflavin and hemoglobin in surfactant solutions
     The protein-surfactant systems constituted by G2D/Hb and GDA/Hb have been studied by using UV-vis absorption, steady-state fluorescence, and circular dichroism (CD) spectroscopy. It is found that the presence of G2D or GDA could induce the denature of hemoglobin. On the basis of previous experiment, the interaction of riboflavin with hemoglobin in G2D, and GDA are comparatively investigated. Riboflavin can quench the intrinsic fluorescence of Hb by the formation of 1:1 complex, which is unfavourable at higher temperature. The averaged binding distance and the energy transfer efficiency between riboflavin and Hb are calculated according to the theory of F?rster’s non-radiation energy transfer. This research can not only enrich the systems about the interaction between biological macromolecules and small molecules, but also provide valuable data of simulating the mechanism of riboflavin in biological systems and understanding of the relationship between structure and function of hemoglobin.
引文
1. Pierce, F.; Hubbard, Jr.; Nicholas, L.; Abbott. Langmuir 2007, 23, 4819.
    2. Stephanie, B.; Velegol; Barry, D.; Fleming; Simon Biggs; Erica, J.; Wanless; Robert, D.; Tilton. Langmuir 2000, 16, 2548.
    3. Carla, Prata; Nathalie, Mora. Carbohydr. Res. 1999, 321, 15.
    4. Anno, Wagenaar; Jan, B.; Engberts, F.N. Tetrahedron 2007, 63, 10622.
    5. Aurlie, Brizard; Carole, Aim; Thomas, Labrot. J. Am. Chem. Soc. 2007, 129, 3754.
    6. Maja, Sikiri; Ivan, mit; Ljerka, Tuek-Boi; Vlasta. Langmuir 2003, 19, 10044.
    7. Fuoss, R.M; Edelson, D. J. Am. Chem. Soc. 1951, 73, 269.
    8. Menger, F.M; Littau, C.A. J. Am. Chem. Soc. 1991, 113, 1451.
    9. Jrgen-Hinrich Fuhrhop; Tianyu Wang. Chem. Rev. 2004, 104, 2901.
    10. Ciro Di Meglio; Shankar B. Rananavare; Snke Svenson; David H. Thompson. Langmuir 2000, 16, 128.
    11. Eugenio Caponetti; Delia Chillura-Martino; Camillo La Mesa; Lucia Pedone; Rita Muzzalupo. J. Phys. Chem. B 2004, 108, 1214.
    12. Yun Yan; Wei Xiong; Jianbin Huang; Zichen Li; Xiaosong Li; Ningning Li; Honglan Fu. J. Phys. Chem. B 2005, 109, 357.
    13. Rixt, T.; Buwalda; Jan B. F. N. Engberts. Langmuir 2001, 17, 1054.
    14. Meguro, K.; Ikeda, K.; Otsuji, A.; Taya, M.; Yasuda, M.; Esumi K. J. Colloid Interface Sci. 1987, 118, 372.
    15. Abid S.K.; Hamid S.M.; Sherrington, D.C. J. Colloid Interface Sci. 1987, 120, 245.
    16. Menger F.M.; Wrenn S. J. Phys. Chem. 1974, 78, 1387.
    17. Skold R.O.; Tunius M.A.R. J. Colloid Interface Sci. 1992, 152, 183.
    18. Fainerman, V.B.; Makievski, A.V.; Miller R. Colloid. Surf. A 1994, 87, 61.
    19. Franceschi, S.; Viguerie, N. de; Riviere, M. New J. Chem. 1999, 23, 447.
    20. Nakashima, N.; Asakuma, S.; Kim, J. M.; Kunitake, T. Chem. Lett. 1984, 1709.
    21. Meglia, C. D.; Rananavare, S. B.; Svenson, S.; Thompson, D. H. Langmuir 2000, 16, 128.
    22.Clary, L.; Gadras, C.; Greiner, J.; Rolland, J.-P.; Santaella, C.; Vierling, P.; Gulik. A. Chem. Phys. Lipids 1999, 99, 125.
    23. Fuhrhop, J. H.; Spiroski, D.; Boettcher, C. J. Am. Chem. Soc. 1993, 115, 1600.
    24. Bhattacharya, S.; De S. Chem Commun. 1996, 11, 1283.
    25. Bhattacharya, S.; De S; Subramanian, M. J. Org. Chem. 1998, 63, 7640.
    26. Visscher I; Engberts J B F N. Langmuir 2000, 16, 52.
    27. Zana, R.; Muto, Y.; Esumi, K.; Meguro, K. J Colloid Interface Sci. 1988, 123, 502.
    28. Rita Muzzalupo; Giacomo Gente. Langmuir 2006, 22, 6001.
    29. Yun Yan; Wei Xiong; Jianbin Huang. J. Phys. Chem. B 2005, 109, 357.
    30. Pierce Hubbard, F.; Gabriella Santonicola; Eric W. Kaler; Nicholas L. Abbott. Langmuir 2005, 21, 6131.
    31. Yun Yan; Jianbin Huang; Zichen Li; Feng Han. Langmuir 2003, 19, 972.
    32. Han Feng; He Xiao; Huang Jianbin. J. Phys. Chem B 2004, 108, 5256.
    33. Ambrosi M.; Fratini E. J . Am. Chem.Soc. 2006, 128, 7209.
    34. Rita Muzzalupo; Sonia Trombino; Francesca Iemma; Francesco Puoci; Camillo LaMesa; Nevio Picci. Colloids Surf., B 2005, 46, 78.
    35. Zhou D.Y; Huo Q.; Feng J.L. Chem. Mater. 1999, 11, 2668.
    36. Fyles TM; Loock D; Zhou Z. J. Org. Chem. 1996, 61, 8866.
    37. Tianqing, Liu; Rong, Guo; Wei, Hua; Jing Qiu. Colloids Surf., A 2007, 293, 255.
    38. Jaroslava; Miksovska; Jenny Yom. Biomacromolecules 2006, 7, 476.
    39. Dian, R. Arifin; Andre, F. Artif. Cells, Blood Substitues, Biotechnol. 2005, 33, 113.
    40. Rafatim, A. A.; Bordbar, A. K.; Gharibi, H.; Amini, M.K.; Safarpour, M.A. Bull. Chem. Soc. Jpn. 2004, 77, 1111.
    41. Deep, S.; Ahluwalia, J.C. Phys. Chem. Chem. Phys. 2001, 3, 4583.
    42. Jones, M.N. Chem. Soc. Rev. 1992, 21, 127.
    43. Perutz M.F. Proc. Roy. Soc.(London), B 1968, 173, 113.
    44. Saguer, E.; Fort, N.; Alvarez, P.A.; Sedman, J. Food Hydrocolloids 2008, 22, 459.
    45. Katja Henzler; Alexander Wittemann; Eugenia Breininger; Matthias Ballauff; Sabine Rosenfeldt. Biomacromolecules 2007, 8, 3674.
    46. Wilhelm R. Glomm; Ann-Mari D. Hanneseth; Sondre Volden. J. Phys. Chem. B 2007, 111, 14329.
    47. Maurício L. Sforca; Alessandra Machado; Rita C.R. Figueredo; Sérgio Oyama Jr.;Fernanda D. Silva; Antonio Miranda. Biochemistry 2005, 44, 6440.
    48. Miller, R.; Fainerman, V.B.; Leser, M.E. Colloid. Surf. A 2004, 233, 39.
    49. Tribout, M.; Paredes, S.; González-Ma?as, J.M.; Go?i, F.M. J. Biochem. Biophys. Methods 1991, 22, 29.
    50. Ruso, J.M.; Gonzáez-Pérez, A; Prieto, G; Colloid. Surf. A 2004, 249, 45.
    51. Sarmiento, F.; Ruso, J. M.; Prieto, G.; Mosquera, V. Langmuir 1998, 14, 5725.
    52. Lissi, E.; Abuin, E.; Lanio, M.E.; Alvarez, C. J. Biochem. Biophys. Methods 2002, 50, 261.
    53.吴丹,徐桂英.物理化学学报2006, 22, 254.
    54. Ruso, J. M.; Deo, N.; Somasundaran, P. Langmuir 2004, 20, 8988.
    55. Nielsen, A. D.; Arleth, L.; Westh, P. Biochim. Biophys. Acta 2005, 1752, 124.
    56. Gelamo, E. L.; Itri, R.; Alonso, A.; Silva, J.V.D. J. Colloid Interface Sci. 2004, 277, 471.
    57. Stenstam, A.; Montalvo, G..; Grillo, I.; Gradzielski, M. J. Phys. Chem. B 2003, 107, 12331.
    58. Gharibi, H.; Javadian, S.; Hashemianzadeh, M. Colloid. Surf. A 2004, 232, 77.
    59. Stenstam, A.; Topgaard, D.; Wennerstrom, H. J. Phys. Chem. B 2003, 107, 7987.
    60. Mackie, A.R.; Gunning, A.P.; Ridout, M.J. Biomacromolecules 2001, 2, 1001.
    61. Bertil Holmstrom; Gerald Oster. Langmuir 1960,1867.
    62. Huang, R.; Choe, E.; Min, D.B. J Food Sci. 2004, 69, 726.
    63.陆长元,韩镇辉,等.中国科学(B) 2000, 30, 428.
    64. Heelis, P. F. Chem. Soc. Rev. 1982, 11, 15.
    65. Raymond Bonnett; Gabriel Martínez. Tetrahedron 2001, 57, 9513.
    66. Christian, Schell; Hermann, K. Hombrecher. Bioorg. Med. Chem. 1999, 7, 1857.
    67. Lindong Gao; Xuhong Qian; Li Zhang. J. Photochem. Photobiol., B 2001, 65, 35.
    68. Edith I. Yslas; Edgardo N. Durantini; Viviana, A. Rivarola. Bioorg. Med. Chem. 2007, 15, 4651.
    69. Emma S. Nyman; Paavo, H. Hynninen. J. Photochem. Photobiol., B 2004, 73, 1.
    70. Christophe Hadjur; Norbert Lange; Julia Rebstein; Philippe Monnier; Hubert van den Bergh. J. Photochem. Photobiol., B 1998, 45, 170.
    71. Annelies S.L. Derycke; Peter A. M. de Witte. Adv. Drug Delivery Rev. 2004, 56, 17.
    72. Inés Scalise; Edgardo N. Durantini. J. Photochem. Photobiol., A 2004, 162, 105.
    73. Cecilia Bombelli; Giulio Caracciolo; Pietro Di Profio; Marco Diociaiuti. J. Med. Chem. 2005, 48, 4882.
    74. Pawel Mroz; Anna Pawlak; Minahil Satti; Haeryeon Lee; Hariprasad Gali; Tadeusz Sarna. Free Radical Biol. Med. 2007, 43, 711.
    75. Ana P. Castano; Tatiana N. Demidova. Photodiagn. Photodyn. Ther. 2004, 1, 279.
    76. Viola A.; Hadjur C.; Jeunet A. J. Photochem. Photobiol., B 1996, 32, 49.
    77. Kepka, A; Grossweiner, L.I. Photochem. Photobiol. 1972, 14, 621.
    78. McGinnis, B.D.; Adams, V.D.; Middlebrooks, E.J. Environ. Int. 1999, 25, 953.
    79. Ito, K.; Inoue, S.; Yamamoto, K.; Kawanishi, S. J. Biol. Chem. 1993, 268, 13221.
    80. Diaz, M.; Berker, M.I. Photochem. Photobiol. 1996, 63, 762.
    81. Tymish Y. Ohulchanskyy; Michael K. Gannon; Mao Ye ; Andrey Skripchenko; Stephen J. Wagner; Paras N. Prasad; Michael R. Detty. J. Phys. Chem. B 2007, 111, 9686.
    82. Paramita Das; Alok Chakrabarty; Arabinda Mallick; Nitin Chattopadhyay. J. Phys. Chem. B 2007, 111, 11169.
    83. Molinari, A.; Colone, M. Toxicol. in Vitro 2007, 21, 230.
    84. Guodong Zhang; Atsushi Harada; Nobuhiro Nishiyama. J. ControlledRelease 2003, 93, 141.
    85. Jan van Stam; Frank Imans; Lucien Viaene. J. Phys. Chem. B 1999, 103, 5160.
    86. Cecilia Bombelli; Giulio Caracciolo; J. Med. Chem. 2005, 48, 4882.
    87. Ragheb, H.; Shakhshir, A.; Regnier, F.E.; White, J.L. Vaccine 1995, 13, 41.
    88. Gelamo, E.L.; Tabak, M. Spectrochim. Acta, Part A 2000, 56, 2255.
    89. Giancola, C.; Sena, C.D.; Fessas, D. Int. J. Biol. Macromol. 1997, 20, 193.
    90. Jovanovic, S.V.; Steenken, S.; Tosic, M.; Marjanovic, B.; Simic, M.G. J. Am. Chem. Soc. 1994, 116, 4846.
    91. Tian, J.N.; Liu, J.Q.; He, W.Y. Biomacromolecules 2004, 5, 1956.
    92. Nemethy, G.; Scheraga, H.A. J. Phys. Chem.1962, 66, 1773.
    93. Timasheff, S.N.; Peeters, H. Pergamon Press: Oxford 1972, 511.
    94. Ruiz, D.L.R.; Tortes, A.L.C.; Garcfa, E.A. Analyst 1998, 123, 2257.
    95. Zanette, D.; Lima, C.F.; Ruzza, A.A. Colloids Surf. A 1999, 147, 89.
    96. Moriyama, Y.; Ohta, D.; Hachiya, K. Protein Chem. 1996, 15, 265.
    97. Jing Jin; Xia Zhang. J. Lumin. 2008, 128, 81.
    98. Alok Chakrabarty; Paramita Das; Arabinda Mallick; Nitin Chattopadhyay. J. Phys. Chem. B 2008, 112, 3684.
    99. Sugiyana, Y.; Suzukiy, Y. Biochem. Pharmacol. 1985, 34, 821.
    100. Diaz, X.; Abuin, E.; Lissi, E. J.Photoch. Photobio. A 2003, 155, 157.
    101. Xing Jia, Guo; Xiu Dan, Sun; Shu Kun, Xu. J. Mol. Struct. 2009, 931, 55.
    102. Jing Jin; Xia Zhang. J. Lumin. 2008, 128, 81.
    103. Ana Maria D. Gon?alves; Maria Raquel Aires-Barros; Joaquim M. S. Cabral. Enzyme Microb. Technol. 2003, 32, 868.
    104. Moriyanla, Y.; Takeda, K. Langmuir 2005, 21, 5524.
    105. William Marshall Moore. J. Am. Chem. Soc. 1969, 91, 7170.
    106. Karrer, P.; Salomon, H.; Schopp, K.; Schlittler, E.; Fritsche, H. Helv. Chim. Acta 1934, 7, 1010.
    107. Bertil; Holmstr?m; Gerald Oster. J. Am. Chem. Soc. 1961, 83, 1867.
    108. Kurt Enns; William H. Burgess. J. Am. Chem. Soc. 1965, 87, 5766.
    109. Christopher B. Martin; Xiaofeng Shi; Meng Lin Tsao; Dale Karweik. J.Phys. Chem. B 2002, 106, 10263.
    110. Iqbal Ahmad; Fasihullah Q; Adnan Noor; Izhar A Ansari; Nawab Manzar Ali Q. Int. J. Pharm. 2004, 280, 199.
    111. Eddie, C.; Smith; David, E.; Metzler. J. Am. Chem. Soc. 1963, 85, 3285.
    112. Changyuan, Lu; Zhenhui, Han; Jingxi, Pan. J. Radiat. Res. Radiat. Proces. 2000, 18, 12.
    113. Mora′n, C.; Clape′s, P.; Comelles, F. Langmuir 2001, 77, 5071.
    114. Mora′n, C.; Infante, M.R. J. Chem. Soc, Perkin Trans. 2001, 1, 206.
    115. Epand, R.F.; Infante, M. R.; Flanagan, T.D. Biochim. Biophys. Acta 1998, 1373, 67.
    116. Pinazo, A.; Wen, X.; Pe′rez, L. Langmuir 1999, 15, 3134.
    1. Morán, C.; Clapés, P.; Comelles, F. Langmuir 2001, 77, 5071.
    2. Pinazo, A.; Wen, X.; Pe′rez, L. Langmuir 1999, 15, 3134.
    3. Daisuke Kaneko; Ulf Olsson; Kazutami Sakamoto. Langmuir 2002, 18, 4699.
    4. Pere, C.; Marla, R.I. Biocatal. Biotransform. 2002, 20, 215.
    5. Maria, R.I.; Lourdes, P.; Aurora, P. Comptes Rendus Chimie 2004, 7, 583.
    6. Jingxia, Yao; Yuan, Feng; Ying, Zhao; Zichen, Li; Jianbin, Huang; Honglan, Fu. J. Colloid Interface Sci. 2007, 314, 523.
    7. Koji Tsuchiya; Hisanori Nakanishi; Hideki Sakai; Masahiko Abe. Langmuir 2004, 20, 2117.
    8. Regev, O; Khan, A. J. Colloid Interface Sci.1996, 182, 95.
    9. Rodehuser, L.; Chaumette, H.; Meyers, A. Amino Acids 2000, 89.
    10. Jover, A.; Meijide, F.; Rodríguez Nú?ez, E.; Vazquez Tato, J. Langmuir 1997, 13, 161.
    11. Sadtler Nuclear Magnet Resonance Specctra Vol. 43- 46, 27672, M.
    12.宁永成.有机化合物结构鉴定与有机波谱学,科学出版社, 2000, P261.
    13. Francis, L.; Duivenvoorde; Martinus, C. Langmuir 1997, 13, 3737.
    14.肖进新,赵振国.表面活性剂应用原理[M].北京:化学工业出版社, 2003, 347.
    15. Rolf, O. Sk?ld. J. Colloid Interface Sci. 1992, 152, 183.
    16.赵国玺,朱步瑶.表面活性剂作用原理[M].北京:中国轻工业出版社, 2003, 231.
    17. Tomi, T.; Maeda, T.; Satake, I. Colloids Surf., A 2009, 346, 28.
    18. Yiv, S; Kale, K.M., Lang, J. J. Phys. Chem. 1976, 80, 2651.
    19. Meguro, K.; Ikeda, K. J. Colloid Interface Sci. 1987, 118, 372.
    20. Turro, N. J.; Yekta, A. J. Am. Chem. Soc. 1979, 71, 580.
    21. Israelachvili, J .N.; Mitchell, D.J. J. Chem. Soc, Faraday TransⅠ1976, 72, 1525.
    22. Yun Yan; Jianbin Huang; Zichen Li; Feng Han; Jiming Ma. Langmuir, 2003, 19, 972.
    23. Ting Lu; Feng Han; Guangru Mao; Guofeng Lin; Jianbin Huang. Langmuir 2007,
    23, 2932.
    24. Zhai Limin; Li Ganzuo; Sun Zhiwei. Colloids Surf., A 2001, 190, 275.
    25. Paul C. Hiemenz; Raj Rajagopalan. Principles of Colloid and surface Chemistry, The United of America 1997, P19.
    26. Meguro, K.; Ikeda, K. J. Colloid Interface Sci 1987, 118, 372.
    27. Yukishige, K.; Hirotaka, U.; Norio, Y.A. Langmuir 1995, 11, 2380.
    28. Panmai, S.; Prud homme, R.K. Langmuir 2002, 18, 3860.
    29. Limin Zhai; Jiyu Zhang; Jiyu Zhang; Qingxiu Shi; Wenjun Chen; Mei Zhao. J. Colloid Interface Sci. 2005, 284, 698.
    30. Hamai, S.; Kokubun, H. Bull.Chem.Soc.Jpn. 1974, 47, 24.
    31.朱广华,郑洪,鞠烷先.分析化学2003, 32, 102.
    32. Keyes Baig, C.; Duhamel, J. J. Am. Chem. Soc. 2004, 126, 7522.
    33. Siu, H.; Duhamel, J. Macromolecules 2006, 39,1144.
    34. R. Guo; W.Y. Liu. Colloid Surface. A. 2004,248, 93.
    35. Prasad, M.; Moulik, S.P.; Palepu, R. J. Colloid Interface Sci. 2005, 284, 658.
    36. Celia Cabaleiro Lago; Markus Nilsson; Artur J.M.; Valente; Massimo Bonini; Olle S?derman. J. Colloid Interface Sci. 2006, 300, 782.
    37. Hideo Inoue; Toshio Nakagawa. J. Phys. Chem. 1966, 70, 1108.
    38. Oliviero, C.; Coppola, L.; Mesa, C.L.; Ranieri, G.A; Terenzi, M. Colloids Surf., A 2002, 201, 247.
    39. Alami, E.; Alami, S.A.; Eastoe, J. Langmuir 2003, 19, 18.
    40. Emst RR; Bodenhausen G; Wokaun A. Principles of Nuclear Mdgnetic Resonance in One and Two Dimensions. Oxford: Clarendon Press, 1987.
    1. Benoy B. Bhowmik; Papia Ganguly. Spectrochim. Acta, Part A 2005, 62, 808.
    2. Bueno, C.A.; Silva, E.; Edwards, A.M. J. Photochem. Photobiol. B: Biol. 1999, 52, 123.
    3. Bhattar, S.L.; Kolekar, G.B.; Patil, S.R. J. Lumin. 2010, 130, 355.
    4. Graetzel, M.; Kalyanasundaram, K. J. Am.Chem.Soc.1974, 96, 7869.
    5. Huang, X.; Zhang, W.; Zhang, Z. Spectrochim. Acta Part A 1998,54, 617.
    6. Mariana, N.; Dimitrova; Hideo Matsumura; Anastassia Dimitrova. Int. J. Biol. Macromol. 2000, 27, 187.
    7. Torsten Wieprecht; Ognjan Apostolov; Joachim Seelig. Biophys. Chem. 2000, 85, 187.
    8. Ye S; Czuba M; Romiszewska A. Optica. Applicata. 2003, 33, 489.
    9. Laetitia Rene Boisneuf; Scaiano J.C. Chem. Mater. 2008, 20, 6638.
    10. Dr?ossler, P.; Holzer, W.; Penzkofer, A.; Hegemann, P. Chem. Phys. 2002, 282, 429.
    11. Dr?ossler, P.; Holzer, W.; Penzkofer, A.; Hegemann, P. Chem. Phys. 2003, 286, 409.
    12. Bertilh Olmstrom; Geraldoste. J. Am. Chem. Soc. 1961, 83, 1867.
    13. Eddie C. Smith; David E. Metzler. J. Am. Chem. Soc. 1963, 85, 3285.
    14. Iqbal Ahmad; Fasihullah, Q.; Adnan Noor; Izhar, A.; Ansari, Q.; Nawab Manzar Ali. Int. J. Pharm. 2004, 280, 199.
    15. Lakowicz, J.R. Principles of Fluorescence Spectroscopy. 3nd ed. New York: Springer, 2006.
    16. Zirak, P.; Penzkofer, A.; Mathes T. Chemical Physics 2009, 358, 111.
    17. Guo, R.; Liu, W.Y. Colloids Surf., A 2004, 248, 93.
    18. Heelis, P.F. Chem. Soc. Rev. 1982, 11, 15.
    19. Bueno, C.A.; Silva, E.; Edwards, A.M. J. Photochem. Photobiol. B: Biol. 1999, 52, 123.
    1. Xiang, Z.B.; Dai, C.Y.; Zhu, L.Q.. Food Res. Dev. 2004, 25, 90.
    2. Apurba, K.S.; Douglas, C.; Mazumdar, S.M.S. Biophys. Chem. 2002, 98, 267.
    3. Wieslaw, K.; Robert, I.R.; Kim, D.V. Biochemistry 1995, 34, 11176.
    4. Boffi, A.; Das, T.K.; Longa, S.D. Biophys. J. 1999, 77, 1143.
    5. Brunete, S.C.; Perez, R.A.; Iguel, M.E. J. Chromatogr, A 1998, 823, 17.
    6. Ghosh, S.; Banerjee, A. Biomacromolecules 2002, 3, 9.
    7. Yan Jun Hu; Yi Liu; Jia Bo Wang; Xiao He Xiao; Song Sheng Qu. J. Pharm. Biomed. Anal. 2004, 36, 915.
    8. Ware, W.R. J. Phys. Chem. 1962, 66, 455.
    9. Lakowica , J.R; Weber, G. Bioehemistry 1973, 12, 4161.
    10. Ross, P.D; Subramanian, S. Biochem. 1981, 20, 3096.
    11. Bertucei, C.E.; Domenici, E. Curr. Med. Chem. 2002, 9, 1463.
    12. Silva, D.; Coertz, C.M.; Cunha Basots, J.; Louor, S.R.W. Toxicol. Lett. 2004, 147, 53.
    13. Xing Jia Guo; Xiu Dan Sun; Shu Kun Xu. J. Mol. Struct. 2009, 931, 55.
    14. F?rster, T. Z. Naturforsch. A 1949, 4, 321.
    15. F?rster, T. Z. Discuss. Faraday Soc. 1959, 27, 7.
    16. Kojl Kano; Hlrofuml Kawazuml; Tellchlro Ogawa. J. Phys. Chem. 1981, 85, 2998.
    17. Kasai, S.; Horie, T.; Mimuza, T.; Awuaz, S. J. Pharm Sci. 1987, 76, 387.
    18. Yang, M.M.; Yang, P.; Zhnag, L.W. Chin. Sci. Bull 1994, 39, 31.
    19. Mohammad Arif Cheema; Pablo Taboada; Silvia Barbosa; JosuéJuárez; Manuel Gutiérrez Pichel; Mohammad Siddiq. J. Chem. Thermodyn. 2009, 41, 439.
    20. Nan, Wang; Ling, Ye; Fangfei, Yan; Ren, Xu. Int. J. Pharm. 2008, 351, 55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700